/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/pathops/SkAddIntersections.h" #include "src/pathops/SkOpCoincidence.h" #include "src/pathops/SkOpEdgeBuilder.h" #include "src/pathops/SkPathOpsCommon.h" #include "src/pathops/SkPathWriter.h" #include static bool findChaseOp(SkTDArray& chase, SkOpSpanBase** startPtr, SkOpSpanBase** endPtr, SkOpSegment** result) { while (chase.count()) { SkOpSpanBase* span; chase.pop(&span); // OPTIMIZE: prev makes this compatible with old code -- but is it necessary? *startPtr = span->ptT()->prev()->span(); SkOpSegment* segment = (*startPtr)->segment(); bool done = true; *endPtr = nullptr; if (SkOpAngle* last = segment->activeAngle(*startPtr, startPtr, endPtr, &done)) { *startPtr = last->start(); *endPtr = last->end(); #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif *result = last->segment(); return true; } if (done) { continue; } int winding; bool sortable; const SkOpAngle* angle = AngleWinding(*startPtr, *endPtr, &winding, &sortable); if (!angle) { *result = nullptr; return true; } if (winding == SK_MinS32) { continue; } int sumMiWinding, sumSuWinding; if (sortable) { segment = angle->segment(); sumMiWinding = segment->updateWindingReverse(angle); if (sumMiWinding == SK_MinS32) { SkASSERT(segment->globalState()->debugSkipAssert()); *result = nullptr; return true; } sumSuWinding = segment->updateOppWindingReverse(angle); if (sumSuWinding == SK_MinS32) { SkASSERT(segment->globalState()->debugSkipAssert()); *result = nullptr; return true; } if (segment->operand()) { using std::swap; swap(sumMiWinding, sumSuWinding); } } SkOpSegment* first = nullptr; const SkOpAngle* firstAngle = angle; while ((angle = angle->next()) != firstAngle) { segment = angle->segment(); SkOpSpanBase* start = angle->start(); SkOpSpanBase* end = angle->end(); int maxWinding = 0, sumWinding = 0, oppMaxWinding = 0, oppSumWinding = 0; if (sortable) { segment->setUpWindings(start, end, &sumMiWinding, &sumSuWinding, &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding); } if (!segment->done(angle)) { if (!first && (sortable || start->starter(end)->windSum() != SK_MinS32)) { first = segment; *startPtr = start; *endPtr = end; } // OPTIMIZATION: should this also add to the chase? if (sortable) { if (!segment->markAngle(maxWinding, sumWinding, oppMaxWinding, oppSumWinding, angle, nullptr)) { return false; } } } } if (first) { #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif *result = first; return true; } } *result = nullptr; return true; } static bool bridgeOp(SkOpContourHead* contourList, const SkPathOp op, const int xorMask, const int xorOpMask, SkPathWriter* writer) { bool unsortable = false; bool lastSimple = false; bool simple = false; do { SkOpSpan* span = FindSortableTop(contourList); if (!span) { break; } SkOpSegment* current = span->segment(); SkOpSpanBase* start = span->next(); SkOpSpanBase* end = span; SkTDArray chase; do { if (current->activeOp(start, end, xorMask, xorOpMask, op)) { do { if (!unsortable && current->done()) { break; } SkASSERT(unsortable || !current->done()); SkOpSpanBase* nextStart = start; SkOpSpanBase* nextEnd = end; lastSimple = simple; SkOpSegment* next = current->findNextOp(&chase, &nextStart, &nextEnd, &unsortable, &simple, op, xorMask, xorOpMask); if (!next) { if (!unsortable && writer->hasMove() && current->verb() != SkPath::kLine_Verb && !writer->isClosed()) { if (!current->addCurveTo(start, end, writer)) { return false; } if (!writer->isClosed()) { SkPathOpsDebug::ShowActiveSpans(contourList); } } else if (lastSimple) { if (!current->addCurveTo(start, end, writer)) { return false; } } break; } #if DEBUG_FLOW SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, current->debugID(), start->pt().fX, start->pt().fY, end->pt().fX, end->pt().fY); #endif if (!current->addCurveTo(start, end, writer)) { return false; } current = next; start = nextStart; end = nextEnd; } while (!writer->isClosed() && (!unsortable || !start->starter(end)->done())); if (current->activeWinding(start, end) && !writer->isClosed()) { SkOpSpan* spanStart = start->starter(end); if (!spanStart->done()) { if (!current->addCurveTo(start, end, writer)) { return false; } current->markDone(spanStart); } } writer->finishContour(); } else { SkOpSpanBase* last; if (!current->markAndChaseDone(start, end, &last)) { return false; } if (last && !last->chased()) { last->setChased(true); SkASSERT(!SkPathOpsDebug::ChaseContains(chase, last)); *chase.append() = last; #if DEBUG_WINDING SkDebugf("%s chase.append id=%d", __FUNCTION__, last->segment()->debugID()); if (!last->final()) { SkDebugf(" windSum=%d", last->upCast()->windSum()); } SkDebugf("\n"); #endif } } if (!findChaseOp(chase, &start, &end, ¤t)) { return false; } SkPathOpsDebug::ShowActiveSpans(contourList); if (!current) { break; } } while (true); } while (true); return true; } // diagram of why this simplifcation is possible is here: // https://skia.org/dev/present/pathops link at bottom of the page // https://drive.google.com/file/d/0BwoLUwz9PYkHLWpsaXd0UDdaN00/view?usp=sharing static const SkPathOp gOpInverse[kReverseDifference_SkPathOp + 1][2][2] = { // inside minuend outside minuend // inside subtrahend outside subtrahend inside subtrahend outside subtrahend {{ kDifference_SkPathOp, kIntersect_SkPathOp }, { kUnion_SkPathOp, kReverseDifference_SkPathOp }}, {{ kIntersect_SkPathOp, kDifference_SkPathOp }, { kReverseDifference_SkPathOp, kUnion_SkPathOp }}, {{ kUnion_SkPathOp, kReverseDifference_SkPathOp }, { kDifference_SkPathOp, kIntersect_SkPathOp }}, {{ kXOR_SkPathOp, kXOR_SkPathOp }, { kXOR_SkPathOp, kXOR_SkPathOp }}, {{ kReverseDifference_SkPathOp, kUnion_SkPathOp }, { kIntersect_SkPathOp, kDifference_SkPathOp }}, }; static const bool gOutInverse[kReverseDifference_SkPathOp + 1][2][2] = { {{ false, false }, { true, false }}, // diff {{ false, false }, { false, true }}, // sect {{ false, true }, { true, true }}, // union {{ false, true }, { true, false }}, // xor {{ false, true }, { false, false }}, // rev diff }; #if DEBUG_T_SECT_LOOP_COUNT #include "include/private/SkMutex.h" SkOpGlobalState debugWorstState(nullptr, nullptr SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr)); void ReportPathOpsDebugging() { debugWorstState.debugLoopReport(); } extern void (*gVerboseFinalize)(); #endif bool OpDebug(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result SkDEBUGPARAMS(bool skipAssert) SkDEBUGPARAMS(const char* testName)) { #if DEBUG_DUMP_VERIFY #ifndef SK_DEBUG const char* testName = "release"; #endif if (SkPathOpsDebug::gDumpOp) { SkPathOpsDebug::DumpOp(one, two, op, testName); } #endif op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()]; bool inverseFill = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()]; SkPathFillType fillType = inverseFill ? SkPathFillType::kInverseEvenOdd : SkPathFillType::kEvenOdd; SkRect rect1, rect2; if (kIntersect_SkPathOp == op && one.isRect(&rect1) && two.isRect(&rect2)) { result->reset(); result->setFillType(fillType); if (rect1.intersect(rect2)) { result->addRect(rect1); } return true; } if (one.isEmpty() || two.isEmpty()) { SkPath work; switch (op) { case kIntersect_SkPathOp: break; case kUnion_SkPathOp: case kXOR_SkPathOp: work = one.isEmpty() ? two : one; break; case kDifference_SkPathOp: if (!one.isEmpty()) { work = one; } break; case kReverseDifference_SkPathOp: if (!two.isEmpty()) { work = two; } break; default: SkASSERT(0); // unhandled case } if (inverseFill != work.isInverseFillType()) { work.toggleInverseFillType(); } return Simplify(work, result); } SkSTArenaAlloc<4096> allocator; // FIXME: add a constant expression here, tune SkOpContour contour; SkOpContourHead* contourList = static_cast(&contour); SkOpGlobalState globalState(contourList, &allocator SkDEBUGPARAMS(skipAssert) SkDEBUGPARAMS(testName)); SkOpCoincidence coincidence(&globalState); const SkPath* minuend = &one; const SkPath* subtrahend = &two; if (op == kReverseDifference_SkPathOp) { using std::swap; swap(minuend, subtrahend); op = kDifference_SkPathOp; } #if DEBUG_SORT SkPathOpsDebug::gSortCount = SkPathOpsDebug::gSortCountDefault; #endif // turn path into list of segments SkOpEdgeBuilder builder(*minuend, contourList, &globalState); if (builder.unparseable()) { return false; } const int xorMask = builder.xorMask(); builder.addOperand(*subtrahend); if (!builder.finish()) { return false; } #if DEBUG_DUMP_SEGMENTS contourList->dumpSegments("seg", op); #endif const int xorOpMask = builder.xorMask(); if (!SortContourList(&contourList, xorMask == kEvenOdd_PathOpsMask, xorOpMask == kEvenOdd_PathOpsMask)) { result->reset(); result->setFillType(fillType); return true; } // find all intersections between segments SkOpContour* current = contourList; do { SkOpContour* next = current; while (AddIntersectTs(current, next, &coincidence) && (next = next->next())) ; } while ((current = current->next())); #if DEBUG_VALIDATE globalState.setPhase(SkOpPhase::kWalking); #endif bool success = HandleCoincidence(contourList, &coincidence); #if DEBUG_COIN globalState.debugAddToGlobalCoinDicts(); #endif if (!success) { return false; } #if DEBUG_ALIGNMENT contourList->dumpSegments("aligned"); #endif // construct closed contours SkPath original = *result; result->reset(); result->setFillType(fillType); SkPathWriter wrapper(*result); if (!bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper)) { *result = original; return false; } wrapper.assemble(); // if some edges could not be resolved, assemble remaining #if DEBUG_T_SECT_LOOP_COUNT static SkMutex& debugWorstLoop = *(new SkMutex); { SkAutoMutexExclusive autoM(debugWorstLoop); if (!gVerboseFinalize) { gVerboseFinalize = &ReportPathOpsDebugging; } debugWorstState.debugDoYourWorst(&globalState); } #endif return true; } bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) { #if DEBUG_DUMP_VERIFY if (SkPathOpsDebug::gVerifyOp) { if (!OpDebug(one, two, op, result SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr))) { SkPathOpsDebug::ReportOpFail(one, two, op); return false; } SkPathOpsDebug::VerifyOp(one, two, op, *result); return true; } #endif return OpDebug(one, two, op, result SkDEBUGPARAMS(true) SkDEBUGPARAMS(nullptr)); }