/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "include/core/SkMallocPixelRef.h" #include "include/private/SkFloatBits.h" #include "include/private/SkHalf.h" #include "include/private/SkTPin.h" #include "include/private/SkVx.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkConvertPixels.h" #include "src/core/SkMatrixProvider.h" #include "src/core/SkReadBuffer.h" #include "src/core/SkVM.h" #include "src/core/SkWriteBuffer.h" #include "src/shaders/gradients/Sk4fLinearGradient.h" #include "src/shaders/gradients/SkGradientShaderPriv.h" #include "src/shaders/gradients/SkLinearGradient.h" #include "src/shaders/gradients/SkRadialGradient.h" #include "src/shaders/gradients/SkSweepGradient.h" #include "src/shaders/gradients/SkTwoPointConicalGradient.h" enum GradientSerializationFlags { // Bits 29:31 used for various boolean flags kHasPosition_GSF = 0x80000000, kHasLocalMatrix_GSF = 0x40000000, kHasColorSpace_GSF = 0x20000000, // Bits 12:28 unused // Bits 8:11 for fTileMode kTileModeShift_GSF = 8, kTileModeMask_GSF = 0xF, // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80) kGradFlagsShift_GSF = 0, kGradFlagsMask_GSF = 0xFF, }; void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const { uint32_t flags = 0; if (fPos) { flags |= kHasPosition_GSF; } if (fLocalMatrix) { flags |= kHasLocalMatrix_GSF; } sk_sp colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr; if (colorSpaceData) { flags |= kHasColorSpace_GSF; } SkASSERT(static_cast(fTileMode) <= kTileModeMask_GSF); flags |= ((unsigned)fTileMode << kTileModeShift_GSF); SkASSERT(fGradFlags <= kGradFlagsMask_GSF); flags |= (fGradFlags << kGradFlagsShift_GSF); buffer.writeUInt(flags); buffer.writeColor4fArray(fColors, fCount); if (colorSpaceData) { buffer.writeDataAsByteArray(colorSpaceData.get()); } if (fPos) { buffer.writeScalarArray(fPos, fCount); } if (fLocalMatrix) { buffer.writeMatrix(*fLocalMatrix); } } template static bool validate_array(SkReadBuffer& buffer, size_t count, SkSTArray* array) { if (!buffer.validateCanReadN(count)) { return false; } array->resize_back(count); return true; } bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) { // New gradient format. Includes floating point color, color space, densely packed flags uint32_t flags = buffer.readUInt(); fTileMode = (SkTileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF); fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF; fCount = buffer.getArrayCount(); if (!(validate_array(buffer, fCount, &fColorStorage) && buffer.readColor4fArray(fColorStorage.begin(), fCount))) { return false; } fColors = fColorStorage.begin(); if (SkToBool(flags & kHasColorSpace_GSF)) { sk_sp data = buffer.readByteArrayAsData(); fColorSpace = data ? SkColorSpace::Deserialize(data->data(), data->size()) : nullptr; } else { fColorSpace = nullptr; } if (SkToBool(flags & kHasPosition_GSF)) { if (!(validate_array(buffer, fCount, &fPosStorage) && buffer.readScalarArray(fPosStorage.begin(), fCount))) { return false; } fPos = fPosStorage.begin(); } else { fPos = nullptr; } if (SkToBool(flags & kHasLocalMatrix_GSF)) { fLocalMatrix = &fLocalMatrixStorage; buffer.readMatrix(&fLocalMatrixStorage); } else { fLocalMatrix = nullptr; } return buffer.isValid(); } //////////////////////////////////////////////////////////////////////////////////////////// SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit) : INHERITED(desc.fLocalMatrix) , fPtsToUnit(ptsToUnit) , fColorSpace(desc.fColorSpace ? desc.fColorSpace : SkColorSpace::MakeSRGB()) , fColorsAreOpaque(true) { fPtsToUnit.getType(); // Precache so reads are threadsafe. SkASSERT(desc.fCount > 1); fGradFlags = static_cast(desc.fGradFlags); SkASSERT((unsigned)desc.fTileMode < kSkTileModeCount); fTileMode = desc.fTileMode; /* Note: we let the caller skip the first and/or last position. i.e. pos[0] = 0.3, pos[1] = 0.7 In these cases, we insert dummy entries to ensure that the final data will be bracketed by [0, 1]. i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 Thus colorCount (the caller's value, and fColorCount (our value) may differ by up to 2. In the above example: colorCount = 2 fColorCount = 4 */ fColorCount = desc.fCount; // check if we need to add in dummy start and/or end position/colors bool dummyFirst = false; bool dummyLast = false; if (desc.fPos) { dummyFirst = desc.fPos[0] != 0; dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1; fColorCount += dummyFirst + dummyLast; } size_t storageSize = fColorCount * (sizeof(SkColor4f) + (desc.fPos ? sizeof(SkScalar) : 0)); fOrigColors4f = reinterpret_cast(fStorage.reset(storageSize)); fOrigPos = desc.fPos ? reinterpret_cast(fOrigColors4f + fColorCount) : nullptr; // Now copy over the colors, adding the dummies as needed SkColor4f* origColors = fOrigColors4f; if (dummyFirst) { *origColors++ = desc.fColors[0]; } for (int i = 0; i < desc.fCount; ++i) { origColors[i] = desc.fColors[i]; fColorsAreOpaque = fColorsAreOpaque && (desc.fColors[i].fA == 1); } if (dummyLast) { origColors += desc.fCount; *origColors = desc.fColors[desc.fCount - 1]; } if (desc.fPos) { SkScalar prev = 0; SkScalar* origPosPtr = fOrigPos; *origPosPtr++ = prev; // force the first pos to 0 int startIndex = dummyFirst ? 0 : 1; int count = desc.fCount + dummyLast; bool uniformStops = true; const SkScalar uniformStep = desc.fPos[startIndex] - prev; for (int i = startIndex; i < count; i++) { // Pin the last value to 1.0, and make sure pos is monotonic. auto curr = (i == desc.fCount) ? 1 : SkTPin(desc.fPos[i], prev, 1.0f); uniformStops &= SkScalarNearlyEqual(uniformStep, curr - prev); *origPosPtr++ = prev = curr; } // If the stops are uniform, treat them as implicit. if (uniformStops) { fOrigPos = nullptr; } } } SkGradientShaderBase::~SkGradientShaderBase() {} void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const { Descriptor desc; desc.fColors = fOrigColors4f; desc.fColorSpace = fColorSpace; desc.fPos = fOrigPos; desc.fCount = fColorCount; desc.fTileMode = fTileMode; desc.fGradFlags = fGradFlags; const SkMatrix& m = this->getLocalMatrix(); desc.fLocalMatrix = m.isIdentity() ? nullptr : &m; desc.flatten(buffer); } static void add_stop_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f Fs, SkPMColor4f Bs) { (ctx->fs[0])[stop] = Fs.fR; (ctx->fs[1])[stop] = Fs.fG; (ctx->fs[2])[stop] = Fs.fB; (ctx->fs[3])[stop] = Fs.fA; (ctx->bs[0])[stop] = Bs.fR; (ctx->bs[1])[stop] = Bs.fG; (ctx->bs[2])[stop] = Bs.fB; (ctx->bs[3])[stop] = Bs.fA; } static void add_const_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f color) { add_stop_color(ctx, stop, { 0, 0, 0, 0 }, color); } // Calculate a factor F and a bias B so that color = F*t + B when t is in range of // the stop. Assume that the distance between stops is 1/gapCount. static void init_stop_evenly( SkRasterPipeline_GradientCtx* ctx, float gapCount, size_t stop, SkPMColor4f c_l, SkPMColor4f c_r) { // Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar... SkPMColor4f Fs = { (c_r.fR - c_l.fR) * gapCount, (c_r.fG - c_l.fG) * gapCount, (c_r.fB - c_l.fB) * gapCount, (c_r.fA - c_l.fA) * gapCount, }; SkPMColor4f Bs = { c_l.fR - Fs.fR*(stop/gapCount), c_l.fG - Fs.fG*(stop/gapCount), c_l.fB - Fs.fB*(stop/gapCount), c_l.fA - Fs.fA*(stop/gapCount), }; add_stop_color(ctx, stop, Fs, Bs); } // For each stop we calculate a bias B and a scale factor F, such that // for any t between stops n and n+1, the color we want is B[n] + F[n]*t. static void init_stop_pos( SkRasterPipeline_GradientCtx* ctx, size_t stop, float t_l, float t_r, SkPMColor4f c_l, SkPMColor4f c_r) { // See note about Clankium's old compiler in init_stop_evenly(). SkPMColor4f Fs = { (c_r.fR - c_l.fR) / (t_r - t_l), (c_r.fG - c_l.fG) / (t_r - t_l), (c_r.fB - c_l.fB) / (t_r - t_l), (c_r.fA - c_l.fA) / (t_r - t_l), }; SkPMColor4f Bs = { c_l.fR - Fs.fR*t_l, c_l.fG - Fs.fG*t_l, c_l.fB - Fs.fB*t_l, c_l.fA - Fs.fA*t_l, }; ctx->ts[stop] = t_l; add_stop_color(ctx, stop, Fs, Bs); } bool SkGradientShaderBase::onAppendStages(const SkStageRec& rec) const { SkRasterPipeline* p = rec.fPipeline; SkArenaAlloc* alloc = rec.fAlloc; SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr; SkMatrix matrix; if (!this->computeTotalInverse(rec.fMatrixProvider.localToDevice(), rec.fLocalM, &matrix)) { return false; } matrix.postConcat(fPtsToUnit); SkRasterPipeline_<256> postPipeline; p->append(SkRasterPipeline::seed_shader); p->append_matrix(alloc, matrix); this->appendGradientStages(alloc, p, &postPipeline); switch(fTileMode) { case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x_1); break; case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x_1); break; case SkTileMode::kDecal: decal_ctx = alloc->make(); decal_ctx->limit_x = SkBits2Float(SkFloat2Bits(1.0f) + 1); // reuse mask + limit_x stage, or create a custom decal_1 that just stores the mask p->append(SkRasterPipeline::decal_x, decal_ctx); [[fallthrough]]; case SkTileMode::kClamp: if (!fOrigPos) { // We clamp only when the stops are evenly spaced. // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1. // In that case, we must make sure we're using the general "gradient" stage, // which is the only stage that will correctly handle unclamped t. p->append(SkRasterPipeline::clamp_x_1); } break; } const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag; // Transform all of the colors to destination color space SkColor4fXformer xformedColors(fOrigColors4f, fColorCount, fColorSpace.get(), rec.fDstCS); auto prepareColor = [premulGrad, &xformedColors](int i) { SkColor4f c = xformedColors.fColors[i]; return premulGrad ? c.premul() : SkPMColor4f{ c.fR, c.fG, c.fB, c.fA }; }; // The two-stop case with stops at 0 and 1. if (fColorCount == 2 && fOrigPos == nullptr) { const SkPMColor4f c_l = prepareColor(0), c_r = prepareColor(1); // See F and B below. auto ctx = alloc->make(); (Sk4f::Load(c_r.vec()) - Sk4f::Load(c_l.vec())).store(ctx->f); ( Sk4f::Load(c_l.vec())).store(ctx->b); ctx->interpolatedInPremul = premulGrad; p->append(SkRasterPipeline::evenly_spaced_2_stop_gradient, ctx); } else { auto* ctx = alloc->make(); ctx->interpolatedInPremul = premulGrad; // Note: In order to handle clamps in search, the search assumes a stop conceptully placed // at -inf. Therefore, the max number of stops is fColorCount+1. for (int i = 0; i < 4; i++) { // Allocate at least at for the AVX2 gather from a YMM register. ctx->fs[i] = alloc->makeArray(std::max(fColorCount+1, 8)); ctx->bs[i] = alloc->makeArray(std::max(fColorCount+1, 8)); } if (fOrigPos == nullptr) { // Handle evenly distributed stops. size_t stopCount = fColorCount; float gapCount = stopCount - 1; SkPMColor4f c_l = prepareColor(0); for (size_t i = 0; i < stopCount - 1; i++) { SkPMColor4f c_r = prepareColor(i + 1); init_stop_evenly(ctx, gapCount, i, c_l, c_r); c_l = c_r; } add_const_color(ctx, stopCount - 1, c_l); ctx->stopCount = stopCount; p->append(SkRasterPipeline::evenly_spaced_gradient, ctx); } else { // Handle arbitrary stops. ctx->ts = alloc->makeArray(fColorCount+1); // Remove the dummy stops inserted by SkGradientShaderBase::SkGradientShaderBase // because they are naturally handled by the search method. int firstStop; int lastStop; if (fColorCount > 2) { firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1; lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1] ? fColorCount - 1 : fColorCount - 2; } else { firstStop = 0; lastStop = 1; } size_t stopCount = 0; float t_l = fOrigPos[firstStop]; SkPMColor4f c_l = prepareColor(firstStop); add_const_color(ctx, stopCount++, c_l); // N.B. lastStop is the index of the last stop, not one after. for (int i = firstStop; i < lastStop; i++) { float t_r = fOrigPos[i + 1]; SkPMColor4f c_r = prepareColor(i + 1); SkASSERT(t_l <= t_r); if (t_l < t_r) { init_stop_pos(ctx, stopCount, t_l, t_r, c_l, c_r); stopCount += 1; } t_l = t_r; c_l = c_r; } ctx->ts[stopCount] = t_l; add_const_color(ctx, stopCount++, c_l); ctx->stopCount = stopCount; p->append(SkRasterPipeline::gradient, ctx); } } if (decal_ctx) { p->append(SkRasterPipeline::check_decal_mask, decal_ctx); } if (!premulGrad && !this->colorsAreOpaque()) { p->append(SkRasterPipeline::premul); } p->extend(postPipeline); return true; } skvm::Color SkGradientShaderBase::onProgram(skvm::Builder* p, skvm::Coord device, skvm::Coord local, skvm::Color /*paint*/, const SkMatrixProvider& mats, const SkMatrix* localM, const SkColorInfo& dstInfo, skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const { SkMatrix inv; if (!this->computeTotalInverse(mats.localToDevice(), localM, &inv)) { return {}; } inv.postConcat(fPtsToUnit); inv.normalizePerspective(); local = SkShaderBase::ApplyMatrix(p, inv, local, uniforms); skvm::I32 mask = p->splat(~0); skvm::F32 t = this->transformT(p,uniforms, local, &mask); // Perhaps unexpectedly, clamping is handled naturally by our search, so we // don't explicitly clamp t to [0,1]. That clamp would break hard stops // right at 0 or 1 boundaries in kClamp mode. (kRepeat and kMirror always // produce values in [0,1].) switch(fTileMode) { case SkTileMode::kClamp: break; case SkTileMode::kDecal: mask &= (t == clamp01(t)); break; case SkTileMode::kRepeat: t = fract(t); break; case SkTileMode::kMirror: { // t = | (t-1) - 2*(floor( (t-1)*0.5 )) - 1 | // {-A-} {--------B-------} skvm::F32 A = t - 1.0f, B = floor(A * 0.5f); t = abs(A - (B + B) - 1.0f); } break; } // Transform our colors as we want them interpolated, in dst color space, possibly premul. SkImageInfo common = SkImageInfo::Make(fColorCount,1, kRGBA_F32_SkColorType , kUnpremul_SkAlphaType), src = common.makeColorSpace(fColorSpace), dst = common.makeColorSpace(dstInfo.refColorSpace()); if (fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) { dst = dst.makeAlphaType(kPremul_SkAlphaType); } std::vector rgba(4*fColorCount); // TODO: SkSTArray? SkAssertResult(SkConvertPixels(dst, rgba.data(), dst.minRowBytes(), src, fOrigColors4f, src.minRowBytes())); // Transform our colors into a scale factor f and bias b such that for // any t between stops i and i+1, the color we want is mad(t, f[i], b[i]). using F4 = skvx::Vec<4,float>; struct FB { F4 f,b; }; skvm::Color color; auto uniformF = [&](float x) { return p->uniformF(uniforms->pushF(x)); }; if (fColorCount == 2) { // 2-stop gradients have colors at 0 and 1, and so must be evenly spaced. SkASSERT(fOrigPos == nullptr); // With 2 stops, we upload the single FB as uniforms and interpolate directly with t. F4 lo = F4::Load(rgba.data() + 0), hi = F4::Load(rgba.data() + 4); F4 F = hi - lo, B = lo; auto T = clamp01(t); color = { T * uniformF(F[0]) + uniformF(B[0]), T * uniformF(F[1]) + uniformF(B[1]), T * uniformF(F[2]) + uniformF(B[2]), T * uniformF(F[3]) + uniformF(B[3]), }; } else { // To handle clamps in search we add a conceptual stop at t=-inf, so we // may need up to fColorCount+1 FBs and fColorCount t stops between them: // // FBs: [color 0] [color 0->1] [color 1->2] [color 2->3] ... // stops: (-inf) t0 t1 t2 ... // // Both these arrays could end up shorter if any hard stops share the same t. FB* fb = alloc->makeArrayDefault(fColorCount+1); std::vector stops; // TODO: SkSTArray? stops.reserve(fColorCount); // Here's our conceptual stop at t=-inf covering all t<=0, clamping to our first color. float t_lo = this->getPos(0); F4 color_lo = F4::Load(rgba.data()); fb[0] = { 0.0f, color_lo }; // N.B. No stops[] entry for this implicit -inf. // Now the non-edge cases, calculating scale and bias between adjacent normal stops. for (int i = 1; i < fColorCount; i++) { float t_hi = this->getPos(i); F4 color_hi = F4::Load(rgba.data() + 4*i); // If t_lo == t_hi, we're on a hard stop, and transition immediately to the next color. SkASSERT(t_lo <= t_hi); if (t_lo < t_hi) { F4 f = (color_hi - color_lo) / (t_hi - t_lo), b = color_lo - f*t_lo; stops.push_back(t_lo); fb[stops.size()] = {f,b}; } t_lo = t_hi; color_lo = color_hi; } // Anything >= our final t clamps to our final color. stops.push_back(t_lo); fb[stops.size()] = { 0.0f, color_lo }; // We'll gather FBs from that array we just created. skvm::Uniform fbs = uniforms->pushPtr(fb); // Find the two stops we need to interpolate. skvm::I32 ix; if (fOrigPos == nullptr) { // Evenly spaced stops... we can calculate ix directly. // Of note: we need to clamp t and skip over that conceptual -inf stop we made up. ix = trunc(clamp01(t) * uniformF(stops.size() - 1) + 1.0f); } else { // Starting ix at 0 bakes in our conceptual first stop at -inf. // TODO: good place to experiment with a loop in skvm.... stops.size() can be huge. ix = p->splat(0); for (float stop : stops) { // ix += (t >= stop) ? +1 : 0 ~~> // ix -= (t >= stop) ? -1 : 0 ix -= (t >= uniformF(stop)); } // TODO: we could skip any of the dummy stops GradientShaderBase's ctor added // to ensure the full [0,1] span is covered. This linear search doesn't need // them for correctness, and it'd be up to two fewer stops to check. // N.B. we do still need those stops for the fOrigPos == nullptr direct math path. } // A scale factor and bias for each lane, 8 total. // TODO: simpler, faster, tidier to push 8 uniform pointers, one for each struct lane? ix = shl(ix, 3); skvm::F32 Fr = gatherF(fbs, ix + 0); skvm::F32 Fg = gatherF(fbs, ix + 1); skvm::F32 Fb = gatherF(fbs, ix + 2); skvm::F32 Fa = gatherF(fbs, ix + 3); skvm::F32 Br = gatherF(fbs, ix + 4); skvm::F32 Bg = gatherF(fbs, ix + 5); skvm::F32 Bb = gatherF(fbs, ix + 6); skvm::F32 Ba = gatherF(fbs, ix + 7); // This is what we've been building towards! color = { t * Fr + Br, t * Fg + Bg, t * Fb + Bb, t * Fa + Ba, }; } // If we interpolated unpremul, premul now to match our output convention. if (0 == (fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) && !fColorsAreOpaque) { color = premul(color); } return { pun_to_F32(mask & pun_to_I32(color.r)), pun_to_F32(mask & pun_to_I32(color.g)), pun_to_F32(mask & pun_to_I32(color.b)), pun_to_F32(mask & pun_to_I32(color.a)), }; } bool SkGradientShaderBase::isOpaque() const { return fColorsAreOpaque && (this->getTileMode() != SkTileMode::kDecal); } static unsigned rounded_divide(unsigned numer, unsigned denom) { return (numer + (denom >> 1)) / denom; } bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const { // we just compute an average color. // possibly we could weight this based on the proportional width for each color // assuming they are not evenly distributed in the fPos array. int r = 0; int g = 0; int b = 0; const int n = fColorCount; // TODO: use linear colors? for (int i = 0; i < n; ++i) { SkColor c = this->getLegacyColor(i); r += SkColorGetR(c); g += SkColorGetG(c); b += SkColorGetB(c); } *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n)); return true; } SkColor4fXformer::SkColor4fXformer(const SkColor4f* colors, int colorCount, SkColorSpace* src, SkColorSpace* dst) { fColors = colors; if (dst && !SkColorSpace::Equals(src, dst)) { fStorage.reset(colorCount); auto info = SkImageInfo::Make(colorCount,1, kRGBA_F32_SkColorType, kUnpremul_SkAlphaType); auto dstInfo = info.makeColorSpace(sk_ref_sp(dst)); auto srcInfo = info.makeColorSpace(sk_ref_sp(src)); SkAssertResult(SkConvertPixels(dstInfo, fStorage.begin(), info.minRowBytes(), srcInfo, fColors , info.minRowBytes())); fColors = fStorage.begin(); } } void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const { if (info) { if (info->fColorCount >= fColorCount) { if (info->fColors) { for (int i = 0; i < fColorCount; ++i) { info->fColors[i] = this->getLegacyColor(i); } } if (info->fColorOffsets) { for (int i = 0; i < fColorCount; ++i) { info->fColorOffsets[i] = this->getPos(i); } } } info->fColorCount = fColorCount; info->fTileMode = fTileMode; info->fGradientFlags = fGradFlags; } } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // Return true if these parameters are valid/legal/safe to construct a gradient // static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count, SkTileMode tileMode) { return nullptr != colors && count >= 1 && (unsigned)tileMode < kSkTileModeCount; } static void desc_init(SkGradientShaderBase::Descriptor* desc, const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) { SkASSERT(colorCount > 1); desc->fColors = colors; desc->fColorSpace = std::move(colorSpace); desc->fPos = pos; desc->fCount = colorCount; desc->fTileMode = mode; desc->fGradFlags = flags; desc->fLocalMatrix = localMatrix; } static SkColor4f average_gradient_color(const SkColor4f colors[], const SkScalar pos[], int colorCount) { // The gradient is a piecewise linear interpolation between colors. For a given interval, // the integral between the two endpoints is 0.5 * (ci + cj) * (pj - pi), which provides that // intervals average color. The overall average color is thus the sum of each piece. The thing // to keep in mind is that the provided gradient definition may implicitly use p=0 and p=1. Sk4f blend(0.0f); for (int i = 0; i < colorCount - 1; ++i) { // Calculate the average color for the interval between pos(i) and pos(i+1) Sk4f c0 = Sk4f::Load(&colors[i]); Sk4f c1 = Sk4f::Load(&colors[i + 1]); // when pos == null, there are colorCount uniformly distributed stops, going from 0 to 1, // so pos[i + 1] - pos[i] = 1/(colorCount-1) SkScalar w; if (pos) { // Match position fixing in SkGradientShader's constructor, clamping positions outside // [0, 1] and forcing the sequence to be monotonic SkScalar p0 = SkTPin(pos[i], 0.f, 1.f); SkScalar p1 = SkTPin(pos[i + 1], p0, 1.f); w = p1 - p0; // And account for any implicit intervals at the start or end of the positions if (i == 0) { if (p0 > 0.0f) { // The first color is fixed between p = 0 to pos[0], so 0.5*(ci + cj)*(pj - pi) // becomes 0.5*(c + c)*(pj - 0) = c * pj Sk4f c = Sk4f::Load(&colors[0]); blend += p0 * c; } } if (i == colorCount - 2) { if (p1 < 1.f) { // The last color is fixed between pos[n-1] to p = 1, so 0.5*(ci + cj)*(pj - pi) // becomes 0.5*(c + c)*(1 - pi) = c * (1 - pi) Sk4f c = Sk4f::Load(&colors[colorCount - 1]); blend += (1.f - p1) * c; } } } else { w = 1.f / (colorCount - 1); } blend += 0.5f * w * (c1 + c0); } SkColor4f avg; blend.store(&avg); return avg; } // The default SkScalarNearlyZero threshold of .0024 is too big and causes regressions for svg // gradients defined in the wild. static constexpr SkScalar kDegenerateThreshold = SK_Scalar1 / (1 << 15); // Except for special circumstances of clamped gradients, every gradient shape--when degenerate-- // can be mapped to the same fallbacks. The specific shape factories must account for special // clamped conditions separately, this will always return the last color for clamped gradients. static sk_sp make_degenerate_gradient(const SkColor4f colors[], const SkScalar pos[], int colorCount, sk_sp colorSpace, SkTileMode mode) { switch(mode) { case SkTileMode::kDecal: // normally this would reject the area outside of the interpolation region, so since // inside region is empty when the radii are equal, the entire draw region is empty return SkShaders::Empty(); case SkTileMode::kRepeat: case SkTileMode::kMirror: // repeat and mirror are treated the same: the border colors are never visible, // but approximate the final color as infinite repetitions of the colors, so // it can be represented as the average color of the gradient. return SkShaders::Color( average_gradient_color(colors, pos, colorCount), std::move(colorSpace)); case SkTileMode::kClamp: // Depending on how the gradient shape degenerates, there may be a more specialized // fallback representation for the factories to use, but this is a reasonable default. return SkShaders::Color(colors[colorCount - 1], std::move(colorSpace)); } SkDEBUGFAIL("Should not be reached"); return nullptr; } // assumes colors is SkColor4f* and pos is SkScalar* #define EXPAND_1_COLOR(count) \ SkColor4f tmp[2]; \ do { \ if (1 == count) { \ tmp[0] = tmp[1] = colors[0]; \ colors = tmp; \ pos = nullptr; \ count = 2; \ } \ } while (0) struct ColorStopOptimizer { ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos, int count, SkTileMode mode) : fColors(colors) , fPos(pos) , fCount(count) { if (!pos || count != 3) { return; } if (SkScalarNearlyEqual(pos[0], 0.0f) && SkScalarNearlyEqual(pos[1], 0.0f) && SkScalarNearlyEqual(pos[2], 1.0f)) { if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode || colors[0] == colors[1]) { // Ignore the leftmost color/pos. fColors += 1; fPos += 1; fCount = 2; } } else if (SkScalarNearlyEqual(pos[0], 0.0f) && SkScalarNearlyEqual(pos[1], 1.0f) && SkScalarNearlyEqual(pos[2], 1.0f)) { if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode || colors[1] == colors[2]) { // Ignore the rightmost color/pos. fCount = 2; } } } const SkColor4f* fColors; const SkScalar* fPos; int fCount; }; struct ColorConverter { ColorConverter(const SkColor* colors, int count) { const float ONE_OVER_255 = 1.f / 255; for (int i = 0; i < count; ++i) { fColors4f.push_back({ SkColorGetR(colors[i]) * ONE_OVER_255, SkColorGetG(colors[i]) * ONE_OVER_255, SkColorGetB(colors[i]) * ONE_OVER_255, SkColorGetA(colors[i]) * ONE_OVER_255 }); } } SkSTArray<2, SkColor4f, true> fColors4f; }; sk_sp SkGradientShader::MakeLinear(const SkPoint pts[2], const SkColor colors[], const SkScalar pos[], int colorCount, SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) { ColorConverter converter(colors, colorCount); return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, localMatrix); } sk_sp SkGradientShader::MakeLinear(const SkPoint pts[2], const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) { if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) { return nullptr; } if (!valid_grad(colors, pos, colorCount, mode)) { return nullptr; } if (1 == colorCount) { return SkShaders::Color(colors[0], std::move(colorSpace)); } if (localMatrix && !localMatrix->invert(nullptr)) { return nullptr; } if (SkScalarNearlyZero((pts[1] - pts[0]).length(), kDegenerateThreshold)) { // Degenerate gradient, the only tricky complication is when in clamp mode, the limit of // the gradient approaches two half planes of solid color (first and last). However, they // are divided by the line perpendicular to the start and end point, which becomes undefined // once start and end are exactly the same, so just use the end color for a stable solution. return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode); } ColorStopOptimizer opt(colors, pos, colorCount, mode); SkGradientShaderBase::Descriptor desc; desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, localMatrix); return sk_make_sp(pts, desc); } sk_sp SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, const SkColor colors[], const SkScalar pos[], int colorCount, SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) { ColorConverter converter(colors, colorCount); return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, localMatrix); } sk_sp SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) { if (radius < 0) { return nullptr; } if (!valid_grad(colors, pos, colorCount, mode)) { return nullptr; } if (1 == colorCount) { return SkShaders::Color(colors[0], std::move(colorSpace)); } if (localMatrix && !localMatrix->invert(nullptr)) { return nullptr; } if (SkScalarNearlyZero(radius, kDegenerateThreshold)) { // Degenerate gradient optimization, and no special logic needed for clamped radial gradient return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode); } ColorStopOptimizer opt(colors, pos, colorCount, mode); SkGradientShaderBase::Descriptor desc; desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, localMatrix); return sk_make_sp(center, radius, desc); } sk_sp SkGradientShader::MakeTwoPointConical(const SkPoint& start, SkScalar startRadius, const SkPoint& end, SkScalar endRadius, const SkColor colors[], const SkScalar pos[], int colorCount, SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) { ColorConverter converter(colors, colorCount); return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, localMatrix); } sk_sp SkGradientShader::MakeTwoPointConical(const SkPoint& start, SkScalar startRadius, const SkPoint& end, SkScalar endRadius, const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) { if (startRadius < 0 || endRadius < 0) { return nullptr; } if (!valid_grad(colors, pos, colorCount, mode)) { return nullptr; } if (SkScalarNearlyZero((start - end).length(), kDegenerateThreshold)) { // If the center positions are the same, then the gradient is the radial variant of a 2 pt // conical gradient, an actual radial gradient (startRadius == 0), or it is fully degenerate // (startRadius == endRadius). if (SkScalarNearlyEqual(startRadius, endRadius, kDegenerateThreshold)) { // Degenerate case, where the interpolation region area approaches zero. The proper // behavior depends on the tile mode, which is consistent with the default degenerate // gradient behavior, except when mode = clamp and the radii > 0. if (mode == SkTileMode::kClamp && endRadius > kDegenerateThreshold) { // The interpolation region becomes an infinitely thin ring at the radius, so the // final gradient will be the first color repeated from p=0 to 1, and then a hard // stop switching to the last color at p=1. static constexpr SkScalar circlePos[3] = {0, 1, 1}; SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]}; return MakeRadial(start, endRadius, reColors, std::move(colorSpace), circlePos, 3, mode, flags, localMatrix); } else { // Otherwise use the default degenerate case return make_degenerate_gradient( colors, pos, colorCount, std::move(colorSpace), mode); } } else if (SkScalarNearlyZero(startRadius, kDegenerateThreshold)) { // We can treat this gradient as radial, which is faster. If we got here, we know // that endRadius is not equal to 0, so this produces a meaningful gradient return MakeRadial(start, endRadius, colors, std::move(colorSpace), pos, colorCount, mode, flags, localMatrix); } // Else it's the 2pt conical radial variant with no degenerate radii, so fall through to the // regular 2pt constructor. } if (localMatrix && !localMatrix->invert(nullptr)) { return nullptr; } EXPAND_1_COLOR(colorCount); ColorStopOptimizer opt(colors, pos, colorCount, mode); SkGradientShaderBase::Descriptor desc; desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, localMatrix); return SkTwoPointConicalGradient::Create(start, startRadius, end, endRadius, desc); } sk_sp SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, const SkColor colors[], const SkScalar pos[], int colorCount, SkTileMode mode, SkScalar startAngle, SkScalar endAngle, uint32_t flags, const SkMatrix* localMatrix) { ColorConverter converter(colors, colorCount); return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, startAngle, endAngle, flags, localMatrix); } sk_sp SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkTileMode mode, SkScalar startAngle, SkScalar endAngle, uint32_t flags, const SkMatrix* localMatrix) { if (!valid_grad(colors, pos, colorCount, mode)) { return nullptr; } if (1 == colorCount) { return SkShaders::Color(colors[0], std::move(colorSpace)); } if (!SkScalarIsFinite(startAngle) || !SkScalarIsFinite(endAngle) || startAngle > endAngle) { return nullptr; } if (localMatrix && !localMatrix->invert(nullptr)) { return nullptr; } if (SkScalarNearlyEqual(startAngle, endAngle, kDegenerateThreshold)) { // Degenerate gradient, which should follow default degenerate behavior unless it is // clamped and the angle is greater than 0. if (mode == SkTileMode::kClamp && endAngle > kDegenerateThreshold) { // In this case, the first color is repeated from 0 to the angle, then a hardstop // switches to the last color (all other colors are compressed to the infinitely thin // interpolation region). static constexpr SkScalar clampPos[3] = {0, 1, 1}; SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]}; return MakeSweep(cx, cy, reColors, std::move(colorSpace), clampPos, 3, mode, 0, endAngle, flags, localMatrix); } else { return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode); } } if (startAngle <= 0 && endAngle >= 360) { // If the t-range includes [0,1], then we can always use clamping (presumably faster). mode = SkTileMode::kClamp; } ColorStopOptimizer opt(colors, pos, colorCount, mode); SkGradientShaderBase::Descriptor desc; desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, localMatrix); const SkScalar t0 = startAngle / 360, t1 = endAngle / 360; return sk_make_sp(SkPoint::Make(cx, cy), t0, t1, desc); } void SkGradientShader::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkLinearGradient); SK_REGISTER_FLATTENABLE(SkRadialGradient); SK_REGISTER_FLATTENABLE(SkSweepGradient); SK_REGISTER_FLATTENABLE(SkTwoPointConicalGradient); }