/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /************************************************************************************************** *** This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify. **************************************************************************************************/ #include "GrCircleBlurFragmentProcessor.h" #include "include/gpu/GrRecordingContext.h" #include "src/core/SkGpuBlurUtils.h" #include "src/gpu/GrProxyProvider.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/GrThreadSafeCache.h" #include "src/gpu/SkGr.h" // Computes an unnormalized half kernel (right side). Returns the summation of all the half // kernel values. static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) { const float invSigma = 1.f / sigma; const float b = -0.5f * invSigma * invSigma; float tot = 0.0f; // Compute half kernel values at half pixel steps out from the center. float t = 0.5f; for (int i = 0; i < halfKernelSize; ++i) { float value = expf(t * t * b); tot += value; halfKernel[i] = value; t += 1.f; } return tot; } // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number // of discrete steps. The half kernel is normalized to sum to 0.5. static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel, int halfKernelSize, float sigma) { // The half kernel should sum to 0.5 not 1.0. const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma); float sum = 0.f; for (int i = 0; i < halfKernelSize; ++i) { halfKernel[i] /= tot; sum += halfKernel[i]; summedHalfKernel[i] = sum; } } // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the // origin with radius circleR. void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR, int halfKernelSize, const float* summedHalfKernelTable) { float x = firstX; for (int i = 0; i < numSteps; ++i, x += 1.f) { if (x < -circleR || x > circleR) { results[i] = 0; continue; } float y = sqrtf(circleR * circleR - x * x); // In the column at x we exit the circle at +y and -y // The summed table entry j is actually reflects an offset of j + 0.5. y -= 0.5f; int yInt = SkScalarFloorToInt(y); SkASSERT(yInt >= -1); if (y < 0) { results[i] = (y + 0.5f) * summedHalfKernelTable[0]; } else if (yInt >= halfKernelSize - 1) { results[i] = 0.5f; } else { float yFrac = y - yInt; results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] + yFrac * summedHalfKernelTable[yInt + 1]; } } } // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR. // This relies on having a half kernel computed for the Gaussian and a table of applications of // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX + // halfKernel) passed in as yKernelEvaluations. static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize, const float* yKernelEvaluations) { float acc = 0; float x = evalX - halfKernelSize; for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { if (x < -circleR || x > circleR) { continue; } float verticalEval = yKernelEvaluations[i]; acc += verticalEval * halfKernel[halfKernelSize - i - 1]; } for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { if (x < -circleR || x > circleR) { continue; } float verticalEval = yKernelEvaluations[i + halfKernelSize]; acc += verticalEval * halfKernel[i]; } // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about // the x axis). return SkUnitScalarClampToByte(2.f * acc); } // This function creates a profile of a blurred circle. It does this by computing a kernel for // half the Gaussian and a matching summed area table. The summed area table is used to compute // an array of vertical applications of the half kernel to the circle along the x axis. The // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is // the size of the profile being computed. Then for each of the n profile entries we walk out k // steps in each horizontal direction multiplying the corresponding y evaluation by the half // kernel entry and sum these values to compute the profile entry. static void create_circle_profile(uint8_t* weights, float sigma, float circleR, int profileTextureWidth) { const int numSteps = profileTextureWidth; // The full kernel is 6 sigmas wide. int halfKernelSize = SkScalarCeilToInt(6.0f * sigma); // round up to next multiple of 2 and then divide by 2 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1; // Number of x steps at which to apply kernel in y to cover all the profile samples in x. int numYSteps = numSteps + 2 * halfKernelSize; SkAutoTArray bulkAlloc(halfKernelSize + halfKernelSize + numYSteps); float* halfKernel = bulkAlloc.get(); float* summedKernel = bulkAlloc.get() + halfKernelSize; float* yEvals = bulkAlloc.get() + 2 * halfKernelSize; make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma); float firstX = -halfKernelSize + 0.5f; apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel); for (int i = 0; i < numSteps - 1; ++i) { float evalX = i + 0.5f; weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i); } // Ensure the tail of the Gaussian goes to zero. weights[numSteps - 1] = 0; } static void create_half_plane_profile(uint8_t* profile, int profileWidth) { SkASSERT(!(profileWidth & 0x1)); // The full kernel is 6 sigmas wide. float sigma = profileWidth / 6.f; int halfKernelSize = profileWidth / 2; SkAutoTArray halfKernel(halfKernelSize); // The half kernel should sum to 0.5. const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma); float sum = 0.f; // Populate the profile from the right edge to the middle. for (int i = 0; i < halfKernelSize; ++i) { halfKernel[halfKernelSize - i - 1] /= tot; sum += halfKernel[halfKernelSize - i - 1]; profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum); } // Populate the profile from the middle to the left edge (by flipping the half kernel and // continuing the summation). for (int i = 0; i < halfKernelSize; ++i) { sum += halfKernel[i]; profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum); } // Ensure tail goes to 0. profile[profileWidth - 1] = 0; } static std::unique_ptr create_profile_effect(GrRecordingContext* rContext, const SkRect& circle, float sigma, float* solidRadius, float* textureRadius) { float circleR = circle.width() / 2.0f; if (!sk_float_isfinite(circleR) || circleR < SK_ScalarNearlyZero) { return nullptr; } auto threadSafeCache = rContext->priv().threadSafeCache(); // Profile textures are cached by the ratio of sigma to circle radius and by the size of the // profile texture (binned by powers of 2). SkScalar sigmaToCircleRRatio = sigma / circleR; // When sigma is really small this becomes a equivalent to convolving a Gaussian with a // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet // implemented this latter optimization. sigmaToCircleRRatio = std::min(sigmaToCircleRRatio, 8.f); SkFixed sigmaToCircleRRatioFixed; static const SkScalar kHalfPlaneThreshold = 0.1f; bool useHalfPlaneApprox = false; if (sigmaToCircleRRatio <= kHalfPlaneThreshold) { useHalfPlaneApprox = true; sigmaToCircleRRatioFixed = 0; *solidRadius = circleR - 3 * sigma; *textureRadius = 6 * sigma; } else { // Convert to fixed point for the key. sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio); // We shave off some bits to reduce the number of unique entries. We could probably // shave off more than we do. sigmaToCircleRRatioFixed &= ~0xff; sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed); sigma = circleR * sigmaToCircleRRatio; *solidRadius = 0; *textureRadius = circleR + 3 * sigma; } static constexpr int kProfileTextureWidth = 512; // This would be kProfileTextureWidth/textureRadius if it weren't for the fact that we do // the calculation of the profile coord in a coord space that has already been scaled by // 1 / textureRadius. This is done to avoid overflow in length(). SkMatrix texM = SkMatrix::Scale(kProfileTextureWidth, 1.f); static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey key; GrUniqueKey::Builder builder(&key, kDomain, 1, "1-D Circular Blur"); builder[0] = sigmaToCircleRRatioFixed; builder.finish(); GrSurfaceProxyView profileView = threadSafeCache->find(key); if (profileView) { SkASSERT(profileView.asTextureProxy()); SkASSERT(profileView.origin() == kTopLeft_GrSurfaceOrigin); return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM); } SkBitmap bm; if (!bm.tryAllocPixels(SkImageInfo::MakeA8(kProfileTextureWidth, 1))) { return nullptr; } if (useHalfPlaneApprox) { create_half_plane_profile(bm.getAddr8(0, 0), kProfileTextureWidth); } else { // Rescale params to the size of the texture we're creating. SkScalar scale = kProfileTextureWidth / *textureRadius; create_circle_profile( bm.getAddr8(0, 0), sigma * scale, circleR * scale, kProfileTextureWidth); } bm.setImmutable(); profileView = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bm)); if (!profileView) { return nullptr; } profileView = threadSafeCache->add(key, profileView); return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM); } std::unique_ptr GrCircleBlurFragmentProcessor::Make( std::unique_ptr inputFP, GrRecordingContext* context, const SkRect& circle, float sigma) { if (SkGpuBlurUtils::IsEffectivelyZeroSigma(sigma)) { return inputFP; } float solidRadius; float textureRadius; std::unique_ptr profile = create_profile_effect(context, circle, sigma, &solidRadius, &textureRadius); if (!profile) { return nullptr; } return std::unique_ptr(new GrCircleBlurFragmentProcessor( std::move(inputFP), circle, solidRadius, textureRadius, std::move(profile))); } #include "src/core/SkUtils.h" #include "src/gpu/GrTexture.h" #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLProgramBuilder.h" #include "src/sksl/SkSLCPP.h" #include "src/sksl/SkSLUtil.h" class GrGLSLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor { public: GrGLSLCircleBlurFragmentProcessor() {} void emitCode(EmitArgs& args) override { GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const GrCircleBlurFragmentProcessor& _outer = args.fFp.cast(); (void)_outer; auto circleRect = _outer.circleRect; (void)circleRect; auto solidRadius = _outer.solidRadius; (void)solidRadius; auto textureRadius = _outer.textureRadius; (void)textureRadius; circleDataVar = args.fUniformHandler->addUniform( &_outer, kFragment_GrShaderFlag, kHalf4_GrSLType, "circleData"); fragBuilder->codeAppendf( R"SkSL(half2 vec = half2((sk_FragCoord.xy - float2(%s.xy)) * float(%s.w)); half dist = length(vec) + (0.5 - %s.z) * %s.w;)SkSL", args.fUniformHandler->getUniformCStr(circleDataVar), args.fUniformHandler->getUniformCStr(circleDataVar), args.fUniformHandler->getUniformCStr(circleDataVar), args.fUniformHandler->getUniformCStr(circleDataVar)); SkString _sample0 = this->invokeChild(0, args); fragBuilder->codeAppendf( R"SkSL( half4 inputColor = %s;)SkSL", _sample0.c_str()); SkString _coords1("float2(half2(dist, 0.5))"); SkString _sample1 = this->invokeChild(1, args, _coords1.c_str()); fragBuilder->codeAppendf( R"SkSL( return inputColor * %s.w; )SkSL", _sample1.c_str()); } private: void onSetData(const GrGLSLProgramDataManager& data, const GrFragmentProcessor& _proc) override { const GrCircleBlurFragmentProcessor& _outer = _proc.cast(); auto circleRect = _outer.circleRect; (void)circleRect; auto solidRadius = _outer.solidRadius; (void)solidRadius; auto textureRadius = _outer.textureRadius; (void)textureRadius; UniformHandle& circleData = circleDataVar; (void)circleData; data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius, 1.f / textureRadius); } UniformHandle circleDataVar; }; std::unique_ptr GrCircleBlurFragmentProcessor::onMakeProgramImpl() const { return std::make_unique(); } void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {} bool GrCircleBlurFragmentProcessor::onIsEqual(const GrFragmentProcessor& other) const { const GrCircleBlurFragmentProcessor& that = other.cast(); (void)that; if (circleRect != that.circleRect) return false; if (solidRadius != that.solidRadius) return false; if (textureRadius != that.textureRadius) return false; return true; } GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor( const GrCircleBlurFragmentProcessor& src) : INHERITED(kGrCircleBlurFragmentProcessor_ClassID, src.optimizationFlags()) , circleRect(src.circleRect) , solidRadius(src.solidRadius) , textureRadius(src.textureRadius) { this->cloneAndRegisterAllChildProcessors(src); } std::unique_ptr GrCircleBlurFragmentProcessor::clone() const { return std::make_unique(*this); } #if GR_TEST_UTILS SkString GrCircleBlurFragmentProcessor::onDumpInfo() const { return SkStringPrintf("(circleRect=half4(%f, %f, %f, %f), solidRadius=%f, textureRadius=%f)", circleRect.left(), circleRect.top(), circleRect.right(), circleRect.bottom(), solidRadius, textureRadius); } #endif GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor); #if GR_TEST_UTILS std::unique_ptr GrCircleBlurFragmentProcessor::TestCreate( GrProcessorTestData* testData) { SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f); SkScalar sigma = testData->fRandom->nextRangeF(1.f, 10.f); SkRect circle = SkRect::MakeWH(wh, wh); return GrCircleBlurFragmentProcessor::Make( testData->inputFP(), testData->context(), circle, sigma); } #endif