// Copyright 2019 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ComputeProgram.hpp" #include "Constants.hpp" #include "System/Debug.hpp" #include "Vulkan/VkPipelineLayout.hpp" #include "marl/defer.h" #include "marl/trace.h" #include "marl/waitgroup.h" #include namespace { enum { X, Y, Z }; } // anonymous namespace namespace sw { ComputeProgram::ComputeProgram(vk::Device *device, SpirvShader const *shader, vk::PipelineLayout const *pipelineLayout, const vk::DescriptorSet::Bindings &descriptorSets) : device(device) , shader(shader) , pipelineLayout(pipelineLayout) , descriptorSets(descriptorSets) { } ComputeProgram::~ComputeProgram() { } void ComputeProgram::generate() { MARL_SCOPED_EVENT("ComputeProgram::generate"); SpirvRoutine routine(pipelineLayout); shader->emitProlog(&routine); emit(&routine); shader->emitEpilog(&routine); shader->clearPhis(&routine); } void ComputeProgram::setWorkgroupBuiltins(Pointer data, SpirvRoutine *routine, Int workgroupID[3]) { // TODO(b/146486064): Consider only assigning these to the SpirvRoutine iff // they are ever going to be read. routine->numWorkgroups = *Pointer(data + OFFSET(Data, numWorkgroups)); routine->workgroupID = Insert(Insert(Insert(Int4(0), workgroupID[X], X), workgroupID[Y], Y), workgroupID[Z], Z); routine->workgroupSize = *Pointer(data + OFFSET(Data, workgroupSize)); routine->subgroupsPerWorkgroup = *Pointer(data + OFFSET(Data, subgroupsPerWorkgroup)); routine->invocationsPerSubgroup = *Pointer(data + OFFSET(Data, invocationsPerSubgroup)); routine->setInputBuiltin(shader, spv::BuiltInNumWorkgroups, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { for(uint32_t component = 0; component < builtin.SizeInComponents; component++) { value[builtin.FirstComponent + component] = As(SIMD::Int(Extract(routine->numWorkgroups, component))); } }); routine->setInputBuiltin(shader, spv::BuiltInWorkgroupId, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { for(uint32_t component = 0; component < builtin.SizeInComponents; component++) { value[builtin.FirstComponent + component] = As(SIMD::Int(workgroupID[component])); } }); routine->setInputBuiltin(shader, spv::BuiltInWorkgroupSize, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { for(uint32_t component = 0; component < builtin.SizeInComponents; component++) { value[builtin.FirstComponent + component] = As(SIMD::Int(Extract(routine->workgroupSize, component))); } }); routine->setInputBuiltin(shader, spv::BuiltInNumSubgroups, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { ASSERT(builtin.SizeInComponents == 1); value[builtin.FirstComponent] = As(SIMD::Int(routine->subgroupsPerWorkgroup)); }); routine->setInputBuiltin(shader, spv::BuiltInSubgroupSize, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { ASSERT(builtin.SizeInComponents == 1); value[builtin.FirstComponent] = As(SIMD::Int(routine->invocationsPerSubgroup)); }); routine->setImmutableInputBuiltins(shader); } void ComputeProgram::setSubgroupBuiltins(Pointer data, SpirvRoutine *routine, Int workgroupID[3], SIMD::Int localInvocationIndex, Int subgroupIndex) { Int4 numWorkgroups = *Pointer(data + OFFSET(Data, numWorkgroups)); Int4 workgroupSize = *Pointer(data + OFFSET(Data, workgroupSize)); // TODO: Fix Int4 swizzles so we can just use workgroupSize.x, workgroupSize.y. Int workgroupSizeX = Extract(workgroupSize, X); Int workgroupSizeY = Extract(workgroupSize, Y); SIMD::Int localInvocationID[3]; { SIMD::Int idx = localInvocationIndex; localInvocationID[Z] = idx / SIMD::Int(workgroupSizeX * workgroupSizeY); idx -= localInvocationID[Z] * SIMD::Int(workgroupSizeX * workgroupSizeY); // modulo localInvocationID[Y] = idx / SIMD::Int(workgroupSizeX); idx -= localInvocationID[Y] * SIMD::Int(workgroupSizeX); // modulo localInvocationID[X] = idx; } Int4 wgID = Insert(Insert(Insert(SIMD::Int(0), workgroupID[X], X), workgroupID[Y], Y), workgroupID[Z], Z); auto localBase = workgroupSize * wgID; SIMD::Int globalInvocationID[3]; globalInvocationID[X] = SIMD::Int(Extract(localBase, X)) + localInvocationID[X]; globalInvocationID[Y] = SIMD::Int(Extract(localBase, Y)) + localInvocationID[Y]; globalInvocationID[Z] = SIMD::Int(Extract(localBase, Z)) + localInvocationID[Z]; routine->localInvocationIndex = localInvocationIndex; routine->subgroupIndex = subgroupIndex; routine->localInvocationID[X] = localInvocationID[X]; routine->localInvocationID[Y] = localInvocationID[Y]; routine->localInvocationID[Z] = localInvocationID[Z]; routine->globalInvocationID[X] = globalInvocationID[X]; routine->globalInvocationID[Y] = globalInvocationID[Y]; routine->globalInvocationID[Z] = globalInvocationID[Z]; routine->setInputBuiltin(shader, spv::BuiltInLocalInvocationIndex, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { ASSERT(builtin.SizeInComponents == 1); value[builtin.FirstComponent] = As(localInvocationIndex); }); routine->setInputBuiltin(shader, spv::BuiltInSubgroupId, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { ASSERT(builtin.SizeInComponents == 1); value[builtin.FirstComponent] = As(SIMD::Int(subgroupIndex)); }); routine->setInputBuiltin(shader, spv::BuiltInLocalInvocationId, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { for(uint32_t component = 0; component < builtin.SizeInComponents; component++) { value[builtin.FirstComponent + component] = As(localInvocationID[component]); } }); routine->setInputBuiltin(shader, spv::BuiltInGlobalInvocationId, [&](const SpirvShader::BuiltinMapping &builtin, Array &value) { for(uint32_t component = 0; component < builtin.SizeInComponents; component++) { value[builtin.FirstComponent + component] = As(globalInvocationID[component]); } }); } void ComputeProgram::emit(SpirvRoutine *routine) { Pointer data = Arg<0>(); Int workgroupX = Arg<1>(); Int workgroupY = Arg<2>(); Int workgroupZ = Arg<3>(); Pointer workgroupMemory = Arg<4>(); Int firstSubgroup = Arg<5>(); Int subgroupCount = Arg<6>(); routine->descriptorSets = data + OFFSET(Data, descriptorSets); routine->descriptorDynamicOffsets = data + OFFSET(Data, descriptorDynamicOffsets); routine->pushConstants = data + OFFSET(Data, pushConstants); routine->constants = *Pointer>(data + OFFSET(Data, constants)); routine->workgroupMemory = workgroupMemory; Int invocationsPerWorkgroup = *Pointer(data + OFFSET(Data, invocationsPerWorkgroup)); Int workgroupID[3] = { workgroupX, workgroupY, workgroupZ }; setWorkgroupBuiltins(data, routine, workgroupID); For(Int i = 0, i < subgroupCount, i++) { auto subgroupIndex = firstSubgroup + i; // TODO: Replace SIMD::Int(0, 1, 2, 3) with SIMD-width equivalent auto localInvocationIndex = SIMD::Int(subgroupIndex * SIMD::Width) + SIMD::Int(0, 1, 2, 3); // Disable lanes where (invocationIDs >= invocationsPerWorkgroup) auto activeLaneMask = CmpLT(localInvocationIndex, SIMD::Int(invocationsPerWorkgroup)); setSubgroupBuiltins(data, routine, workgroupID, localInvocationIndex, subgroupIndex); shader->emit(routine, activeLaneMask, activeLaneMask, descriptorSets); } } void ComputeProgram::run( vk::DescriptorSet::Array const &descriptorSetObjects, vk::DescriptorSet::Bindings const &descriptorSets, vk::DescriptorSet::DynamicOffsets const &descriptorDynamicOffsets, vk::Pipeline::PushConstantStorage const &pushConstants, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { auto &modes = shader->getModes(); auto invocationsPerSubgroup = SIMD::Width; auto invocationsPerWorkgroup = modes.WorkgroupSizeX * modes.WorkgroupSizeY * modes.WorkgroupSizeZ; auto subgroupsPerWorkgroup = (invocationsPerWorkgroup + invocationsPerSubgroup - 1) / invocationsPerSubgroup; Data data; data.descriptorSets = descriptorSets; data.descriptorDynamicOffsets = descriptorDynamicOffsets; data.numWorkgroups[X] = groupCountX; data.numWorkgroups[Y] = groupCountY; data.numWorkgroups[Z] = groupCountZ; data.numWorkgroups[3] = 0; data.workgroupSize[X] = modes.WorkgroupSizeX; data.workgroupSize[Y] = modes.WorkgroupSizeY; data.workgroupSize[Z] = modes.WorkgroupSizeZ; data.workgroupSize[3] = 0; data.invocationsPerSubgroup = invocationsPerSubgroup; data.invocationsPerWorkgroup = invocationsPerWorkgroup; data.subgroupsPerWorkgroup = subgroupsPerWorkgroup; data.pushConstants = pushConstants; data.constants = &sw::Constants::Get(); marl::WaitGroup wg; const uint32_t batchCount = 16; auto groupCount = groupCountX * groupCountY * groupCountZ; for(uint32_t batchID = 0; batchID < batchCount && batchID < groupCount; batchID++) { wg.add(1); marl::schedule([=, &data] { defer(wg.done()); std::vector workgroupMemory(shader->workgroupMemory.size()); for(uint32_t groupIndex = batchID; groupIndex < groupCount; groupIndex += batchCount) { auto modulo = groupIndex; auto groupOffsetZ = modulo / (groupCountX * groupCountY); modulo -= groupOffsetZ * (groupCountX * groupCountY); auto groupOffsetY = modulo / groupCountX; modulo -= groupOffsetY * groupCountX; auto groupOffsetX = modulo; auto groupZ = baseGroupZ + groupOffsetZ; auto groupY = baseGroupY + groupOffsetY; auto groupX = baseGroupX + groupOffsetX; MARL_SCOPED_EVENT("groupX: %d, groupY: %d, groupZ: %d", groupX, groupY, groupZ); using Coroutine = std::unique_ptr>; std::queue coroutines; if(modes.ContainsControlBarriers) { // Make a function call per subgroup so each subgroup // can yield, bringing all subgroups to the barrier // together. for(int subgroupIndex = 0; subgroupIndex < subgroupsPerWorkgroup; subgroupIndex++) { auto coroutine = (*this)(&data, groupX, groupY, groupZ, workgroupMemory.data(), subgroupIndex, 1); coroutines.push(std::move(coroutine)); } } else { auto coroutine = (*this)(&data, groupX, groupY, groupZ, workgroupMemory.data(), 0, subgroupsPerWorkgroup); coroutines.push(std::move(coroutine)); } while(coroutines.size() > 0) { auto coroutine = std::move(coroutines.front()); coroutines.pop(); SpirvShader::YieldResult result; if(coroutine->await(result)) { // TODO: Consider result (when the enum is more than 1 entry). coroutines.push(std::move(coroutine)); } } } }); } wg.wait(); if(shader->containsImageWrite()) { vk::DescriptorSet::ContentsChanged(descriptorSetObjects, pipelineLayout, device); } } } // namespace sw