/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/effects/GrTextureEffect.h" #include "src/core/SkMatrixPriv.h" #include "src/gpu/GrTexture.h" #include "src/gpu/effects/GrMatrixEffect.h" #include "src/gpu/glsl/GrGLSLProgramBuilder.h" #include "src/sksl/SkSLCPP.h" #include "src/sksl/SkSLUtil.h" using Wrap = GrSamplerState::WrapMode; using Filter = GrSamplerState::Filter; using MipmapMode = GrSamplerState::MipmapMode; struct GrTextureEffect::Sampling { GrSamplerState fHWSampler; ShaderMode fShaderModes[2] = {ShaderMode::kNone, ShaderMode::kNone}; SkRect fShaderSubset = {0, 0, 0, 0}; SkRect fShaderClamp = {0, 0, 0, 0}; float fBorder[4] = {0, 0, 0, 0}; Sampling(Filter filter, MipmapMode mm) : fHWSampler(filter, mm) {} Sampling(const GrSurfaceProxy& proxy, GrSamplerState wrap, const SkRect&, const SkRect*, const float border[4], bool alwaysUseShaderTileMode, const GrCaps&, SkVector linearFilterInset = {0.5f, 0.5f}); inline bool hasBorderAlpha() const; }; GrTextureEffect::Sampling::Sampling(const GrSurfaceProxy& proxy, GrSamplerState sampler, const SkRect& subset, const SkRect* domain, const float border[4], bool alwaysUseShaderTileMode, const GrCaps& caps, SkVector linearFilterInset) { struct Span { float fA = 0.f, fB = 0.f; Span makeInset(float o) const { Span r = {fA + o, fB - o}; if (r.fA > r.fB) { r.fA = r.fB = (r.fA + r.fB) / 2; } return r; } bool contains(Span r) const { return fA <= r.fA && fB >= r.fB; } }; struct Result1D { ShaderMode fShaderMode; Span fShaderSubset; Span fShaderClamp; Wrap fHWWrap; }; auto type = proxy.asTextureProxy()->textureType(); auto filter = sampler.filter(); auto mm = sampler.mipmapMode(); auto resolve = [&](int size, Wrap wrap, Span subset, Span domain, float linearFilterInset) { Result1D r; bool canDoModeInHW = !alwaysUseShaderTileMode; // TODO: Use HW border color when available. if (wrap == Wrap::kClampToBorder && (!caps.clampToBorderSupport() || border[0] || border[1] || border[2] || border[3])) { canDoModeInHW = false; } else if (wrap != Wrap::kClamp && !caps.npotTextureTileSupport() && !SkIsPow2(size)) { canDoModeInHW = false; } else if (type != GrTextureType::k2D && !(wrap == Wrap::kClamp || wrap == Wrap::kClampToBorder)) { canDoModeInHW = false; } if (canDoModeInHW && size > 0 && subset.fA <= 0 && subset.fB >= size) { r.fShaderMode = ShaderMode::kNone; r.fHWWrap = wrap; r.fShaderSubset = r.fShaderClamp = {0, 0}; return r; } r.fShaderSubset = subset; bool domainIsSafe = false; if (filter == Filter::kNearest) { Span isubset{sk_float_floor(subset.fA), sk_float_ceil(subset.fB)}; if (domain.fA > isubset.fA && domain.fB < isubset.fB) { domainIsSafe = true; } // This inset prevents sampling neighboring texels that could occur when // texture coords fall exactly at texel boundaries (depending on precision // and GPU-specific snapping at the boundary). r.fShaderClamp = isubset.makeInset(0.5f); } else { r.fShaderClamp = subset.makeInset(linearFilterInset); if (r.fShaderClamp.contains(domain)) { domainIsSafe = true; } } if (!alwaysUseShaderTileMode && domainIsSafe) { // The domain of coords that will be used won't access texels outside of the subset. // So the wrap mode effectively doesn't matter. We use kClamp since it is always // supported. r.fShaderMode = ShaderMode::kNone; r.fHWWrap = Wrap::kClamp; r.fShaderSubset = r.fShaderClamp = {0, 0}; return r; } r.fShaderMode = GetShaderMode(wrap, filter, mm); r.fHWWrap = Wrap::kClamp; return r; }; SkISize dim = proxy.isFullyLazy() ? SkISize{-1, -1} : proxy.backingStoreDimensions(); Span subsetX{subset.fLeft, subset.fRight}; auto domainX = domain ? Span{domain->fLeft, domain->fRight} : Span{SK_FloatNegativeInfinity, SK_FloatInfinity}; auto x = resolve(dim.width(), sampler.wrapModeX(), subsetX, domainX, linearFilterInset.fX); Span subsetY{subset.fTop, subset.fBottom}; auto domainY = domain ? Span{domain->fTop, domain->fBottom} : Span{SK_FloatNegativeInfinity, SK_FloatInfinity}; auto y = resolve(dim.height(), sampler.wrapModeY(), subsetY, domainY, linearFilterInset.fY); fHWSampler = {x.fHWWrap, y.fHWWrap, filter, mm}; fShaderModes[0] = x.fShaderMode; fShaderModes[1] = y.fShaderMode; fShaderSubset = {x.fShaderSubset.fA, y.fShaderSubset.fA, x.fShaderSubset.fB, y.fShaderSubset.fB}; fShaderClamp = {x.fShaderClamp.fA, y.fShaderClamp.fA, x.fShaderClamp.fB, y.fShaderClamp.fB}; std::copy_n(border, 4, fBorder); } bool GrTextureEffect::Sampling::hasBorderAlpha() const { if (fHWSampler.wrapModeX() == Wrap::kClampToBorder || fHWSampler.wrapModeY() == Wrap::kClampToBorder) { return true; } if (ShaderModeIsClampToBorder(fShaderModes[0]) || ShaderModeIsClampToBorder(fShaderModes[1])) { return fBorder[3] < 1.f; } return false; } std::unique_ptr GrTextureEffect::Make(GrSurfaceProxyView view, SkAlphaType alphaType, const SkMatrix& matrix, Filter filter, MipmapMode mm) { Sampling sampling = Sampling(filter, mm); std::unique_ptr te(new GrTextureEffect(std::move(view), alphaType, sampling)); return GrMatrixEffect::Make(matrix, std::move(te)); } std::unique_ptr GrTextureEffect::Make(GrSurfaceProxyView view, SkAlphaType alphaType, const SkMatrix& matrix, GrSamplerState sampler, const GrCaps& caps, const float border[4]) { Sampling sampling(*view.proxy(), sampler, SkRect::Make(view.proxy()->dimensions()), nullptr, border, false, caps); std::unique_ptr te(new GrTextureEffect(std::move(view), alphaType, sampling)); return GrMatrixEffect::Make(matrix, std::move(te)); } std::unique_ptr GrTextureEffect::MakeSubset(GrSurfaceProxyView view, SkAlphaType alphaType, const SkMatrix& matrix, GrSamplerState sampler, const SkRect& subset, const GrCaps& caps, const float border[4], bool alwaysUseShaderTileMode) { Sampling sampling(*view.proxy(), sampler, subset, nullptr, border, alwaysUseShaderTileMode, caps); std::unique_ptr te(new GrTextureEffect(std::move(view), alphaType, sampling)); return GrMatrixEffect::Make(matrix, std::move(te)); } std::unique_ptr GrTextureEffect::MakeSubset(GrSurfaceProxyView view, SkAlphaType alphaType, const SkMatrix& matrix, GrSamplerState sampler, const SkRect& subset, const SkRect& domain, const GrCaps& caps, const float border[4]) { Sampling sampling(*view.proxy(), sampler, subset, &domain, border, false, caps); std::unique_ptr te(new GrTextureEffect(std::move(view), alphaType, sampling)); return GrMatrixEffect::Make(matrix, std::move(te)); } std::unique_ptr GrTextureEffect::MakeCustomLinearFilterInset( GrSurfaceProxyView view, SkAlphaType alphaType, const SkMatrix& matrix, Wrap wx, Wrap wy, const SkRect& subset, const SkRect* domain, SkVector inset, const GrCaps& caps, const float border[4]) { GrSamplerState sampler(wx, wy, Filter::kLinear); Sampling sampling(*view.proxy(), sampler, subset, domain, border, false, caps, inset); std::unique_ptr te(new GrTextureEffect(std::move(view), alphaType, sampling)); return GrMatrixEffect::Make(matrix, std::move(te)); } SkMatrix GrTextureEffect::coordAdjustmentMatrix() const { SkMatrix m; GrTexture* texture = this->texture(); SkISize d = texture->dimensions(); if (this->matrixEffectShouldNormalize()) { if (fView.origin() == kBottomLeft_GrSurfaceOrigin) { m.setScaleTranslate(1.f / d.width(), -1.f / d.height(), 0, 1); } else { m.setScale(1.f / d.width(), 1.f / d.height()); } } else { if (fView.origin() == kBottomLeft_GrSurfaceOrigin) { m.setScaleTranslate(1.f, -1.f, 0, d.height()); } } return m; } GrTextureEffect::ShaderMode GrTextureEffect::GetShaderMode(Wrap wrap, Filter filter, MipmapMode mm) { switch (wrap) { case Wrap::kMirrorRepeat: return ShaderMode::kMirrorRepeat; case Wrap::kClamp: return ShaderMode::kClamp; case Wrap::kRepeat: switch (mm) { case MipmapMode::kNone: switch (filter) { case Filter::kNearest: return ShaderMode::kRepeat_Nearest_None; case Filter::kLinear: return ShaderMode::kRepeat_Linear_None; } SkUNREACHABLE; case MipmapMode::kNearest: case MipmapMode::kLinear: switch (filter) { case Filter::kNearest: return ShaderMode::kRepeat_Nearest_Mipmap; case Filter::kLinear: return ShaderMode::kRepeat_Linear_Mipmap; } SkUNREACHABLE; } SkUNREACHABLE; case Wrap::kClampToBorder: return filter == Filter::kNearest ? ShaderMode::kClampToBorder_Nearest : ShaderMode::kClampToBorder_Filter; } SkUNREACHABLE; } inline bool GrTextureEffect::ShaderModeIsClampToBorder(ShaderMode m) { return m == ShaderMode::kClampToBorder_Nearest || m == ShaderMode::kClampToBorder_Filter; } bool GrTextureEffect::ShaderModeRequiresUnormCoord(ShaderMode m) { switch (m) { case ShaderMode::kNone: return false; case ShaderMode::kClamp: return false; case ShaderMode::kRepeat_Nearest_None: return false; case ShaderMode::kRepeat_Linear_None: return true; case ShaderMode::kRepeat_Nearest_Mipmap: return true; case ShaderMode::kRepeat_Linear_Mipmap: return true; case ShaderMode::kMirrorRepeat: return false; case ShaderMode::kClampToBorder_Nearest: return true; case ShaderMode::kClampToBorder_Filter: return true; } SkUNREACHABLE; }; void GrTextureEffect::Impl::emitCode(EmitArgs& args) { using ShaderMode = GrTextureEffect::ShaderMode; auto& te = args.fFp.cast(); auto* fb = args.fFragBuilder; if (te.fShaderModes[0] == ShaderMode::kNone && te.fShaderModes[1] == ShaderMode::kNone) { fb->codeAppendf("return "); fb->appendTextureLookup(fSamplerHandle, args.fSampleCoord); fb->codeAppendf(";"); } else { // Here is the basic flow of the various ShaderModes are implemented in a series of // steps. Not all the steps apply to all the modes. We try to emit only the steps // that are necessary for the given x/y shader modes. // // 0) Start with interpolated coordinates (unnormalize if doing anything // complicated). // 1) Map the coordinates into the subset range [Repeat and MirrorRepeat], or pass // through output of 0). // 2) Clamp the coordinates to a 0.5 inset of the subset rect [Clamp, Repeat, and // MirrorRepeat always or ClampToBorder only when filtering] or pass through // output of 1). The clamp rect collapses to a line or point it if the subset // rect is less than one pixel wide/tall. // 3) Look up texture with output of 2) [All] // 3) Use the difference between 1) and 2) to apply filtering at edge [Repeat or // ClampToBorder]. In the Repeat case this requires extra texture lookups on the // other side of the subset (up to 3 more reads). Or if ClampToBorder and not // filtering do a hard less than/greater than test with the subset rect. // Convert possible projective texture coordinates into non-homogeneous half2. fb->codeAppendf("float2 inCoord = %s;", args.fSampleCoord); const auto& m = te.fShaderModes; const char* borderName = nullptr; if (te.hasClampToBorderShaderMode()) { fBorderUni = args.fUniformHandler->addUniform( &te, kFragment_GrShaderFlag, kHalf4_GrSLType, "border", &borderName); } auto modeUsesSubset = [](ShaderMode m) { switch (m) { case ShaderMode::kNone: return false; case ShaderMode::kClamp: return false; case ShaderMode::kRepeat_Nearest_None: return true; case ShaderMode::kRepeat_Linear_None: return true; case ShaderMode::kRepeat_Nearest_Mipmap: return true; case ShaderMode::kRepeat_Linear_Mipmap: return true; case ShaderMode::kMirrorRepeat: return true; case ShaderMode::kClampToBorder_Nearest: return true; case ShaderMode::kClampToBorder_Filter: return true; } SkUNREACHABLE; }; auto modeUsesClamp = [](ShaderMode m) { switch (m) { case ShaderMode::kNone: return false; case ShaderMode::kClamp: return true; case ShaderMode::kRepeat_Nearest_None: return true; case ShaderMode::kRepeat_Linear_None: return true; case ShaderMode::kRepeat_Nearest_Mipmap: return true; case ShaderMode::kRepeat_Linear_Mipmap: return true; case ShaderMode::kMirrorRepeat: return true; case ShaderMode::kClampToBorder_Nearest: return false; case ShaderMode::kClampToBorder_Filter: return true; } SkUNREACHABLE; }; bool useSubset[2] = {modeUsesSubset(m[0]), modeUsesSubset(m[1])}; bool useClamp [2] = {modeUsesClamp (m[0]), modeUsesClamp (m[1])}; const char* subsetName = nullptr; if (useSubset[0] || useSubset[1]) { fSubsetUni = args.fUniformHandler->addUniform( &te, kFragment_GrShaderFlag, kFloat4_GrSLType, "subset", &subsetName); } const char* clampName = nullptr; if (useClamp[0] || useClamp[1]) { fClampUni = args.fUniformHandler->addUniform( &te, kFragment_GrShaderFlag, kFloat4_GrSLType, "clamp", &clampName); } bool unormCoordsRequiredForShaderMode = ShaderModeRequiresUnormCoord(m[0]) || ShaderModeRequiresUnormCoord(m[1]); // We should not pre-normalize the input coords with GrMatrixEffect if we're going to // operate on unnormalized coords and then normalize after the shader mode. SkASSERT(!(unormCoordsRequiredForShaderMode && te.matrixEffectShouldNormalize())); bool sampleCoordsMustBeNormalized = te.fView.asTextureProxy()->textureType() != GrTextureType::kRectangle; const char* idims = nullptr; if (unormCoordsRequiredForShaderMode && sampleCoordsMustBeNormalized) { // TODO: Detect support for textureSize() or polyfill textureSize() in SkSL and // always use? fIDimsUni = args.fUniformHandler->addUniform(&te, kFragment_GrShaderFlag, kFloat2_GrSLType, "idims", &idims); } // Generates a string to read at a coordinate, normalizing coords if necessary. auto read = [&](const char* coord) { SkString result; SkString normCoord; if (idims) { normCoord.printf("(%s) * %s", coord, idims); } else { normCoord = coord; } fb->appendTextureLookup(&result, fSamplerHandle, normCoord.c_str()); return result; }; // Implements coord wrapping for kRepeat and kMirrorRepeat auto subsetCoord = [&](ShaderMode mode, const char* coordSwizzle, const char* subsetStartSwizzle, const char* subsetStopSwizzle, const char* extraCoord, const char* coordWeight) { switch (mode) { // These modes either don't use the subset rect or don't need to map the // coords to be within the subset. case ShaderMode::kNone: case ShaderMode::kClampToBorder_Nearest: case ShaderMode::kClampToBorder_Filter: case ShaderMode::kClamp: fb->codeAppendf("subsetCoord.%s = inCoord.%s;", coordSwizzle, coordSwizzle); break; case ShaderMode::kRepeat_Nearest_None: case ShaderMode::kRepeat_Linear_None: fb->codeAppendf( "subsetCoord.%s = mod(inCoord.%s - %s.%s, %s.%s - %s.%s) + %s.%s;", coordSwizzle, coordSwizzle, subsetName, subsetStartSwizzle, subsetName, subsetStopSwizzle, subsetName, subsetStartSwizzle, subsetName, subsetStartSwizzle); break; case ShaderMode::kRepeat_Nearest_Mipmap: case ShaderMode::kRepeat_Linear_Mipmap: // The approach here is to generate two sets of texture coords that // are both "moving" at the same speed (if not direction) as // inCoords. We accomplish that by using two out of phase mirror // repeat coords. We will always sample using both coords but the // read from the upward sloping one is selected using a weight // that transitions from one set to the other near the reflection // point. Like the coords, the weight is a saw-tooth function, // phase-shifted, vertically translated, and then clamped to 0..1. // TODO: Skip this and use textureGrad() when available. SkASSERT(extraCoord); SkASSERT(coordWeight); fb->codeAppend("{"); fb->codeAppendf("float w = %s.%s - %s.%s;", subsetName, subsetStopSwizzle, subsetName, subsetStartSwizzle); fb->codeAppendf("float w2 = 2 * w;"); fb->codeAppendf("float d = inCoord.%s - %s.%s;", coordSwizzle, subsetName, subsetStartSwizzle); fb->codeAppend("float m = mod(d, w2);"); fb->codeAppend("float o = mix(m, w2 - m, step(w, m));"); fb->codeAppendf("subsetCoord.%s = o + %s.%s;", coordSwizzle, subsetName, subsetStartSwizzle); fb->codeAppendf("%s = w - o + %s.%s;", extraCoord, subsetName, subsetStartSwizzle); // coordWeight is used as the third param of mix() to blend between a // sample taken using subsetCoord and a sample at extraCoord. fb->codeAppend("float hw = w/2;"); fb->codeAppend("float n = mod(d - hw, w2);"); fb->codeAppendf("%s = saturate(half(mix(n, w2 - n, step(w, n)) - hw + 0.5));", coordWeight); fb->codeAppend("}"); break; case ShaderMode::kMirrorRepeat: fb->codeAppend("{"); fb->codeAppendf("float w = %s.%s - %s.%s;", subsetName, subsetStopSwizzle, subsetName, subsetStartSwizzle); fb->codeAppendf("float w2 = 2 * w;"); fb->codeAppendf("float m = mod(inCoord.%s - %s.%s, w2);", coordSwizzle, subsetName, subsetStartSwizzle); fb->codeAppendf("subsetCoord.%s = mix(m, w2 - m, step(w, m)) + %s.%s;", coordSwizzle, subsetName, subsetStartSwizzle); fb->codeAppend("}"); break; } }; auto clampCoord = [&](bool clamp, const char* coordSwizzle, const char* clampStartSwizzle, const char* clampStopSwizzle) { if (clamp) { fb->codeAppendf("clampedCoord%s = clamp(subsetCoord%s, %s%s, %s%s);", coordSwizzle, coordSwizzle, clampName, clampStartSwizzle, clampName, clampStopSwizzle); } else { fb->codeAppendf("clampedCoord%s = subsetCoord%s;", coordSwizzle, coordSwizzle); } }; // Insert vars for extra coords and blending weights for repeat + mip map. const char* extraRepeatCoordX = nullptr; const char* repeatCoordWeightX = nullptr; const char* extraRepeatCoordY = nullptr; const char* repeatCoordWeightY = nullptr; bool mipmapRepeatX = m[0] == ShaderMode::kRepeat_Nearest_Mipmap || m[0] == ShaderMode::kRepeat_Linear_Mipmap; bool mipmapRepeatY = m[1] == ShaderMode::kRepeat_Nearest_Mipmap || m[1] == ShaderMode::kRepeat_Linear_Mipmap; if (mipmapRepeatX || mipmapRepeatY) { fb->codeAppend("float2 extraRepeatCoord;"); } if (mipmapRepeatX) { fb->codeAppend("half repeatCoordWeightX;"); extraRepeatCoordX = "extraRepeatCoord.x"; repeatCoordWeightX = "repeatCoordWeightX"; } if (mipmapRepeatY) { fb->codeAppend("half repeatCoordWeightY;"); extraRepeatCoordY = "extraRepeatCoord.y"; repeatCoordWeightY = "repeatCoordWeightY"; } // Apply subset rect and clamp rect to coords. fb->codeAppend("float2 subsetCoord;"); subsetCoord(te.fShaderModes[0], "x", "x", "z", extraRepeatCoordX, repeatCoordWeightX); subsetCoord(te.fShaderModes[1], "y", "y", "w", extraRepeatCoordY, repeatCoordWeightY); fb->codeAppend("float2 clampedCoord;"); if (useClamp[0] == useClamp[1]) { clampCoord(useClamp[0], "", ".xy", ".zw"); } else { clampCoord(useClamp[0], ".x", ".x", ".z"); clampCoord(useClamp[1], ".y", ".y", ".w"); } // Additional clamping for the extra coords for kRepeat with mip maps. if (mipmapRepeatX && mipmapRepeatY) { fb->codeAppendf("extraRepeatCoord = clamp(extraRepeatCoord, %s.xy, %s.zw);", clampName, clampName); } else if (mipmapRepeatX) { fb->codeAppendf("extraRepeatCoord.x = clamp(extraRepeatCoord.x, %s.x, %s.z);", clampName, clampName); } else if (mipmapRepeatY) { fb->codeAppendf("extraRepeatCoord.y = clamp(extraRepeatCoord.y, %s.y, %s.w);", clampName, clampName); } // Do the 2 or 4 texture reads for kRepeatMipMap and then apply the weight(s) // to blend between them. If neither direction is repeat or not using mip maps do a single // read at clampedCoord. if (mipmapRepeatX && mipmapRepeatY) { fb->codeAppendf( "half4 textureColor =" " mix(mix(%s, %s, repeatCoordWeightX)," " mix(%s, %s, repeatCoordWeightX)," " repeatCoordWeightY);", read("clampedCoord").c_str(), read("float2(extraRepeatCoord.x, clampedCoord.y)").c_str(), read("float2(clampedCoord.x, extraRepeatCoord.y)").c_str(), read("float2(extraRepeatCoord.x, extraRepeatCoord.y)").c_str()); } else if (mipmapRepeatX) { fb->codeAppendf("half4 textureColor = mix(%s, %s, repeatCoordWeightX);", read("clampedCoord").c_str(), read("float2(extraRepeatCoord.x, clampedCoord.y)").c_str()); } else if (mipmapRepeatY) { fb->codeAppendf("half4 textureColor = mix(%s, %s, repeatCoordWeightY);", read("clampedCoord").c_str(), read("float2(clampedCoord.x, extraRepeatCoord.y)").c_str()); } else { fb->codeAppendf("half4 textureColor = %s;", read("clampedCoord").c_str()); } // Strings for extra texture reads used only in kRepeatLinear SkString repeatLinearReadX; SkString repeatLinearReadY; // Calculate the amount the coord moved for clamping. This will be used // to implement shader-based filtering for kClampToBorder and kRepeat. bool repeatLinearFilterX = m[0] == ShaderMode::kRepeat_Linear_None || m[0] == ShaderMode::kRepeat_Linear_Mipmap; bool repeatLinearFilterY = m[1] == ShaderMode::kRepeat_Linear_None || m[1] == ShaderMode::kRepeat_Linear_Mipmap; if (repeatLinearFilterX || m[0] == ShaderMode::kClampToBorder_Filter) { fb->codeAppend("half errX = half(subsetCoord.x - clampedCoord.x);"); if (repeatLinearFilterX) { fb->codeAppendf("float repeatCoordX = errX > 0 ? %s.x : %s.z;", clampName, clampName); repeatLinearReadX = read("float2(repeatCoordX, clampedCoord.y)"); } } if (repeatLinearFilterY || m[1] == ShaderMode::kClampToBorder_Filter) { fb->codeAppend("half errY = half(subsetCoord.y - clampedCoord.y);"); if (repeatLinearFilterY) { fb->codeAppendf("float repeatCoordY = errY > 0 ? %s.y : %s.w;", clampName, clampName); repeatLinearReadY = read("float2(clampedCoord.x, repeatCoordY)"); } } // Add logic for kRepeat + linear filter. Do 1 or 3 more texture reads depending // on whether both modes are kRepeat and whether we're near a single subset edge // or a corner. Then blend the multiple reads using the err values calculated // above. const char* ifStr = "if"; if (repeatLinearFilterX && repeatLinearFilterY) { auto repeatLinearReadXY = read("float2(repeatCoordX, repeatCoordY)"); fb->codeAppendf( "if (errX != 0 && errY != 0) {" " errX = abs(errX);" " textureColor = mix(mix(textureColor, %s, errX)," " mix(%s, %s, errX)," " abs(errY));" "}", repeatLinearReadX.c_str(), repeatLinearReadY.c_str(), repeatLinearReadXY.c_str()); ifStr = "else if"; } if (repeatLinearFilterX) { fb->codeAppendf( "%s (errX != 0) {" " textureColor = mix(textureColor, %s, abs(errX));" "}", ifStr, repeatLinearReadX.c_str()); } if (repeatLinearFilterY) { fb->codeAppendf( "%s (errY != 0) {" " textureColor = mix(textureColor, %s, abs(errY));" "}", ifStr, repeatLinearReadY.c_str()); } // Do soft edge shader filtering against border color for kClampToBorderFilter using // the err values calculated above. if (m[0] == ShaderMode::kClampToBorder_Filter) { fb->codeAppendf("textureColor = mix(textureColor, %s, min(abs(errX), 1));", borderName); } if (m[1] == ShaderMode::kClampToBorder_Filter) { fb->codeAppendf("textureColor = mix(textureColor, %s, min(abs(errY), 1));", borderName); } // Do hard-edge shader transition to border color for kClampToBorderNearest at the // subset boundaries. Snap the input coordinates to nearest neighbor (with an // epsilon) before comparing to the subset rect to avoid GPU interpolation errors if (m[0] == ShaderMode::kClampToBorder_Nearest) { fb->codeAppendf( "float snappedX = floor(inCoord.x + 0.001) + 0.5;" "if (snappedX < %s.x || snappedX > %s.z) {" " textureColor = %s;" "}", subsetName, subsetName, borderName); } if (m[1] == ShaderMode::kClampToBorder_Nearest) { fb->codeAppendf( "float snappedY = floor(inCoord.y + 0.001) + 0.5;" "if (snappedY < %s.y || snappedY > %s.w) {" " textureColor = %s;" "}", subsetName, subsetName, borderName); } fb->codeAppendf("return textureColor;"); } } void GrTextureEffect::Impl::onSetData(const GrGLSLProgramDataManager& pdm, const GrFragmentProcessor& fp) { const auto& te = fp.cast(); const float w = te.texture()->width(); const float h = te.texture()->height(); const auto& s = te.fSubset; const auto& c = te.fClamp; auto type = te.texture()->textureType(); float idims[2] = {1.f/w, 1.f/h}; if (fIDimsUni.isValid()) { pdm.set2fv(fIDimsUni, 1, idims); SkASSERT(type != GrTextureType::kRectangle); } auto pushRect = [&](float rect[4], UniformHandle uni) { if (te.view().origin() == kBottomLeft_GrSurfaceOrigin) { rect[1] = h - rect[1]; rect[3] = h - rect[3]; std::swap(rect[1], rect[3]); } if (!fIDimsUni.isValid() && type != GrTextureType::kRectangle) { rect[0] *= idims[0]; rect[2] *= idims[0]; rect[1] *= idims[1]; rect[3] *= idims[1]; } pdm.set4fv(uni, 1, rect); }; if (fSubsetUni.isValid()) { float subset[] = {s.fLeft, s.fTop, s.fRight, s.fBottom}; pushRect(subset, fSubsetUni); } if (fClampUni.isValid()) { float subset[] = {c.fLeft, c.fTop, c.fRight, c.fBottom}; pushRect(subset, fClampUni); } if (fBorderUni.isValid()) { pdm.set4fv(fBorderUni, 1, te.fBorder); } } std::unique_ptr GrTextureEffect::onMakeProgramImpl() const { return std::make_unique(); } void GrTextureEffect::onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const { auto m0 = static_cast(fShaderModes[0]); b->addBits(8, m0, "shaderMode0"); auto m1 = static_cast(fShaderModes[1]); b->addBits(8, m1, "shaderMode1"); } bool GrTextureEffect::onIsEqual(const GrFragmentProcessor& other) const { auto& that = other.cast(); if (fView != that.fView) { return false; } if (fSamplerState != that.fSamplerState) { return false; } if (fShaderModes[0] != that.fShaderModes[0] || fShaderModes[1] != that.fShaderModes[1]) { return false; } if (fSubset != that.fSubset) { return false; } if (this->hasClampToBorderShaderMode() && !std::equal(fBorder, fBorder + 4, that.fBorder)) { return false; } return true; } bool GrTextureEffect::matrixEffectShouldNormalize() const { return fView.asTextureProxy()->textureType() != GrTextureType::kRectangle && !ShaderModeRequiresUnormCoord(fShaderModes[0]) && !ShaderModeRequiresUnormCoord(fShaderModes[1]); } GrTextureEffect::GrTextureEffect(GrSurfaceProxyView view, SkAlphaType alphaType, const Sampling& sampling) : GrFragmentProcessor(kGrTextureEffect_ClassID, ModulateForSamplerOptFlags(alphaType, sampling.hasBorderAlpha())) , fView(std::move(view)) , fSamplerState(sampling.fHWSampler) , fSubset(sampling.fShaderSubset) , fClamp(sampling.fShaderClamp) , fShaderModes{sampling.fShaderModes[0], sampling.fShaderModes[1]} { // We always compare the range even when it isn't used so assert we have canonical don't care // values. SkASSERT(fShaderModes[0] != ShaderMode::kNone || (fSubset.fLeft == 0 && fSubset.fRight == 0)); SkASSERT(fShaderModes[1] != ShaderMode::kNone || (fSubset.fTop == 0 && fSubset.fBottom == 0)); this->setUsesSampleCoordsDirectly(); std::copy_n(sampling.fBorder, 4, fBorder); } GrTextureEffect::GrTextureEffect(const GrTextureEffect& src) : INHERITED(kGrTextureEffect_ClassID, src.optimizationFlags()) , fView(src.fView) , fSamplerState(src.fSamplerState) , fSubset(src.fSubset) , fClamp(src.fClamp) , fShaderModes{src.fShaderModes[0], src.fShaderModes[1]} { std::copy_n(src.fBorder, 4, fBorder); this->setUsesSampleCoordsDirectly(); } std::unique_ptr GrTextureEffect::clone() const { return std::unique_ptr(new GrTextureEffect(*this)); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrTextureEffect); #if GR_TEST_UTILS std::unique_ptr GrTextureEffect::TestCreate(GrProcessorTestData* testData) { auto [view, ct, at] = testData->randomView(); Wrap wrapModes[2]; GrTest::TestWrapModes(testData->fRandom, wrapModes); Filter filter = testData->fRandom->nextBool() ? Filter::kLinear : Filter::kNearest; MipmapMode mm = MipmapMode::kNone; if (view.asTextureProxy()->mipmapped() == GrMipmapped::kYes) { mm = testData->fRandom->nextBool() ? MipmapMode::kLinear : MipmapMode::kNone; } GrSamplerState params(wrapModes, filter, mm); const SkMatrix& matrix = GrTest::TestMatrix(testData->fRandom); return GrTextureEffect::Make(std::move(view), at, matrix, params, *testData->caps()); } #endif