/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCStrokeGeometry.h" #include "SkGeometry.h" #include "SkMathPriv.h" #include "SkNx.h" #include "SkStrokeRec.h" // This is the maximum distance in pixels that we can stray from the edge of a stroke when // converting it to flat line segments. static constexpr float kMaxErrorFromLinearization = 1/8.f; static inline float length(const Sk2f& n) { Sk2f nn = n*n; return SkScalarSqrt(nn[0] + nn[1]); } static inline Sk2f normalize(const Sk2f& v) { Sk2f vv = v*v; vv += SkNx_shuffle<1,0>(vv); return v * vv.rsqrt(); } static inline void transpose(const Sk2f& a, const Sk2f& b, Sk2f* X, Sk2f* Y) { float transpose[4]; a.store(transpose); b.store(transpose+2); Sk2f::Load2(transpose, X, Y); } static inline void normalize2(const Sk2f& v0, const Sk2f& v1, SkPoint out[2]) { Sk2f X, Y; transpose(v0, v1, &X, &Y); Sk2f invlength = (X*X + Y*Y).rsqrt(); Sk2f::Store2(out, Y * invlength, -X * invlength); } static inline float calc_curvature_costheta(const Sk2f& leftTan, const Sk2f& rightTan) { Sk2f X, Y; transpose(leftTan, rightTan, &X, &Y); Sk2f invlength = (X*X + Y*Y).rsqrt(); Sk2f dotprod = leftTan * rightTan; return (dotprod[0] + dotprod[1]) * invlength[0] * invlength[1]; } static GrCCStrokeGeometry::Verb join_verb_from_join(SkPaint::Join join) { using Verb = GrCCStrokeGeometry::Verb; switch (join) { case SkPaint::kBevel_Join: return Verb::kBevelJoin; case SkPaint::kMiter_Join: return Verb::kMiterJoin; case SkPaint::kRound_Join: return Verb::kRoundJoin; } SK_ABORT("Invalid SkPaint::Join."); return Verb::kBevelJoin; } void GrCCStrokeGeometry::beginPath(const SkStrokeRec& stroke, float strokeDevWidth, InstanceTallies* tallies) { SkASSERT(!fInsideContour); // Client should have already converted the stroke to device space (i.e. width=1 for hairline). SkASSERT(strokeDevWidth > 0); fCurrStrokeRadius = strokeDevWidth/2; fCurrStrokeJoinVerb = join_verb_from_join(stroke.getJoin()); fCurrStrokeCapType = stroke.getCap(); fCurrStrokeTallies = tallies; if (Verb::kMiterJoin == fCurrStrokeJoinVerb) { // We implement miters by placing a triangle-shaped cap on top of a bevel join. Convert the // "miter limit" to how tall that triangle cap can be. float m = stroke.getMiter(); fMiterMaxCapHeightOverWidth = .5f * SkScalarSqrt(m*m - 1); } // Find the angle of curvature where the arc height above a simple line from point A to point B // is equal to kMaxErrorFromLinearization. float r = SkTMax(1 - kMaxErrorFromLinearization / fCurrStrokeRadius, 0.f); fMaxCurvatureCosTheta = 2*r*r - 1; fCurrContourFirstPtIdx = -1; fCurrContourFirstNormalIdx = -1; fVerbs.push_back(Verb::kBeginPath); } void GrCCStrokeGeometry::moveTo(SkPoint pt) { SkASSERT(!fInsideContour); fCurrContourFirstPtIdx = fPoints.count(); fCurrContourFirstNormalIdx = fNormals.count(); fPoints.push_back(pt); SkDEBUGCODE(fInsideContour = true); } void GrCCStrokeGeometry::lineTo(SkPoint pt) { SkASSERT(fInsideContour); this->lineTo(fCurrStrokeJoinVerb, pt); } void GrCCStrokeGeometry::lineTo(Verb leftJoinVerb, SkPoint pt) { Sk2f tan = Sk2f::Load(&pt) - Sk2f::Load(&fPoints.back()); if ((tan == 0).allTrue()) { return; } tan = normalize(tan); SkVector n = SkVector::Make(tan[1], -tan[0]); this->recordLeftJoinIfNotEmpty(leftJoinVerb, n); fNormals.push_back(n); this->recordStroke(Verb::kLinearStroke, 0); fPoints.push_back(pt); } void GrCCStrokeGeometry::quadraticTo(const SkPoint P[3]) { SkASSERT(fInsideContour); this->quadraticTo(fCurrStrokeJoinVerb, P, SkFindQuadMaxCurvature(P)); } // Wang's formula for quadratics (1985) gives us the number of evenly spaced (in the parametric // sense) line segments that are guaranteed to be within a distance of "kMaxErrorFromLinearization" // from the actual curve. static inline float wangs_formula_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) { static constexpr float k = 2 / (8 * kMaxErrorFromLinearization); float f = SkScalarSqrt(k * length(p2 - p1*2 + p0)); return SkScalarCeilToInt(f); } void GrCCStrokeGeometry::quadraticTo(Verb leftJoinVerb, const SkPoint P[3], float maxCurvatureT) { Sk2f p0 = Sk2f::Load(P); Sk2f p1 = Sk2f::Load(P+1); Sk2f p2 = Sk2f::Load(P+2); Sk2f tan0 = p1 - p0; Sk2f tan1 = p2 - p1; // Snap to a "lineTo" if the control point is so close to an endpoint that FP error will become // an issue. if ((tan0.abs() < SK_ScalarNearlyZero).allTrue() || // p0 ~= p1 (tan1.abs() < SK_ScalarNearlyZero).allTrue()) { // p1 ~= p2 this->lineTo(leftJoinVerb, P[2]); return; } SkPoint normals[2]; normalize2(tan0, tan1, normals); // Decide how many flat line segments to chop the curve into. int numSegments = wangs_formula_quadratic(p0, p1, p2); numSegments = SkTMin(numSegments, 1 << kMaxNumLinearSegmentsLog2); if (numSegments <= 1) { this->rotateTo(leftJoinVerb, normals[0]); this->lineTo(Verb::kInternalRoundJoin, P[2]); this->rotateTo(Verb::kInternalRoundJoin, normals[1]); return; } // At + B gives a vector tangent to the quadratic. Sk2f A = p0 - p1*2 + p2; Sk2f B = p1 - p0; // Find a line segment that crosses max curvature. float segmentLength = SkScalarInvert(numSegments); float leftT = maxCurvatureT - segmentLength/2; float rightT = maxCurvatureT + segmentLength/2; Sk2f leftTan, rightTan; if (leftT <= 0) { leftT = 0; leftTan = tan0; rightT = segmentLength; rightTan = A*rightT + B; } else if (rightT >= 1) { leftT = 1 - segmentLength; leftTan = A*leftT + B; rightT = 1; rightTan = tan1; } else { leftTan = A*leftT + B; rightTan = A*rightT + B; } // Check if curvature is too strong for a triangle strip on the line segment that crosses max // curvature. If it is, we will chop and convert the segment to a "lineTo" with round joins. // // FIXME: This is quite costly and the vast majority of curves only have moderate curvature. We // would benefit significantly from a quick reject that detects curves that don't need special // treatment for strong curvature. bool isCurvatureTooStrong = calc_curvature_costheta(leftTan, rightTan) < fMaxCurvatureCosTheta; if (isCurvatureTooStrong) { SkPoint ptsBuffer[5]; const SkPoint* currQuadratic = P; if (leftT > 0) { SkChopQuadAt(currQuadratic, ptsBuffer, leftT); this->quadraticTo(leftJoinVerb, ptsBuffer, /*maxCurvatureT=*/1); if (rightT < 1) { rightT = (rightT - leftT) / (1 - leftT); } currQuadratic = ptsBuffer + 2; } else { this->rotateTo(leftJoinVerb, normals[0]); } if (rightT < 1) { SkChopQuadAt(currQuadratic, ptsBuffer, rightT); this->lineTo(Verb::kInternalRoundJoin, ptsBuffer[2]); this->quadraticTo(Verb::kInternalRoundJoin, ptsBuffer + 2, /*maxCurvatureT=*/0); } else { this->lineTo(Verb::kInternalRoundJoin, currQuadratic[2]); this->rotateTo(Verb::kInternalRoundJoin, normals[1]); } return; } this->recordLeftJoinIfNotEmpty(leftJoinVerb, normals[0]); fNormals.push_back_n(2, normals); this->recordStroke(Verb::kQuadraticStroke, SkNextLog2(numSegments)); p1.store(&fPoints.push_back()); p2.store(&fPoints.push_back()); } void GrCCStrokeGeometry::cubicTo(const SkPoint P[4]) { SkASSERT(fInsideContour); float roots[3]; int numRoots = SkFindCubicMaxCurvature(P, roots); this->cubicTo(fCurrStrokeJoinVerb, P, numRoots > 0 ? roots[numRoots/2] : 0, numRoots > 1 ? roots[0] : kLeftMaxCurvatureNone, numRoots > 2 ? roots[2] : kRightMaxCurvatureNone); } // Wang's formula for cubics (1985) gives us the number of evenly spaced (in the parametric sense) // line segments that are guaranteed to be within a distance of "kMaxErrorFromLinearization" // from the actual curve. static inline float wangs_formula_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3) { static constexpr float k = (3 * 2) / (8 * kMaxErrorFromLinearization); float f = SkScalarSqrt(k * length(Sk2f::Max((p2 - p1*2 + p0).abs(), (p3 - p2*2 + p1).abs()))); return SkScalarCeilToInt(f); } void GrCCStrokeGeometry::cubicTo(Verb leftJoinVerb, const SkPoint P[4], float maxCurvatureT, float leftMaxCurvatureT, float rightMaxCurvatureT) { Sk2f p0 = Sk2f::Load(P); Sk2f p1 = Sk2f::Load(P+1); Sk2f p2 = Sk2f::Load(P+2); Sk2f p3 = Sk2f::Load(P+3); Sk2f tan0 = p1 - p0; Sk2f tan1 = p3 - p2; // Snap control points to endpoints if they are so close that FP error will become an issue. if ((tan0.abs() < SK_ScalarNearlyZero).allTrue()) { // p0 ~= p1 p1 = p0; tan0 = p2 - p0; if ((tan0.abs() < SK_ScalarNearlyZero).allTrue()) { // p0 ~= p1 ~= p2 this->lineTo(leftJoinVerb, P[3]); return; } } if ((tan1.abs() < SK_ScalarNearlyZero).allTrue()) { // p2 ~= p3 p2 = p3; tan1 = p3 - p1; if ((tan1.abs() < SK_ScalarNearlyZero).allTrue() || // p1 ~= p2 ~= p3 (p0 == p1).allTrue()) { // p0 ~= p1 AND p2 ~= p3 this->lineTo(leftJoinVerb, P[3]); return; } } SkPoint normals[2]; normalize2(tan0, tan1, normals); // Decide how many flat line segments to chop the curve into. int numSegments = wangs_formula_cubic(p0, p1, p2, p3); numSegments = SkTMin(numSegments, 1 << kMaxNumLinearSegmentsLog2); if (numSegments <= 1) { this->rotateTo(leftJoinVerb, normals[0]); this->lineTo(leftJoinVerb, P[3]); this->rotateTo(Verb::kInternalRoundJoin, normals[1]); return; } // At^2 + Bt + C gives a vector tangent to the cubic. (More specifically, it's the derivative // minus an irrelevant scale by 3, since all we care about is the direction.) Sk2f A = p3 + (p1 - p2)*3 - p0; Sk2f B = (p0 - p1*2 + p2)*2; Sk2f C = p1 - p0; // Find a line segment that crosses max curvature. float segmentLength = SkScalarInvert(numSegments); float leftT = maxCurvatureT - segmentLength/2; float rightT = maxCurvatureT + segmentLength/2; Sk2f leftTan, rightTan; if (leftT <= 0) { leftT = 0; leftTan = tan0; rightT = segmentLength; rightTan = A*rightT*rightT + B*rightT + C; } else if (rightT >= 1) { leftT = 1 - segmentLength; leftTan = A*leftT*leftT + B*leftT + C; rightT = 1; rightTan = tan1; } else { leftTan = A*leftT*leftT + B*leftT + C; rightTan = A*rightT*rightT + B*rightT + C; } // Check if curvature is too strong for a triangle strip on the line segment that crosses max // curvature. If it is, we will chop and convert the segment to a "lineTo" with round joins. // // FIXME: This is quite costly and the vast majority of curves only have moderate curvature. We // would benefit significantly from a quick reject that detects curves that don't need special // treatment for strong curvature. bool isCurvatureTooStrong = calc_curvature_costheta(leftTan, rightTan) < fMaxCurvatureCosTheta; if (isCurvatureTooStrong) { SkPoint ptsBuffer[7]; p0.store(ptsBuffer); p1.store(ptsBuffer + 1); p2.store(ptsBuffer + 2); p3.store(ptsBuffer + 3); const SkPoint* currCubic = ptsBuffer; if (leftT > 0) { SkChopCubicAt(currCubic, ptsBuffer, leftT); this->cubicTo(leftJoinVerb, ptsBuffer, /*maxCurvatureT=*/1, (kLeftMaxCurvatureNone != leftMaxCurvatureT) ? leftMaxCurvatureT/leftT : kLeftMaxCurvatureNone, kRightMaxCurvatureNone); if (rightT < 1) { rightT = (rightT - leftT) / (1 - leftT); } if (rightMaxCurvatureT < 1 && kRightMaxCurvatureNone != rightMaxCurvatureT) { rightMaxCurvatureT = (rightMaxCurvatureT - leftT) / (1 - leftT); } currCubic = ptsBuffer + 3; } else { this->rotateTo(leftJoinVerb, normals[0]); } if (rightT < 1) { SkChopCubicAt(currCubic, ptsBuffer, rightT); this->lineTo(Verb::kInternalRoundJoin, ptsBuffer[3]); currCubic = ptsBuffer + 3; this->cubicTo(Verb::kInternalRoundJoin, currCubic, /*maxCurvatureT=*/0, kLeftMaxCurvatureNone, kRightMaxCurvatureNone); } else { this->lineTo(Verb::kInternalRoundJoin, currCubic[3]); this->rotateTo(Verb::kInternalRoundJoin, normals[1]); } return; } // Recurse and check the other two points of max curvature, if any. if (kRightMaxCurvatureNone != rightMaxCurvatureT) { this->cubicTo(leftJoinVerb, P, rightMaxCurvatureT, leftMaxCurvatureT, kRightMaxCurvatureNone); return; } if (kLeftMaxCurvatureNone != leftMaxCurvatureT) { SkASSERT(kRightMaxCurvatureNone == rightMaxCurvatureT); this->cubicTo(leftJoinVerb, P, leftMaxCurvatureT, kLeftMaxCurvatureNone, kRightMaxCurvatureNone); return; } this->recordLeftJoinIfNotEmpty(leftJoinVerb, normals[0]); fNormals.push_back_n(2, normals); this->recordStroke(Verb::kCubicStroke, SkNextLog2(numSegments)); p1.store(&fPoints.push_back()); p2.store(&fPoints.push_back()); p3.store(&fPoints.push_back()); } void GrCCStrokeGeometry::recordStroke(Verb verb, int numSegmentsLog2) { SkASSERT(Verb::kLinearStroke != verb || 0 == numSegmentsLog2); SkASSERT(numSegmentsLog2 <= kMaxNumLinearSegmentsLog2); fVerbs.push_back(verb); if (Verb::kLinearStroke != verb) { SkASSERT(numSegmentsLog2 > 0); fParams.push_back().fNumLinearSegmentsLog2 = numSegmentsLog2; } ++fCurrStrokeTallies->fStrokes[numSegmentsLog2]; } void GrCCStrokeGeometry::rotateTo(Verb leftJoinVerb, SkVector normal) { this->recordLeftJoinIfNotEmpty(leftJoinVerb, normal); fNormals.push_back(normal); } void GrCCStrokeGeometry::recordLeftJoinIfNotEmpty(Verb joinVerb, SkVector nextNormal) { if (fNormals.count() <= fCurrContourFirstNormalIdx) { // The contour is empty. Nothing to join with. SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); return; } if (Verb::kBevelJoin == joinVerb) { this->recordBevelJoin(Verb::kBevelJoin); return; } Sk2f n0 = Sk2f::Load(&fNormals.back()); Sk2f n1 = Sk2f::Load(&nextNormal); Sk2f base = n1 - n0; if ((base.abs() * fCurrStrokeRadius < kMaxErrorFromLinearization).allTrue()) { // Treat any join as a bevel when the outside corners of the two adjoining strokes are // close enough to each other. This is important because "miterCapHeightOverWidth" becomes // unstable when n0 and n1 are nearly equal. this->recordBevelJoin(joinVerb); return; } // We implement miters and round joins by placing a triangle-shaped cap on top of a bevel join. // (For round joins this triangle cap comprises the conic control points.) Find how tall to make // this triangle cap, relative to its width. // // NOTE: This value would be infinite at 180 degrees, but we clamp miterCapHeightOverWidth at // near-infinity. 180-degree round joins still look perfectly acceptable like this (though // technically not pure arcs). Sk2f cross = base * SkNx_shuffle<1,0>(n0); Sk2f dot = base * n0; float miterCapHeight = SkScalarAbs(dot[0] + dot[1]); float miterCapWidth = SkScalarAbs(cross[0] - cross[1]) * 2; if (Verb::kMiterJoin == joinVerb) { if (miterCapHeight > fMiterMaxCapHeightOverWidth * miterCapWidth) { // This join is tighter than the miter limit. Treat it as a bevel. this->recordBevelJoin(Verb::kMiterJoin); return; } this->recordMiterJoin(miterCapHeight / miterCapWidth); return; } SkASSERT(Verb::kRoundJoin == joinVerb || Verb::kInternalRoundJoin == joinVerb); // Conic arcs become unstable when they approach 180 degrees. When the conic control point // begins shooting off to infinity (i.e., height/width > 32), split the conic into two. static constexpr float kAlmost180Degrees = 32; if (miterCapHeight > kAlmost180Degrees * miterCapWidth) { Sk2f bisect = normalize(n0 - n1); this->rotateTo(joinVerb, SkVector::Make(-bisect[1], bisect[0])); this->recordLeftJoinIfNotEmpty(joinVerb, nextNormal); return; } float miterCapHeightOverWidth = miterCapHeight / miterCapWidth; // Find the heights of this round join's conic control point as well as the arc itself. Sk2f X, Y; transpose(base * base, n0 * n1, &X, &Y); Sk2f r = Sk2f::Max(X + Y + Sk2f(0, 1), 0.f).sqrt(); Sk2f heights = SkNx_fma(r, Sk2f(miterCapHeightOverWidth, -SK_ScalarRoot2Over2), Sk2f(0, 1)); float controlPointHeight = SkScalarAbs(heights[0]); float curveHeight = heights[1]; if (curveHeight * fCurrStrokeRadius < kMaxErrorFromLinearization) { // Treat round joins as bevels when their curvature is nearly flat. this->recordBevelJoin(joinVerb); return; } float w = curveHeight / (controlPointHeight - curveHeight); this->recordRoundJoin(joinVerb, miterCapHeightOverWidth, w); } void GrCCStrokeGeometry::recordBevelJoin(Verb originalJoinVerb) { if (!IsInternalJoinVerb(originalJoinVerb)) { fVerbs.push_back(Verb::kBevelJoin); ++fCurrStrokeTallies->fTriangles; } else { fVerbs.push_back(Verb::kInternalBevelJoin); fCurrStrokeTallies->fTriangles += 2; } } void GrCCStrokeGeometry::recordMiterJoin(float miterCapHeightOverWidth) { fVerbs.push_back(Verb::kMiterJoin); fParams.push_back().fMiterCapHeightOverWidth = miterCapHeightOverWidth; fCurrStrokeTallies->fTriangles += 2; } void GrCCStrokeGeometry::recordRoundJoin(Verb joinVerb, float miterCapHeightOverWidth, float conicWeight) { fVerbs.push_back(joinVerb); fParams.push_back().fConicWeight = conicWeight; fParams.push_back().fMiterCapHeightOverWidth = miterCapHeightOverWidth; if (Verb::kRoundJoin == joinVerb) { ++fCurrStrokeTallies->fTriangles; ++fCurrStrokeTallies->fConics; } else { SkASSERT(Verb::kInternalRoundJoin == joinVerb); fCurrStrokeTallies->fTriangles += 2; fCurrStrokeTallies->fConics += 2; } } void GrCCStrokeGeometry::closeContour() { SkASSERT(fInsideContour); SkASSERT(fPoints.count() > fCurrContourFirstPtIdx); if (fPoints.back() != fPoints[fCurrContourFirstPtIdx]) { // Draw a line back to the beginning. this->lineTo(fCurrStrokeJoinVerb, fPoints[fCurrContourFirstPtIdx]); } if (fNormals.count() > fCurrContourFirstNormalIdx) { // Join the first and last lines. this->rotateTo(fCurrStrokeJoinVerb,fNormals[fCurrContourFirstNormalIdx]); } else { // This contour is empty. Add a bogus normal since the iterator always expects one. SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); fNormals.push_back({0, 0}); } fVerbs.push_back(Verb::kEndContour); SkDEBUGCODE(fInsideContour = false); } void GrCCStrokeGeometry::capContourAndExit() { SkASSERT(fInsideContour); if (fCurrContourFirstNormalIdx >= fNormals.count()) { // This contour is empty. Add a normal in the direction that caps orient on empty geometry. SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); fNormals.push_back({1, 0}); } this->recordCapsIfAny(); fVerbs.push_back(Verb::kEndContour); SkDEBUGCODE(fInsideContour = false); } void GrCCStrokeGeometry::recordCapsIfAny() { SkASSERT(fInsideContour); SkASSERT(fCurrContourFirstNormalIdx < fNormals.count()); if (SkPaint::kButt_Cap == fCurrStrokeCapType) { return; } Verb capVerb; if (SkPaint::kSquare_Cap == fCurrStrokeCapType) { if (fCurrStrokeRadius * SK_ScalarRoot2Over2 < kMaxErrorFromLinearization) { return; } capVerb = Verb::kSquareCap; fCurrStrokeTallies->fStrokes[0] += 2; } else { SkASSERT(SkPaint::kRound_Cap == fCurrStrokeCapType); if (fCurrStrokeRadius < kMaxErrorFromLinearization) { return; } capVerb = Verb::kRoundCap; fCurrStrokeTallies->fTriangles += 2; fCurrStrokeTallies->fConics += 4; } fVerbs.push_back(capVerb); fVerbs.push_back(Verb::kEndContour); fVerbs.push_back(capVerb); // Reserve the space first, since push_back() takes the point by reference and might // invalidate the reference if the array grows. fPoints.reserve(fPoints.count() + 1); fPoints.push_back(fPoints[fCurrContourFirstPtIdx]); // Reserve the space first, since push_back() takes the normal by reference and might // invalidate the reference if the array grows. (Although in this case we should be fine // since there is a negate operator.) fNormals.reserve(fNormals.count() + 1); fNormals.push_back(-fNormals[fCurrContourFirstNormalIdx]); }