// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "PixelProgram.hpp" #include "SamplerCore.hpp" #include "Renderer/Primitive.hpp" #include "Renderer/Renderer.hpp" namespace sw { extern bool postBlendSRGB; extern bool booleanFaceRegister; extern bool halfIntegerCoordinates; // Pixel centers are not at integer coordinates extern bool fullPixelPositionRegister; PixelProgram::PixelProgram(const PixelProcessor::State &state, const PixelShader *shader) : PixelRoutine(state, shader), r(shader->indirectAddressableTemporaries), aL(shader->getLimits().loops), increment(shader->getLimits().loops), iteration(shader->getLimits().loops), callStack(shader->getLimits().stack) { auto limits = shader->getLimits(); ifFalseBlock.resize(limits.ifs); loopRepTestBlock.resize(limits.loops); loopRepEndBlock.resize(limits.loops); labelBlock.resize(limits.maxLabel + 1); isConditionalIf.resize(limits.ifs); loopDepth = -1; enableStack[0] = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); if(shader->containsBreakInstruction()) { enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } if(shader->containsContinueInstruction()) { enableContinue = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } } void PixelProgram::setBuiltins(Int &x, Int &y, Float4(&z)[4], Float4 &w) { if(shader->getShaderModel() >= 0x0300) { if(shader->isVPosDeclared()) { if(!halfIntegerCoordinates) { vPos.x = Float4(Float(x)) + Float4(0, 1, 0, 1); vPos.y = Float4(Float(y)) + Float4(0, 0, 1, 1); } else { vPos.x = Float4(Float(x)) + Float4(0.5f, 1.5f, 0.5f, 1.5f); vPos.y = Float4(Float(y)) + Float4(0.5f, 0.5f, 1.5f, 1.5f); } if(fullPixelPositionRegister) { vPos.z = z[0]; // FIXME: Centroid? vPos.w = w; // FIXME: Centroid? } } if(shader->isVFaceDeclared()) { Float4 face = *Pointer(primitive + OFFSET(Primitive, area)); if(booleanFaceRegister) { face = As(state.frontFaceCCW ? CmpNLT(face, Float4(0.0f)) : CmpLT(face, Float4(0.0f))); } vFace.x = face; vFace.y = face; vFace.z = face; vFace.w = face; } } } void PixelProgram::applyShader(Int cMask[4]) { enableIndex = 0; stackIndex = 0; if(shader->containsLeaveInstruction()) { enableLeave = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } for(int i = 0; i < RENDERTARGETS; i++) { if(state.targetFormat[i] != FORMAT_NULL) { oC[i] = Vector4f(0.0f, 0.0f, 0.0f, 0.0f); } } // Create all call site return blocks up front for(size_t i = 0; i < shader->getLength(); i++) { const Shader::Instruction *instruction = shader->getInstruction(i); Shader::Opcode opcode = instruction->opcode; if(opcode == Shader::OPCODE_CALL || opcode == Shader::OPCODE_CALLNZ) { const Dst &dst = instruction->dst; ASSERT(callRetBlock[dst.label].size() == dst.callSite); callRetBlock[dst.label].push_back(Nucleus::createBasicBlock()); } } bool broadcastColor0 = true; for(size_t i = 0; i < shader->getLength(); i++) { const Shader::Instruction *instruction = shader->getInstruction(i); Shader::Opcode opcode = instruction->opcode; if(opcode == Shader::OPCODE_DCL || opcode == Shader::OPCODE_DEF || opcode == Shader::OPCODE_DEFI || opcode == Shader::OPCODE_DEFB) { continue; } const Dst &dst = instruction->dst; const Src &src0 = instruction->src[0]; const Src &src1 = instruction->src[1]; const Src &src2 = instruction->src[2]; const Src &src3 = instruction->src[3]; const Src &src4 = instruction->src[4]; bool predicate = instruction->predicate; Control control = instruction->control; bool pp = dst.partialPrecision; bool project = instruction->project; bool bias = instruction->bias; Vector4f d; Vector4f s0; Vector4f s1; Vector4f s2; Vector4f s3; Vector4f s4; if(opcode == Shader::OPCODE_TEXKILL) // Takes destination as input { if(dst.type == Shader::PARAMETER_TEXTURE) { d.x = v[2 + dst.index].x; d.y = v[2 + dst.index].y; d.z = v[2 + dst.index].z; d.w = v[2 + dst.index].w; } else { d = r[dst.index]; } } if(src0.type != Shader::PARAMETER_VOID) s0 = fetchRegister(src0); if(src1.type != Shader::PARAMETER_VOID) s1 = fetchRegister(src1); if(src2.type != Shader::PARAMETER_VOID) s2 = fetchRegister(src2); if(src3.type != Shader::PARAMETER_VOID) s3 = fetchRegister(src3); if(src4.type != Shader::PARAMETER_VOID) s4 = fetchRegister(src4); switch(opcode) { case Shader::OPCODE_PS_2_0: break; case Shader::OPCODE_PS_2_x: break; case Shader::OPCODE_PS_3_0: break; case Shader::OPCODE_DEF: break; case Shader::OPCODE_DCL: break; case Shader::OPCODE_NOP: break; case Shader::OPCODE_MOV: mov(d, s0); break; case Shader::OPCODE_NEG: neg(d, s0); break; case Shader::OPCODE_INEG: ineg(d, s0); break; case Shader::OPCODE_F2B: f2b(d, s0); break; case Shader::OPCODE_B2F: b2f(d, s0); break; case Shader::OPCODE_F2I: f2i(d, s0); break; case Shader::OPCODE_I2F: i2f(d, s0); break; case Shader::OPCODE_F2U: f2u(d, s0); break; case Shader::OPCODE_U2F: u2f(d, s0); break; case Shader::OPCODE_I2B: i2b(d, s0); break; case Shader::OPCODE_B2I: b2i(d, s0); break; case Shader::OPCODE_ADD: add(d, s0, s1); break; case Shader::OPCODE_IADD: iadd(d, s0, s1); break; case Shader::OPCODE_SUB: sub(d, s0, s1); break; case Shader::OPCODE_ISUB: isub(d, s0, s1); break; case Shader::OPCODE_MUL: mul(d, s0, s1); break; case Shader::OPCODE_IMUL: imul(d, s0, s1); break; case Shader::OPCODE_MAD: mad(d, s0, s1, s2); break; case Shader::OPCODE_IMAD: imad(d, s0, s1, s2); break; case Shader::OPCODE_DP1: dp1(d, s0, s1); break; case Shader::OPCODE_DP2: dp2(d, s0, s1); break; case Shader::OPCODE_DP2ADD: dp2add(d, s0, s1, s2); break; case Shader::OPCODE_DP3: dp3(d, s0, s1); break; case Shader::OPCODE_DP4: dp4(d, s0, s1); break; case Shader::OPCODE_DET2: det2(d, s0, s1); break; case Shader::OPCODE_DET3: det3(d, s0, s1, s2); break; case Shader::OPCODE_DET4: det4(d, s0, s1, s2, s3); break; case Shader::OPCODE_CMP0: cmp0(d, s0, s1, s2); break; case Shader::OPCODE_ICMP: icmp(d, s0, s1, control); break; case Shader::OPCODE_UCMP: ucmp(d, s0, s1, control); break; case Shader::OPCODE_SELECT: select(d, s0, s1, s2); break; case Shader::OPCODE_EXTRACT: extract(d.x, s0, s1.x); break; case Shader::OPCODE_INSERT: insert(d, s0, s1.x, s2.x); break; case Shader::OPCODE_FRC: frc(d, s0); break; case Shader::OPCODE_TRUNC: trunc(d, s0); break; case Shader::OPCODE_FLOOR: floor(d, s0); break; case Shader::OPCODE_ROUND: round(d, s0); break; case Shader::OPCODE_ROUNDEVEN: roundEven(d, s0); break; case Shader::OPCODE_CEIL: ceil(d, s0); break; case Shader::OPCODE_EXP2X: exp2x(d, s0, pp); break; case Shader::OPCODE_EXP2: exp2(d, s0, pp); break; case Shader::OPCODE_LOG2X: log2x(d, s0, pp); break; case Shader::OPCODE_LOG2: log2(d, s0, pp); break; case Shader::OPCODE_EXP: exp(d, s0, pp); break; case Shader::OPCODE_LOG: log(d, s0, pp); break; case Shader::OPCODE_RCPX: rcpx(d, s0, pp); break; case Shader::OPCODE_DIV: div(d, s0, s1); break; case Shader::OPCODE_IDIV: idiv(d, s0, s1); break; case Shader::OPCODE_UDIV: udiv(d, s0, s1); break; case Shader::OPCODE_MOD: mod(d, s0, s1); break; case Shader::OPCODE_IMOD: imod(d, s0, s1); break; case Shader::OPCODE_UMOD: umod(d, s0, s1); break; case Shader::OPCODE_SHL: shl(d, s0, s1); break; case Shader::OPCODE_ISHR: ishr(d, s0, s1); break; case Shader::OPCODE_USHR: ushr(d, s0, s1); break; case Shader::OPCODE_RSQX: rsqx(d, s0, pp); break; case Shader::OPCODE_SQRT: sqrt(d, s0, pp); break; case Shader::OPCODE_RSQ: rsq(d, s0, pp); break; case Shader::OPCODE_LEN2: len2(d.x, s0, pp); break; case Shader::OPCODE_LEN3: len3(d.x, s0, pp); break; case Shader::OPCODE_LEN4: len4(d.x, s0, pp); break; case Shader::OPCODE_DIST1: dist1(d.x, s0, s1, pp); break; case Shader::OPCODE_DIST2: dist2(d.x, s0, s1, pp); break; case Shader::OPCODE_DIST3: dist3(d.x, s0, s1, pp); break; case Shader::OPCODE_DIST4: dist4(d.x, s0, s1, pp); break; case Shader::OPCODE_MIN: min(d, s0, s1); break; case Shader::OPCODE_IMIN: imin(d, s0, s1); break; case Shader::OPCODE_UMIN: umin(d, s0, s1); break; case Shader::OPCODE_MAX: max(d, s0, s1); break; case Shader::OPCODE_IMAX: imax(d, s0, s1); break; case Shader::OPCODE_UMAX: umax(d, s0, s1); break; case Shader::OPCODE_LRP: lrp(d, s0, s1, s2); break; case Shader::OPCODE_STEP: step(d, s0, s1); break; case Shader::OPCODE_SMOOTH: smooth(d, s0, s1, s2); break; case Shader::OPCODE_ISINF: isinf(d, s0); break; case Shader::OPCODE_ISNAN: isnan(d, s0); break; case Shader::OPCODE_FLOATBITSTOINT: case Shader::OPCODE_FLOATBITSTOUINT: case Shader::OPCODE_INTBITSTOFLOAT: case Shader::OPCODE_UINTBITSTOFLOAT: d = s0; break; case Shader::OPCODE_PACKSNORM2x16: packSnorm2x16(d, s0); break; case Shader::OPCODE_PACKUNORM2x16: packUnorm2x16(d, s0); break; case Shader::OPCODE_PACKHALF2x16: packHalf2x16(d, s0); break; case Shader::OPCODE_UNPACKSNORM2x16: unpackSnorm2x16(d, s0); break; case Shader::OPCODE_UNPACKUNORM2x16: unpackUnorm2x16(d, s0); break; case Shader::OPCODE_UNPACKHALF2x16: unpackHalf2x16(d, s0); break; case Shader::OPCODE_POWX: powx(d, s0, s1, pp); break; case Shader::OPCODE_POW: pow(d, s0, s1, pp); break; case Shader::OPCODE_SGN: sgn(d, s0); break; case Shader::OPCODE_ISGN: isgn(d, s0); break; case Shader::OPCODE_CRS: crs(d, s0, s1); break; case Shader::OPCODE_FORWARD1: forward1(d, s0, s1, s2); break; case Shader::OPCODE_FORWARD2: forward2(d, s0, s1, s2); break; case Shader::OPCODE_FORWARD3: forward3(d, s0, s1, s2); break; case Shader::OPCODE_FORWARD4: forward4(d, s0, s1, s2); break; case Shader::OPCODE_REFLECT1: reflect1(d, s0, s1); break; case Shader::OPCODE_REFLECT2: reflect2(d, s0, s1); break; case Shader::OPCODE_REFLECT3: reflect3(d, s0, s1); break; case Shader::OPCODE_REFLECT4: reflect4(d, s0, s1); break; case Shader::OPCODE_REFRACT1: refract1(d, s0, s1, s2.x); break; case Shader::OPCODE_REFRACT2: refract2(d, s0, s1, s2.x); break; case Shader::OPCODE_REFRACT3: refract3(d, s0, s1, s2.x); break; case Shader::OPCODE_REFRACT4: refract4(d, s0, s1, s2.x); break; case Shader::OPCODE_NRM2: nrm2(d, s0, pp); break; case Shader::OPCODE_NRM3: nrm3(d, s0, pp); break; case Shader::OPCODE_NRM4: nrm4(d, s0, pp); break; case Shader::OPCODE_ABS: abs(d, s0); break; case Shader::OPCODE_IABS: iabs(d, s0); break; case Shader::OPCODE_SINCOS: sincos(d, s0, pp); break; case Shader::OPCODE_COS: cos(d, s0, pp); break; case Shader::OPCODE_SIN: sin(d, s0, pp); break; case Shader::OPCODE_TAN: tan(d, s0, pp); break; case Shader::OPCODE_ACOS: acos(d, s0, pp); break; case Shader::OPCODE_ASIN: asin(d, s0, pp); break; case Shader::OPCODE_ATAN: atan(d, s0, pp); break; case Shader::OPCODE_ATAN2: atan2(d, s0, s1, pp); break; case Shader::OPCODE_COSH: cosh(d, s0, pp); break; case Shader::OPCODE_SINH: sinh(d, s0, pp); break; case Shader::OPCODE_TANH: tanh(d, s0, pp); break; case Shader::OPCODE_ACOSH: acosh(d, s0, pp); break; case Shader::OPCODE_ASINH: asinh(d, s0, pp); break; case Shader::OPCODE_ATANH: atanh(d, s0, pp); break; case Shader::OPCODE_M4X4: M4X4(d, s0, src1); break; case Shader::OPCODE_M4X3: M4X3(d, s0, src1); break; case Shader::OPCODE_M3X4: M3X4(d, s0, src1); break; case Shader::OPCODE_M3X3: M3X3(d, s0, src1); break; case Shader::OPCODE_M3X2: M3X2(d, s0, src1); break; case Shader::OPCODE_TEX: TEX(d, s0, src1, project, bias); break; case Shader::OPCODE_TEXLDD: TEXGRAD(d, s0, src1, s2, s3); break; case Shader::OPCODE_TEXLDL: TEXLOD(d, s0, src1, s0.w); break; case Shader::OPCODE_TEXLOD: TEXLOD(d, s0, src1, s2.x); break; case Shader::OPCODE_TEXSIZE: TEXSIZE(d, s0.x, src1); break; case Shader::OPCODE_TEXKILL: TEXKILL(cMask, d, dst.mask); break; case Shader::OPCODE_TEXOFFSET: TEXOFFSET(d, s0, src1, s2); break; case Shader::OPCODE_TEXLODOFFSET: TEXLODOFFSET(d, s0, src1, s2, s3.x); break; case Shader::OPCODE_TEXELFETCH: TEXELFETCH(d, s0, src1, s2.x); break; case Shader::OPCODE_TEXELFETCHOFFSET: TEXELFETCHOFFSET(d, s0, src1, s2, s3.x); break; case Shader::OPCODE_TEXGRAD: TEXGRAD(d, s0, src1, s2, s3); break; case Shader::OPCODE_TEXGRADOFFSET: TEXGRADOFFSET(d, s0, src1, s2, s3, s4); break; case Shader::OPCODE_TEXBIAS: TEXBIAS(d, s0, src1, s2.x); break; case Shader::OPCODE_TEXOFFSETBIAS: TEXOFFSETBIAS(d, s0, src1, s2, s3.x); break; case Shader::OPCODE_DISCARD: DISCARD(cMask, instruction); break; case Shader::OPCODE_DFDX: DFDX(d, s0); break; case Shader::OPCODE_DFDY: DFDY(d, s0); break; case Shader::OPCODE_FWIDTH: FWIDTH(d, s0); break; case Shader::OPCODE_BREAK: BREAK(); break; case Shader::OPCODE_BREAKC: BREAKC(s0, s1, control); break; case Shader::OPCODE_BREAKP: BREAKP(src0); break; case Shader::OPCODE_CONTINUE: CONTINUE(); break; case Shader::OPCODE_TEST: TEST(); break; case Shader::OPCODE_SCALAR: SCALAR(); break; case Shader::OPCODE_CALL: CALL(dst.label, dst.callSite); break; case Shader::OPCODE_CALLNZ: CALLNZ(dst.label, dst.callSite, src0); break; case Shader::OPCODE_ELSE: ELSE(); break; case Shader::OPCODE_ENDIF: ENDIF(); break; case Shader::OPCODE_ENDLOOP: ENDLOOP(); break; case Shader::OPCODE_ENDREP: ENDREP(); break; case Shader::OPCODE_ENDWHILE: ENDWHILE(); break; case Shader::OPCODE_ENDSWITCH: ENDSWITCH(); break; case Shader::OPCODE_IF: IF(src0); break; case Shader::OPCODE_IFC: IFC(s0, s1, control); break; case Shader::OPCODE_LABEL: LABEL(dst.index); break; case Shader::OPCODE_LOOP: LOOP(src1); break; case Shader::OPCODE_REP: REP(src0); break; case Shader::OPCODE_WHILE: WHILE(src0); break; case Shader::OPCODE_SWITCH: SWITCH(); break; case Shader::OPCODE_RET: RET(); break; case Shader::OPCODE_LEAVE: LEAVE(); break; case Shader::OPCODE_CMP: cmp(d, s0, s1, control); break; case Shader::OPCODE_ALL: all(d.x, s0); break; case Shader::OPCODE_ANY: any(d.x, s0); break; case Shader::OPCODE_NOT: bitwise_not(d, s0); break; case Shader::OPCODE_OR: bitwise_or(d, s0, s1); break; case Shader::OPCODE_XOR: bitwise_xor(d, s0, s1); break; case Shader::OPCODE_AND: bitwise_and(d, s0, s1); break; case Shader::OPCODE_EQ: equal(d, s0, s1); break; case Shader::OPCODE_NE: notEqual(d, s0, s1); break; case Shader::OPCODE_END: break; default: ASSERT(false); } if(dst.type != Shader::PARAMETER_VOID && dst.type != Shader::PARAMETER_LABEL && opcode != Shader::OPCODE_TEXKILL && opcode != Shader::OPCODE_NOP) { if(dst.saturate) { if(dst.x) d.x = Max(d.x, Float4(0.0f)); if(dst.y) d.y = Max(d.y, Float4(0.0f)); if(dst.z) d.z = Max(d.z, Float4(0.0f)); if(dst.w) d.w = Max(d.w, Float4(0.0f)); if(dst.x) d.x = Min(d.x, Float4(1.0f)); if(dst.y) d.y = Min(d.y, Float4(1.0f)); if(dst.z) d.z = Min(d.z, Float4(1.0f)); if(dst.w) d.w = Min(d.w, Float4(1.0f)); } if(instruction->isPredicated()) { Vector4f pDst; // FIXME: Rename switch(dst.type) { case Shader::PARAMETER_TEMP: if(dst.rel.type == Shader::PARAMETER_VOID) { if(dst.x) pDst.x = r[dst.index].x; if(dst.y) pDst.y = r[dst.index].y; if(dst.z) pDst.z = r[dst.index].z; if(dst.w) pDst.w = r[dst.index].w; } else if(!dst.rel.dynamic) { Int a = dst.index + relativeAddress(dst.rel); if(dst.x) pDst.x = r[a].x; if(dst.y) pDst.y = r[a].y; if(dst.z) pDst.z = r[a].z; if(dst.w) pDst.w = r[a].w; } else { Int4 a = dst.index + dynamicAddress(dst.rel); if(dst.x) pDst.x = r[a].x; if(dst.y) pDst.y = r[a].y; if(dst.z) pDst.z = r[a].z; if(dst.w) pDst.w = r[a].w; } break; case Shader::PARAMETER_COLOROUT: if(dst.rel.type == Shader::PARAMETER_VOID) { if(dst.x) pDst.x = oC[dst.index].x; if(dst.y) pDst.y = oC[dst.index].y; if(dst.z) pDst.z = oC[dst.index].z; if(dst.w) pDst.w = oC[dst.index].w; } else if(!dst.rel.dynamic) { Int a = dst.index + relativeAddress(dst.rel); if(dst.x) pDst.x = oC[a].x; if(dst.y) pDst.y = oC[a].y; if(dst.z) pDst.z = oC[a].z; if(dst.w) pDst.w = oC[a].w; } else { Int4 a = dst.index + dynamicAddress(dst.rel); if(dst.x) pDst.x = oC[a].x; if(dst.y) pDst.y = oC[a].y; if(dst.z) pDst.z = oC[a].z; if(dst.w) pDst.w = oC[a].w; } break; case Shader::PARAMETER_PREDICATE: if(dst.x) pDst.x = p0.x; if(dst.y) pDst.y = p0.y; if(dst.z) pDst.z = p0.z; if(dst.w) pDst.w = p0.w; break; case Shader::PARAMETER_DEPTHOUT: pDst.x = oDepth; break; default: ASSERT(false); } Int4 enable = enableMask(instruction); Int4 xEnable = enable; Int4 yEnable = enable; Int4 zEnable = enable; Int4 wEnable = enable; if(predicate) { unsigned char pSwizzle = instruction->predicateSwizzle; Float4 xPredicate = p0[(pSwizzle >> 0) & 0x03]; Float4 yPredicate = p0[(pSwizzle >> 2) & 0x03]; Float4 zPredicate = p0[(pSwizzle >> 4) & 0x03]; Float4 wPredicate = p0[(pSwizzle >> 6) & 0x03]; if(!instruction->predicateNot) { if(dst.x) xEnable = xEnable & As(xPredicate); if(dst.y) yEnable = yEnable & As(yPredicate); if(dst.z) zEnable = zEnable & As(zPredicate); if(dst.w) wEnable = wEnable & As(wPredicate); } else { if(dst.x) xEnable = xEnable & ~As(xPredicate); if(dst.y) yEnable = yEnable & ~As(yPredicate); if(dst.z) zEnable = zEnable & ~As(zPredicate); if(dst.w) wEnable = wEnable & ~As(wPredicate); } } if(dst.x) d.x = As(As(d.x) & xEnable); if(dst.y) d.y = As(As(d.y) & yEnable); if(dst.z) d.z = As(As(d.z) & zEnable); if(dst.w) d.w = As(As(d.w) & wEnable); if(dst.x) d.x = As(As(d.x) | (As(pDst.x) & ~xEnable)); if(dst.y) d.y = As(As(d.y) | (As(pDst.y) & ~yEnable)); if(dst.z) d.z = As(As(d.z) | (As(pDst.z) & ~zEnable)); if(dst.w) d.w = As(As(d.w) | (As(pDst.w) & ~wEnable)); } switch(dst.type) { case Shader::PARAMETER_TEMP: if(dst.rel.type == Shader::PARAMETER_VOID) { if(dst.x) r[dst.index].x = d.x; if(dst.y) r[dst.index].y = d.y; if(dst.z) r[dst.index].z = d.z; if(dst.w) r[dst.index].w = d.w; } else if(!dst.rel.dynamic) { Int a = dst.index + relativeAddress(dst.rel); if(dst.x) r[a].x = d.x; if(dst.y) r[a].y = d.y; if(dst.z) r[a].z = d.z; if(dst.w) r[a].w = d.w; } else { Int4 a = dst.index + dynamicAddress(dst.rel); if(dst.x) r.scatter_x(a, d.x); if(dst.y) r.scatter_y(a, d.y); if(dst.z) r.scatter_z(a, d.z); if(dst.w) r.scatter_w(a, d.w); } break; case Shader::PARAMETER_COLOROUT: if(dst.rel.type == Shader::PARAMETER_VOID) { broadcastColor0 = (dst.index == 0) && broadcastColor0; if(dst.x) oC[dst.index].x = d.x; if(dst.y) oC[dst.index].y = d.y; if(dst.z) oC[dst.index].z = d.z; if(dst.w) oC[dst.index].w = d.w; } else if(!dst.rel.dynamic) { broadcastColor0 = false; Int a = dst.index + relativeAddress(dst.rel); if(dst.x) oC[a].x = d.x; if(dst.y) oC[a].y = d.y; if(dst.z) oC[a].z = d.z; if(dst.w) oC[a].w = d.w; } else { broadcastColor0 = false; Int4 a = dst.index + dynamicAddress(dst.rel); if(dst.x) oC.scatter_x(a, d.x); if(dst.y) oC.scatter_y(a, d.y); if(dst.z) oC.scatter_z(a, d.z); if(dst.w) oC.scatter_w(a, d.w); } break; case Shader::PARAMETER_PREDICATE: if(dst.x) p0.x = d.x; if(dst.y) p0.y = d.y; if(dst.z) p0.z = d.z; if(dst.w) p0.w = d.w; break; case Shader::PARAMETER_DEPTHOUT: oDepth = d.x; break; default: ASSERT(false); } } } if(currentLabel != -1) { Nucleus::setInsertBlock(returnBlock); } if(broadcastColor0) { for(int i = 0; i < RENDERTARGETS; i++) { c[i] = oC[0]; } } else { for(int i = 0; i < RENDERTARGETS; i++) { c[i] = oC[i]; } } clampColor(c); if(state.depthOverride) { oDepth = Min(Max(oDepth, Float4(0.0f)), Float4(1.0f)); } } Bool PixelProgram::alphaTest(Int cMask[4]) { if(!state.alphaTestActive()) { return true; } Int aMask; if(state.transparencyAntialiasing == TRANSPARENCY_NONE) { Short4 alpha = RoundShort4(c[0].w * Float4(0x1000)); PixelRoutine::alphaTest(aMask, alpha); for(unsigned int q = 0; q < state.multiSample; q++) { cMask[q] &= aMask; } } else if(state.transparencyAntialiasing == TRANSPARENCY_ALPHA_TO_COVERAGE) { alphaToCoverage(cMask, c[0].w); } else ASSERT(false); Int pass = cMask[0]; for(unsigned int q = 1; q < state.multiSample; q++) { pass = pass | cMask[q]; } return pass != 0x0; } void PixelProgram::rasterOperation(Float4 &fog, Pointer cBuffer[4], Int &x, Int sMask[4], Int zMask[4], Int cMask[4]) { for(int index = 0; index < RENDERTARGETS; index++) { if(!state.colorWriteActive(index)) { continue; } if(!postBlendSRGB && state.writeSRGB && !isSRGB(index)) { c[index].x = linearToSRGB(c[index].x); c[index].y = linearToSRGB(c[index].y); c[index].z = linearToSRGB(c[index].z); } if(index == 0) { fogBlend(c[index], fog); } switch(state.targetFormat[index]) { case FORMAT_R5G6B5: case FORMAT_X8R8G8B8: case FORMAT_X8B8G8R8: case FORMAT_A8R8G8B8: case FORMAT_A8B8G8R8: case FORMAT_SRGB8_X8: case FORMAT_SRGB8_A8: case FORMAT_G8R8: case FORMAT_R8: case FORMAT_A8: case FORMAT_G16R16: case FORMAT_A16B16G16R16: for(unsigned int q = 0; q < state.multiSample; q++) { Pointer buffer = cBuffer[index] + q * *Pointer(data + OFFSET(DrawData, colorSliceB[index])); Vector4s color; if(state.targetFormat[index] == FORMAT_R5G6B5) { color.x = UShort4(c[index].x * Float4(0xFBFF), false); color.y = UShort4(c[index].y * Float4(0xFDFF), false); color.z = UShort4(c[index].z * Float4(0xFBFF), false); color.w = UShort4(c[index].w * Float4(0xFFFF), false); } else { color.x = convertFixed16(c[index].x, false); color.y = convertFixed16(c[index].y, false); color.z = convertFixed16(c[index].z, false); color.w = convertFixed16(c[index].w, false); } if(state.multiSampleMask & (1 << q)) { alphaBlend(index, buffer, color, x); logicOperation(index, buffer, color, x); writeColor(index, buffer, x, color, sMask[q], zMask[q], cMask[q]); } } break; case FORMAT_R32F: case FORMAT_G32R32F: case FORMAT_X32B32G32R32F: case FORMAT_A32B32G32R32F: case FORMAT_X32B32G32R32F_UNSIGNED: case FORMAT_R32I: case FORMAT_G32R32I: case FORMAT_A32B32G32R32I: case FORMAT_R32UI: case FORMAT_G32R32UI: case FORMAT_A32B32G32R32UI: case FORMAT_R16I: case FORMAT_G16R16I: case FORMAT_A16B16G16R16I: case FORMAT_R16UI: case FORMAT_G16R16UI: case FORMAT_A16B16G16R16UI: case FORMAT_R8I: case FORMAT_G8R8I: case FORMAT_A8B8G8R8I: case FORMAT_R8UI: case FORMAT_G8R8UI: case FORMAT_A8B8G8R8UI: for(unsigned int q = 0; q < state.multiSample; q++) { Pointer buffer = cBuffer[index] + q * *Pointer(data + OFFSET(DrawData, colorSliceB[index])); Vector4f color = c[index]; if(state.multiSampleMask & (1 << q)) { alphaBlend(index, buffer, color, x); writeColor(index, buffer, x, color, sMask[q], zMask[q], cMask[q]); } } break; default: ASSERT(false); } } } Vector4f PixelProgram::sampleTexture(const Src &sampler, Vector4f &uvwq, Float4 &bias, Vector4f &dsx, Vector4f &dsy, Vector4f &offset, SamplerFunction function) { Vector4f tmp; if(sampler.type == Shader::PARAMETER_SAMPLER && sampler.rel.type == Shader::PARAMETER_VOID) { tmp = sampleTexture(sampler.index, uvwq, bias, dsx, dsy, offset, function); } else { Int index = As(Float(fetchRegister(sampler).x.x)); for(int i = 0; i < TEXTURE_IMAGE_UNITS; i++) { if(shader->usesSampler(i)) { If(index == i) { tmp = sampleTexture(i, uvwq, bias, dsx, dsy, offset, function); // FIXME: When the sampler states are the same, we could use one sampler and just index the texture } } } } Vector4f c; c.x = tmp[(sampler.swizzle >> 0) & 0x3]; c.y = tmp[(sampler.swizzle >> 2) & 0x3]; c.z = tmp[(sampler.swizzle >> 4) & 0x3]; c.w = tmp[(sampler.swizzle >> 6) & 0x3]; return c; } Vector4f PixelProgram::sampleTexture(int samplerIndex, Vector4f &uvwq, Float4 &bias, Vector4f &dsx, Vector4f &dsy, Vector4f &offset, SamplerFunction function) { #if PERF_PROFILE Long texTime = Ticks(); #endif Pointer texture = data + OFFSET(DrawData, mipmap) + samplerIndex * sizeof(Texture); Vector4f c = SamplerCore(constants, state.sampler[samplerIndex]).sampleTexture(texture, uvwq.x, uvwq.y, uvwq.z, uvwq.w, bias, dsx, dsy, offset, function); #if PERF_PROFILE cycles[PERF_TEX] += Ticks() - texTime; #endif return c; } void PixelProgram::clampColor(Vector4f oC[RENDERTARGETS]) { for(int index = 0; index < RENDERTARGETS; index++) { if(!state.colorWriteActive(index) && !(index == 0 && state.alphaTestActive())) { continue; } switch(state.targetFormat[index]) { case FORMAT_NULL: break; case FORMAT_R5G6B5: case FORMAT_A8R8G8B8: case FORMAT_A8B8G8R8: case FORMAT_X8R8G8B8: case FORMAT_X8B8G8R8: case FORMAT_SRGB8_X8: case FORMAT_SRGB8_A8: case FORMAT_G8R8: case FORMAT_R8: case FORMAT_A8: case FORMAT_G16R16: case FORMAT_A16B16G16R16: oC[index].x = Max(oC[index].x, Float4(0.0f)); oC[index].x = Min(oC[index].x, Float4(1.0f)); oC[index].y = Max(oC[index].y, Float4(0.0f)); oC[index].y = Min(oC[index].y, Float4(1.0f)); oC[index].z = Max(oC[index].z, Float4(0.0f)); oC[index].z = Min(oC[index].z, Float4(1.0f)); oC[index].w = Max(oC[index].w, Float4(0.0f)); oC[index].w = Min(oC[index].w, Float4(1.0f)); break; case FORMAT_R32F: case FORMAT_G32R32F: case FORMAT_X32B32G32R32F: case FORMAT_A32B32G32R32F: case FORMAT_R32I: case FORMAT_G32R32I: case FORMAT_A32B32G32R32I: case FORMAT_R32UI: case FORMAT_G32R32UI: case FORMAT_A32B32G32R32UI: case FORMAT_R16I: case FORMAT_G16R16I: case FORMAT_A16B16G16R16I: case FORMAT_R16UI: case FORMAT_G16R16UI: case FORMAT_A16B16G16R16UI: case FORMAT_R8I: case FORMAT_G8R8I: case FORMAT_A8B8G8R8I: case FORMAT_R8UI: case FORMAT_G8R8UI: case FORMAT_A8B8G8R8UI: break; case FORMAT_X32B32G32R32F_UNSIGNED: oC[index].x = Max(oC[index].x, Float4(0.0f)); oC[index].y = Max(oC[index].y, Float4(0.0f)); oC[index].z = Max(oC[index].z, Float4(0.0f)); oC[index].w = Max(oC[index].w, Float4(0.0f)); break; default: ASSERT(false); } } } Int4 PixelProgram::enableMask(const Shader::Instruction *instruction) { if(scalar) { return Int4(0xFFFFFFFF); } Int4 enable = instruction->analysisBranch ? Int4(enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]) : Int4(0xFFFFFFFF); if(shader->containsBreakInstruction() && instruction->analysisBreak) { enable &= enableBreak; } if(shader->containsContinueInstruction() && instruction->analysisContinue) { enable &= enableContinue; } if(shader->containsLeaveInstruction() && instruction->analysisLeave) { enable &= enableLeave; } return enable; } Vector4f PixelProgram::fetchRegister(const Src &src, unsigned int offset) { Vector4f reg; unsigned int i = src.index + offset; switch(src.type) { case Shader::PARAMETER_TEMP: if(src.rel.type == Shader::PARAMETER_VOID) { reg = r[i]; } else if(!src.rel.dynamic) { reg = r[i + relativeAddress(src.rel, src.bufferIndex)]; } else { reg = r[i + dynamicAddress(src.rel)]; } break; case Shader::PARAMETER_INPUT: if(src.rel.type == Shader::PARAMETER_VOID) // Not relative { reg = v[i]; } else if(!src.rel.dynamic) { reg = v[i + relativeAddress(src.rel, src.bufferIndex)]; } else { reg = v[i + dynamicAddress(src.rel)]; } break; case Shader::PARAMETER_CONST: reg = readConstant(src, offset); break; case Shader::PARAMETER_TEXTURE: reg = v[2 + i]; break; case Shader::PARAMETER_MISCTYPE: if(src.index == Shader::VPosIndex) reg = vPos; if(src.index == Shader::VFaceIndex) reg = vFace; break; case Shader::PARAMETER_SAMPLER: if(src.rel.type == Shader::PARAMETER_VOID) { reg.x = As(Int4(i)); } else if(src.rel.type == Shader::PARAMETER_TEMP) { reg.x = As(Int4(i) + As(r[src.rel.index].x)); } return reg; case Shader::PARAMETER_PREDICATE: return reg; // Dummy case Shader::PARAMETER_VOID: return reg; // Dummy case Shader::PARAMETER_FLOAT4LITERAL: // This is used for all literal types, and since Reactor doesn't guarantee // preserving the bit pattern of float constants, we must construct them // as integer constants and bitcast. reg.x = As(Int4(src.integer[0])); reg.y = As(Int4(src.integer[1])); reg.z = As(Int4(src.integer[2])); reg.w = As(Int4(src.integer[3])); break; case Shader::PARAMETER_CONSTINT: return reg; // Dummy case Shader::PARAMETER_CONSTBOOL: return reg; // Dummy case Shader::PARAMETER_LOOP: return reg; // Dummy case Shader::PARAMETER_COLOROUT: if(src.rel.type == Shader::PARAMETER_VOID) // Not relative { reg = oC[i]; } else if(!src.rel.dynamic) { reg = oC[i + relativeAddress(src.rel, src.bufferIndex)]; } else { reg = oC[i + dynamicAddress(src.rel)]; } break; case Shader::PARAMETER_DEPTHOUT: reg.x = oDepth; break; default: ASSERT(false); } const Float4 &x = reg[(src.swizzle >> 0) & 0x3]; const Float4 &y = reg[(src.swizzle >> 2) & 0x3]; const Float4 &z = reg[(src.swizzle >> 4) & 0x3]; const Float4 &w = reg[(src.swizzle >> 6) & 0x3]; Vector4f mod; switch(src.modifier) { case Shader::MODIFIER_NONE: mod.x = x; mod.y = y; mod.z = z; mod.w = w; break; case Shader::MODIFIER_NEGATE: mod.x = -x; mod.y = -y; mod.z = -z; mod.w = -w; break; case Shader::MODIFIER_ABS: mod.x = Abs(x); mod.y = Abs(y); mod.z = Abs(z); mod.w = Abs(w); break; case Shader::MODIFIER_ABS_NEGATE: mod.x = -Abs(x); mod.y = -Abs(y); mod.z = -Abs(z); mod.w = -Abs(w); break; case Shader::MODIFIER_NOT: mod.x = As(As(x) ^ Int4(0xFFFFFFFF)); mod.y = As(As(y) ^ Int4(0xFFFFFFFF)); mod.z = As(As(z) ^ Int4(0xFFFFFFFF)); mod.w = As(As(w) ^ Int4(0xFFFFFFFF)); break; default: ASSERT(false); } return mod; } RValue> PixelProgram::uniformAddress(int bufferIndex, unsigned int index) { if(bufferIndex == -1) { return data + OFFSET(DrawData, ps.c[index]); } else { return *Pointer>(data + OFFSET(DrawData, ps.u[bufferIndex])) + index; } } RValue> PixelProgram::uniformAddress(int bufferIndex, unsigned int index, Int& offset) { return uniformAddress(bufferIndex, index) + offset * sizeof(float4); } Vector4f PixelProgram::readConstant(const Src &src, unsigned int offset) { Vector4f c; unsigned int i = src.index + offset; if(src.rel.type == Shader::PARAMETER_VOID) // Not relative { c.x = c.y = c.z = c.w = *Pointer(uniformAddress(src.bufferIndex, i)); c.x = c.x.xxxx; c.y = c.y.yyyy; c.z = c.z.zzzz; c.w = c.w.wwww; if(shader->containsDefineInstruction()) // Constant may be known at compile time { for(size_t j = 0; j < shader->getLength(); j++) { const Shader::Instruction &instruction = *shader->getInstruction(j); if(instruction.opcode == Shader::OPCODE_DEF) { if(instruction.dst.index == i) { c.x = Float4(instruction.src[0].value[0]); c.y = Float4(instruction.src[0].value[1]); c.z = Float4(instruction.src[0].value[2]); c.w = Float4(instruction.src[0].value[3]); break; } } } } } else if(!src.rel.dynamic || src.rel.type == Shader::PARAMETER_LOOP) { Int a = relativeAddress(src.rel, src.bufferIndex); c.x = c.y = c.z = c.w = *Pointer(uniformAddress(src.bufferIndex, i, a)); c.x = c.x.xxxx; c.y = c.y.yyyy; c.z = c.z.zzzz; c.w = c.w.wwww; } else { int component = src.rel.swizzle & 0x03; Float4 a; switch(src.rel.type) { case Shader::PARAMETER_TEMP: a = r[src.rel.index][component]; break; case Shader::PARAMETER_INPUT: a = v[src.rel.index][component]; break; case Shader::PARAMETER_OUTPUT: a = oC[src.rel.index][component]; break; case Shader::PARAMETER_CONST: a = *Pointer(uniformAddress(src.bufferIndex, src.rel.index) + component * sizeof(float)); break; case Shader::PARAMETER_MISCTYPE: switch(src.rel.index) { case Shader::VPosIndex: a = vPos.x; break; case Shader::VFaceIndex: a = vFace.x; break; default: ASSERT(false); } break; default: ASSERT(false); } Int4 index = Int4(i) + As(a) * Int4(src.rel.scale); if (src.bufferIndex == -1) { index = Min(As(index), UInt4(VERTEX_UNIFORM_VECTORS)); // Clamp to constant register range, c[VERTEX_UNIFORM_VECTORS] = {0, 0, 0, 0} } Int index0 = Extract(index, 0); Int index1 = Extract(index, 1); Int index2 = Extract(index, 2); Int index3 = Extract(index, 3); c.x = *Pointer(uniformAddress(src.bufferIndex, 0, index0), 16); c.y = *Pointer(uniformAddress(src.bufferIndex, 0, index1), 16); c.z = *Pointer(uniformAddress(src.bufferIndex, 0, index2), 16); c.w = *Pointer(uniformAddress(src.bufferIndex, 0, index3), 16); transpose4x4(c.x, c.y, c.z, c.w); } return c; } Int PixelProgram::relativeAddress(const Shader::Relative &rel, int bufferIndex) { ASSERT(!rel.dynamic); if(rel.type == Shader::PARAMETER_TEMP) { return As(Extract(r[rel.index].x, 0)) * rel.scale; } else if(rel.type == Shader::PARAMETER_INPUT) { return As(Extract(v[rel.index].x, 0)) * rel.scale; } else if(rel.type == Shader::PARAMETER_OUTPUT) { return As(Extract(oC[rel.index].x, 0)) * rel.scale; } else if(rel.type == Shader::PARAMETER_CONST) { return *Pointer(uniformAddress(bufferIndex, rel.index)) * rel.scale; } else if(rel.type == Shader::PARAMETER_LOOP) { return aL[loopDepth]; } else ASSERT(false); return 0; } Int4 PixelProgram::dynamicAddress(const Shader::Relative &rel) { int component = rel.swizzle & 0x03; Float4 a; switch(rel.type) { case Shader::PARAMETER_TEMP: a = r[rel.index][component]; break; case Shader::PARAMETER_INPUT: a = v[rel.index][component]; break; case Shader::PARAMETER_OUTPUT: a = oC[rel.index][component]; break; case Shader::PARAMETER_MISCTYPE: switch(rel.index) { case Shader::VPosIndex: a = vPos.x; break; case Shader::VFaceIndex: a = vFace.x; break; default: ASSERT(false); } break; default: ASSERT(false); } return As(a) * Int4(rel.scale); } Float4 PixelProgram::linearToSRGB(const Float4 &x) // Approximates x^(1.0/2.2) { Float4 sqrtx = Rcp_pp(RcpSqrt_pp(x)); Float4 sRGB = sqrtx * Float4(1.14f) - x * Float4(0.14f); return Min(Max(sRGB, Float4(0.0f)), Float4(1.0f)); } void PixelProgram::M3X2(Vector4f &dst, Vector4f &src0, const Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); dst.x = dot3(src0, row0); dst.y = dot3(src0, row1); } void PixelProgram::M3X3(Vector4f &dst, Vector4f &src0, const Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); Vector4f row2 = fetchRegister(src1, 2); dst.x = dot3(src0, row0); dst.y = dot3(src0, row1); dst.z = dot3(src0, row2); } void PixelProgram::M3X4(Vector4f &dst, Vector4f &src0, const Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); Vector4f row2 = fetchRegister(src1, 2); Vector4f row3 = fetchRegister(src1, 3); dst.x = dot3(src0, row0); dst.y = dot3(src0, row1); dst.z = dot3(src0, row2); dst.w = dot3(src0, row3); } void PixelProgram::M4X3(Vector4f &dst, Vector4f &src0, const Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); Vector4f row2 = fetchRegister(src1, 2); dst.x = dot4(src0, row0); dst.y = dot4(src0, row1); dst.z = dot4(src0, row2); } void PixelProgram::M4X4(Vector4f &dst, Vector4f &src0, const Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); Vector4f row2 = fetchRegister(src1, 2); Vector4f row3 = fetchRegister(src1, 3); dst.x = dot4(src0, row0); dst.y = dot4(src0, row1); dst.z = dot4(src0, row2); dst.w = dot4(src0, row3); } void PixelProgram::TEX(Vector4f &dst, Vector4f &src0, const Src &src1, bool project, bool bias) { if(project) { Vector4f proj; Float4 rw = reciprocal(src0.w); proj.x = src0.x * rw; proj.y = src0.y * rw; proj.z = src0.z * rw; dst = sampleTexture(src1, proj, src0.x, (src0), (src0), (src0), Implicit); } else { dst = sampleTexture(src1, src0, src0.x, (src0), (src0), (src0), bias ? Bias : Implicit); } } void PixelProgram::TEXOFFSET(Vector4f &dst, Vector4f &src0, const Src &src1, Vector4f &offset) { dst = sampleTexture(src1, src0, (src0.x), (src0), (src0), offset, {Implicit, Offset}); } void PixelProgram::TEXLODOFFSET(Vector4f &dst, Vector4f &src0, const Src &src1, Vector4f &offset, Float4 &lod) { dst = sampleTexture(src1, src0, lod, (src0), (src0), offset, {Lod, Offset}); } void PixelProgram::TEXBIAS(Vector4f &dst, Vector4f &src0, const Src &src1, Float4 &bias) { dst = sampleTexture(src1, src0, bias, (src0), (src0), (src0), Bias); } void PixelProgram::TEXOFFSETBIAS(Vector4f &dst, Vector4f &src0, const Src &src1, Vector4f &offset, Float4 &bias) { dst = sampleTexture(src1, src0, bias, (src0), (src0), offset, {Bias, Offset}); } void PixelProgram::TEXELFETCH(Vector4f &dst, Vector4f &src0, const Src& src1, Float4 &lod) { dst = sampleTexture(src1, src0, lod, (src0), (src0), (src0), Fetch); } void PixelProgram::TEXELFETCHOFFSET(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &offset, Float4 &lod) { dst = sampleTexture(src1, src0, lod, (src0), (src0), offset, {Fetch, Offset}); } void PixelProgram::TEXGRAD(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &dsx, Vector4f &dsy) { dst = sampleTexture(src1, src0, (src0.x), dsx, dsy, (src0), Grad); } void PixelProgram::TEXGRADOFFSET(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &dsx, Vector4f &dsy, Vector4f &offset) { dst = sampleTexture(src1, src0, (src0.x), dsx, dsy, offset, {Grad, Offset}); } void PixelProgram::TEXLOD(Vector4f &dst, Vector4f &src0, const Src &src1, Float4 &lod) { dst = sampleTexture(src1, src0, lod, (src0), (src0), (src0), Lod); } void PixelProgram::TEXSIZE(Vector4f &dst, Float4 &lod, const Src &src1) { bool uniformSampler = (src1.type == Shader::PARAMETER_SAMPLER && src1.rel.type == Shader::PARAMETER_VOID); Int offset = uniformSampler ? src1.index * sizeof(Texture) : As(Float(fetchRegister(src1).x.x)) * sizeof(Texture); Pointer texture = data + OFFSET(DrawData, mipmap) + offset; dst = SamplerCore::textureSize(texture, lod); } void PixelProgram::TEXKILL(Int cMask[4], Vector4f &src, unsigned char mask) { Int kill = -1; if(mask & 0x1) kill &= SignMask(CmpNLT(src.x, Float4(0.0f))); if(mask & 0x2) kill &= SignMask(CmpNLT(src.y, Float4(0.0f))); if(mask & 0x4) kill &= SignMask(CmpNLT(src.z, Float4(0.0f))); if(mask & 0x8) kill &= SignMask(CmpNLT(src.w, Float4(0.0f))); // FIXME: Dynamic branching affects TEXKILL? // if(shader->containsDynamicBranching()) // { // kill = ~SignMask(enableMask()); // } for(unsigned int q = 0; q < state.multiSample; q++) { cMask[q] &= kill; } // FIXME: Branch to end of shader if all killed? } void PixelProgram::DISCARD(Int cMask[4], const Shader::Instruction *instruction) { Int kill = 0; if(shader->containsDynamicBranching()) { kill = ~SignMask(enableMask(instruction)); } for(unsigned int q = 0; q < state.multiSample; q++) { cMask[q] &= kill; } // FIXME: Branch to end of shader if all killed? } void PixelProgram::DFDX(Vector4f &dst, Vector4f &src) { dst.x = src.x.yyww - src.x.xxzz; dst.y = src.y.yyww - src.y.xxzz; dst.z = src.z.yyww - src.z.xxzz; dst.w = src.w.yyww - src.w.xxzz; } void PixelProgram::DFDY(Vector4f &dst, Vector4f &src) { dst.x = src.x.zwzw - src.x.xyxy; dst.y = src.y.zwzw - src.y.xyxy; dst.z = src.z.zwzw - src.z.xyxy; dst.w = src.w.zwzw - src.w.xyxy; } void PixelProgram::FWIDTH(Vector4f &dst, Vector4f &src) { // abs(dFdx(src)) + abs(dFdy(src)); dst.x = Abs(src.x.yyww - src.x.xxzz) + Abs(src.x.zwzw - src.x.xyxy); dst.y = Abs(src.y.yyww - src.y.xxzz) + Abs(src.y.zwzw - src.y.xyxy); dst.z = Abs(src.z.yyww - src.z.xxzz) + Abs(src.z.zwzw - src.z.xyxy); dst.w = Abs(src.w.yyww - src.w.xxzz) + Abs(src.w.zwzw - src.w.xyxy); } void PixelProgram::BREAK() { enableBreak = enableBreak & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; } void PixelProgram::BREAKC(Vector4f &src0, Vector4f &src1, Control control) { Int4 condition; switch(control) { case Shader::CONTROL_GT: condition = CmpNLE(src0.x, src1.x); break; case Shader::CONTROL_EQ: condition = CmpEQ(src0.x, src1.x); break; case Shader::CONTROL_GE: condition = CmpNLT(src0.x, src1.x); break; case Shader::CONTROL_LT: condition = CmpLT(src0.x, src1.x); break; case Shader::CONTROL_NE: condition = CmpNEQ(src0.x, src1.x); break; case Shader::CONTROL_LE: condition = CmpLE(src0.x, src1.x); break; default: ASSERT(false); } BREAK(condition); } void PixelProgram::BREAKP(const Src &predicateRegister) // FIXME: Factor out parts common with BREAKC { Int4 condition = As(p0[predicateRegister.swizzle & 0x3]); if(predicateRegister.modifier == Shader::MODIFIER_NOT) { condition = ~condition; } BREAK(condition); } void PixelProgram::BREAK(Int4 &condition) { condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; enableBreak = enableBreak & ~condition; } void PixelProgram::CONTINUE() { enableContinue = enableContinue & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; } void PixelProgram::TEST() { enableContinue = restoreContinue.back(); restoreContinue.pop_back(); } void PixelProgram::SCALAR() { scalar = true; } void PixelProgram::CALL(int labelIndex, int callSiteIndex) { if(!labelBlock[labelIndex]) { labelBlock[labelIndex] = Nucleus::createBasicBlock(); } if(callRetBlock[labelIndex].size() > 1) { callStack[stackIndex++] = UInt(callSiteIndex); } Int4 restoreLeave = enableLeave; Nucleus::createBr(labelBlock[labelIndex]); Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]); enableLeave = restoreLeave; } void PixelProgram::CALLNZ(int labelIndex, int callSiteIndex, const Src &src) { if(src.type == Shader::PARAMETER_CONSTBOOL) { CALLNZb(labelIndex, callSiteIndex, src); } else if(src.type == Shader::PARAMETER_PREDICATE) { CALLNZp(labelIndex, callSiteIndex, src); } else ASSERT(false); } void PixelProgram::CALLNZb(int labelIndex, int callSiteIndex, const Src &boolRegister) { Bool condition = (*Pointer(data + OFFSET(DrawData, ps.b[boolRegister.index])) != Byte(0)); // FIXME if(boolRegister.modifier == Shader::MODIFIER_NOT) { condition = !condition; } if(!labelBlock[labelIndex]) { labelBlock[labelIndex] = Nucleus::createBasicBlock(); } if(callRetBlock[labelIndex].size() > 1) { callStack[stackIndex++] = UInt(callSiteIndex); } Int4 restoreLeave = enableLeave; branch(condition, labelBlock[labelIndex], callRetBlock[labelIndex][callSiteIndex]); Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]); enableLeave = restoreLeave; } void PixelProgram::CALLNZp(int labelIndex, int callSiteIndex, const Src &predicateRegister) { Int4 condition = As(p0[predicateRegister.swizzle & 0x3]); if(predicateRegister.modifier == Shader::MODIFIER_NOT) { condition = ~condition; } condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; if(!labelBlock[labelIndex]) { labelBlock[labelIndex] = Nucleus::createBasicBlock(); } if(callRetBlock[labelIndex].size() > 1) { callStack[stackIndex++] = UInt(callSiteIndex); } enableIndex++; enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition; Int4 restoreLeave = enableLeave; Bool notAllFalse = SignMask(condition) != 0; branch(notAllFalse, labelBlock[labelIndex], callRetBlock[labelIndex][callSiteIndex]); Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]); enableIndex--; enableLeave = restoreLeave; } void PixelProgram::ELSE() { ifDepth--; BasicBlock *falseBlock = ifFalseBlock[ifDepth]; BasicBlock *endBlock = Nucleus::createBasicBlock(); if(isConditionalIf[ifDepth]) { Int4 condition = ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] & enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; Bool notAllFalse = SignMask(condition) != 0; branch(notAllFalse, falseBlock, endBlock); enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] & enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; } else { Nucleus::createBr(endBlock); Nucleus::setInsertBlock(falseBlock); } ifFalseBlock[ifDepth] = endBlock; ifDepth++; } void PixelProgram::ENDIF() { ifDepth--; BasicBlock *endBlock = ifFalseBlock[ifDepth]; Nucleus::createBr(endBlock); Nucleus::setInsertBlock(endBlock); if(isConditionalIf[ifDepth]) { enableIndex--; } } void PixelProgram::ENDLOOP() { loopRepDepth--; aL[loopDepth] = aL[loopDepth] + increment[loopDepth]; // FIXME: += BasicBlock *testBlock = loopRepTestBlock[loopRepDepth]; BasicBlock *endBlock = loopRepEndBlock[loopRepDepth]; Nucleus::createBr(testBlock); Nucleus::setInsertBlock(endBlock); loopDepth--; enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } void PixelProgram::ENDREP() { loopRepDepth--; BasicBlock *testBlock = loopRepTestBlock[loopRepDepth]; BasicBlock *endBlock = loopRepEndBlock[loopRepDepth]; Nucleus::createBr(testBlock); Nucleus::setInsertBlock(endBlock); loopDepth--; enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } void PixelProgram::ENDWHILE() { loopRepDepth--; BasicBlock *testBlock = loopRepTestBlock[loopRepDepth]; BasicBlock *endBlock = loopRepEndBlock[loopRepDepth]; Nucleus::createBr(testBlock); Nucleus::setInsertBlock(endBlock); enableIndex--; scalar = false; } void PixelProgram::ENDSWITCH() { loopRepDepth--; BasicBlock *endBlock = loopRepEndBlock[loopRepDepth]; Nucleus::createBr(endBlock); Nucleus::setInsertBlock(endBlock); } void PixelProgram::IF(const Src &src) { if(src.type == Shader::PARAMETER_CONSTBOOL) { IFb(src); } else if(src.type == Shader::PARAMETER_PREDICATE) { IFp(src); } else { Int4 condition = As(fetchRegister(src).x); IF(condition); } } void PixelProgram::IFb(const Src &boolRegister) { ASSERT(ifDepth < 24 + 4); Bool condition = (*Pointer(data + OFFSET(DrawData, ps.b[boolRegister.index])) != Byte(0)); // FIXME if(boolRegister.modifier == Shader::MODIFIER_NOT) { condition = !condition; } BasicBlock *trueBlock = Nucleus::createBasicBlock(); BasicBlock *falseBlock = Nucleus::createBasicBlock(); branch(condition, trueBlock, falseBlock); isConditionalIf[ifDepth] = false; ifFalseBlock[ifDepth] = falseBlock; ifDepth++; } void PixelProgram::IFp(const Src &predicateRegister) { Int4 condition = As(p0[predicateRegister.swizzle & 0x3]); if(predicateRegister.modifier == Shader::MODIFIER_NOT) { condition = ~condition; } IF(condition); } void PixelProgram::IFC(Vector4f &src0, Vector4f &src1, Control control) { Int4 condition; switch(control) { case Shader::CONTROL_GT: condition = CmpNLE(src0.x, src1.x); break; case Shader::CONTROL_EQ: condition = CmpEQ(src0.x, src1.x); break; case Shader::CONTROL_GE: condition = CmpNLT(src0.x, src1.x); break; case Shader::CONTROL_LT: condition = CmpLT(src0.x, src1.x); break; case Shader::CONTROL_NE: condition = CmpNEQ(src0.x, src1.x); break; case Shader::CONTROL_LE: condition = CmpLE(src0.x, src1.x); break; default: ASSERT(false); } IF(condition); } void PixelProgram::IF(Int4 &condition) { condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; enableIndex++; enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition; BasicBlock *trueBlock = Nucleus::createBasicBlock(); BasicBlock *falseBlock = Nucleus::createBasicBlock(); Bool notAllFalse = SignMask(condition) != 0; branch(notAllFalse, trueBlock, falseBlock); isConditionalIf[ifDepth] = true; ifFalseBlock[ifDepth] = falseBlock; ifDepth++; } void PixelProgram::LABEL(int labelIndex) { if(!labelBlock[labelIndex]) { labelBlock[labelIndex] = Nucleus::createBasicBlock(); } Nucleus::setInsertBlock(labelBlock[labelIndex]); currentLabel = labelIndex; } void PixelProgram::LOOP(const Src &integerRegister) { loopDepth++; iteration[loopDepth] = *Pointer(data + OFFSET(DrawData, ps.i[integerRegister.index][0])); aL[loopDepth] = *Pointer(data + OFFSET(DrawData, ps.i[integerRegister.index][1])); increment[loopDepth] = *Pointer(data + OFFSET(DrawData, ps.i[integerRegister.index][2])); // If(increment[loopDepth] == 0) // { // increment[loopDepth] = 1; // } BasicBlock *loopBlock = Nucleus::createBasicBlock(); BasicBlock *testBlock = Nucleus::createBasicBlock(); BasicBlock *endBlock = Nucleus::createBasicBlock(); loopRepTestBlock[loopRepDepth] = testBlock; loopRepEndBlock[loopRepDepth] = endBlock; // FIXME: jump(testBlock) Nucleus::createBr(testBlock); Nucleus::setInsertBlock(testBlock); branch(iteration[loopDepth] > 0, loopBlock, endBlock); Nucleus::setInsertBlock(loopBlock); iteration[loopDepth] = iteration[loopDepth] - 1; // FIXME: -- loopRepDepth++; } void PixelProgram::REP(const Src &integerRegister) { loopDepth++; iteration[loopDepth] = *Pointer(data + OFFSET(DrawData, ps.i[integerRegister.index][0])); aL[loopDepth] = aL[loopDepth - 1]; BasicBlock *loopBlock = Nucleus::createBasicBlock(); BasicBlock *testBlock = Nucleus::createBasicBlock(); BasicBlock *endBlock = Nucleus::createBasicBlock(); loopRepTestBlock[loopRepDepth] = testBlock; loopRepEndBlock[loopRepDepth] = endBlock; // FIXME: jump(testBlock) Nucleus::createBr(testBlock); Nucleus::setInsertBlock(testBlock); branch(iteration[loopDepth] > 0, loopBlock, endBlock); Nucleus::setInsertBlock(loopBlock); iteration[loopDepth] = iteration[loopDepth] - 1; // FIXME: -- loopRepDepth++; } void PixelProgram::WHILE(const Src &temporaryRegister) { enableIndex++; BasicBlock *loopBlock = Nucleus::createBasicBlock(); BasicBlock *testBlock = Nucleus::createBasicBlock(); BasicBlock *endBlock = Nucleus::createBasicBlock(); loopRepTestBlock[loopRepDepth] = testBlock; loopRepEndBlock[loopRepDepth] = endBlock; Int4 restoreBreak = enableBreak; restoreContinue.push_back(enableContinue); // TODO: jump(testBlock) Nucleus::createBr(testBlock); Nucleus::setInsertBlock(testBlock); const Vector4f &src = fetchRegister(temporaryRegister); Int4 condition = As(src.x); condition &= enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; if(shader->containsLeaveInstruction()) condition &= enableLeave; if(shader->containsBreakInstruction()) condition &= enableBreak; enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition; Bool notAllFalse = SignMask(condition) != 0; branch(notAllFalse, loopBlock, endBlock); Nucleus::setInsertBlock(endBlock); enableBreak = restoreBreak; Nucleus::setInsertBlock(loopBlock); loopRepDepth++; scalar = false; } void PixelProgram::SWITCH() { BasicBlock *endBlock = Nucleus::createBasicBlock(); loopRepTestBlock[loopRepDepth] = nullptr; loopRepEndBlock[loopRepDepth] = endBlock; Int4 restoreBreak = enableBreak; BasicBlock *currentBlock = Nucleus::getInsertBlock(); Nucleus::setInsertBlock(endBlock); enableBreak = restoreBreak; Nucleus::setInsertBlock(currentBlock); loopRepDepth++; } void PixelProgram::RET() { if(currentLabel == -1) { returnBlock = Nucleus::createBasicBlock(); Nucleus::createBr(returnBlock); } else { BasicBlock *unreachableBlock = Nucleus::createBasicBlock(); if(callRetBlock[currentLabel].size() > 1) // Pop the return destination from the call stack { // FIXME: Encapsulate UInt index = callStack[--stackIndex]; Value *value = index.loadValue(); SwitchCases *switchCases = Nucleus::createSwitch(value, unreachableBlock, (int)callRetBlock[currentLabel].size()); for(unsigned int i = 0; i < callRetBlock[currentLabel].size(); i++) { Nucleus::addSwitchCase(switchCases, i, callRetBlock[currentLabel][i]); } } else if(callRetBlock[currentLabel].size() == 1) // Jump directly to the unique return destination { Nucleus::createBr(callRetBlock[currentLabel][0]); } else // Function isn't called { Nucleus::createBr(unreachableBlock); } Nucleus::setInsertBlock(unreachableBlock); Nucleus::createUnreachable(); } } void PixelProgram::LEAVE() { enableLeave = enableLeave & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; // FIXME: Return from function if all instances left // FIXME: Use enableLeave in other control-flow constructs } }