// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef sw_Math_hpp #define sw_Math_hpp #include "Debug.hpp" #include "Types.hpp" #include #if defined(_MSC_VER) # include #endif namespace sw { using std::abs; #undef min #undef max template inline T constexpr max(T a, T b) { return a > b ? a : b; } template inline constexpr T min(T a, T b) { return a < b ? a : b; } template inline constexpr T max(T a, T b, T c) { return max(max(a, b), c); } template inline constexpr T min(T a, T b, T c) { return min(min(a, b), c); } template inline constexpr T max(T a, T b, T c, T d) { return max(max(a, b), max(c, d)); } template inline constexpr T min(T a, T b, T c, T d) { return min(min(a, b), min(c, d)); } template destType bit_cast(const sourceType &source) { union { sourceType s; destType d; } sd; sd.s = source; return sd.d; } inline int iround(float x) { return (int)floor(x + 0.5f); // return _mm_cvtss_si32(_mm_load_ss(&x)); // FIXME: Demands SSE support } inline int ifloor(float x) { return (int)floor(x); } inline int ceilFix4(int x) { return (x + 0xF) & 0xFFFFFFF0; } inline int ceilInt4(int x) { return (x + 0xF) >> 4; } #define BITS(x) ( \ !!((x)&0x80000000) + \ !!((x)&0xC0000000) + \ !!((x)&0xE0000000) + \ !!((x)&0xF0000000) + \ !!((x)&0xF8000000) + \ !!((x)&0xFC000000) + \ !!((x)&0xFE000000) + \ !!((x)&0xFF000000) + \ !!((x)&0xFF800000) + \ !!((x)&0xFFC00000) + \ !!((x)&0xFFE00000) + \ !!((x)&0xFFF00000) + \ !!((x)&0xFFF80000) + \ !!((x)&0xFFFC0000) + \ !!((x)&0xFFFE0000) + \ !!((x)&0xFFFF0000) + \ !!((x)&0xFFFF8000) + \ !!((x)&0xFFFFC000) + \ !!((x)&0xFFFFE000) + \ !!((x)&0xFFFFF000) + \ !!((x)&0xFFFFF800) + \ !!((x)&0xFFFFFC00) + \ !!((x)&0xFFFFFE00) + \ !!((x)&0xFFFFFF00) + \ !!((x)&0xFFFFFF80) + \ !!((x)&0xFFFFFFC0) + \ !!((x)&0xFFFFFFE0) + \ !!((x)&0xFFFFFFF0) + \ !!((x)&0xFFFFFFF8) + \ !!((x)&0xFFFFFFFC) + \ !!((x)&0xFFFFFFFE) + \ !!((x)&0xFFFFFFFF)) inline unsigned long log2i(int x) { #if defined(_MSC_VER) unsigned long y; _BitScanReverse(&y, x); return y; #else return 31 - __builtin_clz(x); #endif } inline bool isPow2(int x) { return (x & -x) == x; } template inline T clamp(T x, T a, T b) { ASSERT(a <= b); if(x < a) x = a; if(x > b) x = b; return x; } inline float clamp01(float x) { return clamp(x, 0.0f, 1.0f); } // Bit-cast of a floating-point value into a two's complement integer representation. // This makes floating-point values comparable as integers. inline int32_t float_as_twos_complement(float f) { // IEEE-754 floating-point numbers are sorted by magnitude in the same way as integers, // except negative values are like one's complement integers. Convert them to two's complement. int32_t i = bit_cast(f); return (i < 0) ? (0x7FFFFFFFu - i) : i; } // 'Safe' clamping operation which always returns a value between min and max (inclusive). inline float clamp_s(float x, float min, float max) { // NaN values can't be compared directly if(float_as_twos_complement(x) < float_as_twos_complement(min)) x = min; if(float_as_twos_complement(x) > float_as_twos_complement(max)) x = max; return x; } inline int ceilPow2(int x) { int i = 1; while(i < x) { i <<= 1; } return i; } inline int floorDiv(int a, int b) { return a / b + ((a % b) >> 31); } inline int floorMod(int a, int b) { int r = a % b; return r + ((r >> 31) & b); } inline int ceilDiv(int a, int b) { return a / b - (-(a % b) >> 31); } inline int ceilMod(int a, int b) { int r = a % b; return r - ((-r >> 31) & b); } template inline unsigned int unorm(float x) { static const unsigned int max = 0xFFFFFFFF >> (32 - n); static const float maxf = static_cast(max); if(x >= 1.0f) { return max; } else if(x <= 0.0f) { return 0; } else { return static_cast(maxf * x + 0.5f); } } template inline int snorm(float x) { static const unsigned int min = 0x80000000 >> (32 - n); static const unsigned int max = 0xFFFFFFFF >> (32 - n + 1); static const float maxf = static_cast(max); static const unsigned int range = 0xFFFFFFFF >> (32 - n); if(x >= 0.0f) { if(x >= 1.0f) { return max; } else { return static_cast(maxf * x + 0.5f); } } else { if(x <= -1.0f) { return min; } else { return static_cast(maxf * x - 0.5f) & range; } } } template inline unsigned int ucast(float x) { static const unsigned int max = 0xFFFFFFFF >> (32 - n); static const float maxf = static_cast(max); if(x >= maxf) { return max; } else if(x <= 0.0f) { return 0; } else { return static_cast(x + 0.5f); } } template inline int scast(float x) { static const unsigned int min = 0x80000000 >> (32 - n); static const unsigned int max = 0xFFFFFFFF >> (32 - n + 1); static const float maxf = static_cast(max); static const float minf = static_cast(min); static const unsigned int range = 0xFFFFFFFF >> (32 - n); if(x > 0.0f) { if(x >= maxf) { return max; } else { return static_cast(x + 0.5f); } } else { if(x <= -minf) { return min; } else { return static_cast(x - 0.5f) & range; } } } inline float sRGBtoLinear(float c) { if(c <= 0.04045f) { return c / 12.92f; } else { return powf((c + 0.055f) / 1.055f, 2.4f); } } inline float linearToSRGB(float c) { if(c <= 0.0031308f) { return c * 12.92f; } else { return 1.055f * powf(c, 1.0f / 2.4f) - 0.055f; } } unsigned char sRGB8toLinear8(unsigned char value); uint64_t FNV_1a(const unsigned char *data, int size); // Fowler-Noll-Vo hash function // Round up to the next multiple of alignment template inline T align(T value, unsigned int alignment) { return ((value + alignment - 1) / alignment) * alignment; } template inline T align(T value) { return ((value + alignment - 1) / alignment) * alignment; } inline int clampToSignedInt(unsigned int x) { return static_cast(min(x, 0x7FFFFFFFu)); } // Convert floating value v to fixed point with p digits after the decimal point constexpr int toFixedPoint(float v, int p) { return static_cast(v * (1 << p)); } } // namespace sw #endif // sw_Math_hpp