// Copyright 2018 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "VkDescriptorSetLayout.hpp" #include "VkBuffer.hpp" #include "VkBufferView.hpp" #include "VkDescriptorSet.hpp" #include "VkImageView.hpp" #include "VkSampler.hpp" #include "Reactor/Reactor.hpp" #include #include #include namespace vk { static bool UsesImmutableSamplers(const VkDescriptorSetLayoutBinding &binding) { return (((binding.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) || (binding.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)) && (binding.pImmutableSamplers != nullptr)); } DescriptorSetLayout::DescriptorSetLayout(const VkDescriptorSetLayoutCreateInfo *pCreateInfo, void *mem) : flags(pCreateInfo->flags) , bindings(reinterpret_cast(mem)) { // The highest binding number determines the size of the direct-indexed array. bindingsArraySize = 0; for(uint32_t i = 0; i < pCreateInfo->bindingCount; i++) { bindingsArraySize = std::max(bindingsArraySize, pCreateInfo->pBindings[i].binding + 1); } uint8_t *immutableSamplersStorage = static_cast(mem) + bindingsArraySize * sizeof(Binding); // pCreateInfo->pBindings[] can have gaps in the binding numbers, so first initialize the entire bindings array. // "Bindings that are not specified have a descriptorCount and stageFlags of zero, and the value of descriptorType is undefined." for(uint32_t i = 0; i < bindingsArraySize; i++) { bindings[i].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER; bindings[i].descriptorCount = 0; bindings[i].immutableSamplers = nullptr; } for(uint32_t i = 0; i < pCreateInfo->bindingCount; i++) { const auto &srcBinding = pCreateInfo->pBindings[i]; auto &dstBinding = bindings[srcBinding.binding]; dstBinding.descriptorType = srcBinding.descriptorType; dstBinding.descriptorCount = srcBinding.descriptorCount; if(UsesImmutableSamplers(srcBinding)) { size_t immutableSamplersSize = dstBinding.descriptorCount * sizeof(VkSampler); dstBinding.immutableSamplers = reinterpret_cast(immutableSamplersStorage); immutableSamplersStorage += immutableSamplersSize; for(uint32_t i = 0; i < dstBinding.descriptorCount; i++) { dstBinding.immutableSamplers[i] = vk::Cast(srcBinding.pImmutableSamplers[i]); } } } uint32_t offset = 0; for(uint32_t i = 0; i < bindingsArraySize; i++) { bindings[i].offset = offset; offset += bindings[i].descriptorCount * GetDescriptorSize(bindings[i].descriptorType); } ASSERT_MSG(offset == getDescriptorSetDataSize(), "offset: %d, size: %d", int(offset), int(getDescriptorSetDataSize())); } void DescriptorSetLayout::destroy(const VkAllocationCallbacks *pAllocator) { vk::deallocate(bindings, pAllocator); // This allocation also contains pImmutableSamplers } size_t DescriptorSetLayout::ComputeRequiredAllocationSize(const VkDescriptorSetLayoutCreateInfo *pCreateInfo) { uint32_t bindingsArraySize = 0; uint32_t immutableSamplerCount = 0; for(uint32_t i = 0; i < pCreateInfo->bindingCount; i++) { bindingsArraySize = std::max(bindingsArraySize, pCreateInfo->pBindings[i].binding + 1); if(UsesImmutableSamplers(pCreateInfo->pBindings[i])) { immutableSamplerCount += pCreateInfo->pBindings[i].descriptorCount; } } return bindingsArraySize * sizeof(Binding) + immutableSamplerCount * sizeof(VkSampler); } uint32_t DescriptorSetLayout::GetDescriptorSize(VkDescriptorType type) { switch(type) { case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: return static_cast(sizeof(SampledImageDescriptor)); case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: return static_cast(sizeof(StorageImageDescriptor)); case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: return static_cast(sizeof(BufferDescriptor)); default: UNSUPPORTED("Unsupported Descriptor Type: %d", int(type)); return 0; } } bool DescriptorSetLayout::IsDescriptorDynamic(VkDescriptorType type) { return type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC; } size_t DescriptorSetLayout::getDescriptorSetAllocationSize() const { // vk::DescriptorSet has a header with a pointer to the layout. return sw::align(OFFSET(DescriptorSet, data) + getDescriptorSetDataSize()); } size_t DescriptorSetLayout::getDescriptorSetDataSize() const { size_t size = 0; for(uint32_t i = 0; i < bindingsArraySize; i++) { size += bindings[i].descriptorCount * GetDescriptorSize(bindings[i].descriptorType); } return size; } void DescriptorSetLayout::initialize(DescriptorSet *descriptorSet) { ASSERT(descriptorSet->header.layout == nullptr); // Use a pointer to this descriptor set layout as the descriptor set's header descriptorSet->header.layout = this; uint8_t *mem = descriptorSet->data; for(uint32_t i = 0; i < bindingsArraySize; i++) { size_t descriptorSize = GetDescriptorSize(bindings[i].descriptorType); if(bindings[i].immutableSamplers) { for(uint32_t j = 0; j < bindings[i].descriptorCount; j++) { SampledImageDescriptor *imageSamplerDescriptor = reinterpret_cast(mem); imageSamplerDescriptor->updateSampler(bindings[i].immutableSamplers[j]); mem += descriptorSize; } } else { mem += bindings[i].descriptorCount * descriptorSize; } } } uint32_t DescriptorSetLayout::getBindingOffset(uint32_t bindingNumber) const { ASSERT(bindingNumber < bindingsArraySize); return bindings[bindingNumber].offset; } uint32_t DescriptorSetLayout::getDescriptorCount(uint32_t bindingNumber) const { ASSERT(bindingNumber < bindingsArraySize); return bindings[bindingNumber].descriptorCount; } uint32_t DescriptorSetLayout::getDynamicDescriptorCount() const { uint32_t count = 0; for(size_t i = 0; i < bindingsArraySize; i++) { if(IsDescriptorDynamic(bindings[i].descriptorType)) { count += bindings[i].descriptorCount; } } return count; } uint32_t DescriptorSetLayout::getDynamicOffsetIndex(uint32_t bindingNumber) const { ASSERT(bindingNumber < bindingsArraySize); ASSERT(IsDescriptorDynamic(bindings[bindingNumber].descriptorType)); uint32_t index = 0; for(uint32_t i = 0; i < bindingNumber; i++) { if(IsDescriptorDynamic(bindings[i].descriptorType)) { index += bindings[i].descriptorCount; } } return index; } VkDescriptorType DescriptorSetLayout::getDescriptorType(uint32_t bindingNumber) const { ASSERT(bindingNumber < bindingsArraySize); return bindings[bindingNumber].descriptorType; } uint8_t *DescriptorSetLayout::getDescriptorPointer(DescriptorSet *descriptorSet, uint32_t bindingNumber, uint32_t arrayElement, uint32_t count, size_t *typeSize) const { ASSERT(bindingNumber < bindingsArraySize); *typeSize = GetDescriptorSize(bindings[bindingNumber].descriptorType); size_t byteOffset = bindings[bindingNumber].offset + (*typeSize * arrayElement); ASSERT(((*typeSize * count) + byteOffset) <= getDescriptorSetDataSize()); // Make sure the operation will not go out of bounds return &descriptorSet->data[byteOffset]; } void SampledImageDescriptor::updateSampler(const vk::Sampler *newSampler) { memcpy(reinterpret_cast(&sampler), newSampler, sizeof(sampler)); } void DescriptorSetLayout::WriteDescriptorSet(Device *device, DescriptorSet *dstSet, VkDescriptorUpdateTemplateEntry const &entry, char const *src) { DescriptorSetLayout *dstLayout = dstSet->header.layout; auto &binding = dstLayout->bindings[entry.dstBinding]; ASSERT(dstLayout); ASSERT(binding.descriptorType == entry.descriptorType); size_t typeSize = 0; uint8_t *memToWrite = dstLayout->getDescriptorPointer(dstSet, entry.dstBinding, entry.dstArrayElement, entry.descriptorCount, &typeSize); ASSERT(reinterpret_cast(memToWrite) % 16 == 0); // Each descriptor must be 16-byte aligned. if(entry.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) { SampledImageDescriptor *sampledImage = reinterpret_cast(memToWrite); for(uint32_t i = 0; i < entry.descriptorCount; i++) { auto update = reinterpret_cast(src + entry.offset + entry.stride * i); // "All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those with a // descriptorCount of zero, must all either use immutable samplers or must all not use immutable samplers." if(!binding.immutableSamplers) { sampledImage[i].updateSampler(vk::Cast(update->sampler)); } sampledImage[i].device = device; } } else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) { SampledImageDescriptor *sampledImage = reinterpret_cast(memToWrite); for(uint32_t i = 0; i < entry.descriptorCount; i++) { auto update = reinterpret_cast(src + entry.offset + entry.stride * i); auto bufferView = vk::Cast(*update); sampledImage[i].type = VK_IMAGE_VIEW_TYPE_1D; sampledImage[i].imageViewId = bufferView->id; constexpr VkComponentMapping identityMapping = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; sampledImage[i].swizzle = ResolveComponentMapping(identityMapping, bufferView->getFormat()); sampledImage[i].format = bufferView->getFormat(); auto numElements = bufferView->getElementCount(); sampledImage[i].width = numElements; sampledImage[i].height = 1; sampledImage[i].depth = 1; sampledImage[i].mipLevels = 1; sampledImage[i].sampleCount = 1; sampledImage[i].texture.widthWidthHeightHeight = sw::float4(static_cast(numElements), static_cast(numElements), 1, 1); sampledImage[i].texture.width = sw::float4(static_cast(numElements)); sampledImage[i].texture.height = sw::float4(1); sampledImage[i].texture.depth = sw::float4(1); sampledImage[i].device = device; sw::Mipmap &mipmap = sampledImage[i].texture.mipmap[0]; mipmap.buffer = bufferView->getPointer(); mipmap.width[0] = mipmap.width[1] = mipmap.width[2] = mipmap.width[3] = numElements; mipmap.height[0] = mipmap.height[1] = mipmap.height[2] = mipmap.height[3] = 1; mipmap.depth[0] = mipmap.depth[1] = mipmap.depth[2] = mipmap.depth[3] = 1; mipmap.pitchP.x = mipmap.pitchP.y = mipmap.pitchP.z = mipmap.pitchP.w = numElements; mipmap.sliceP.x = mipmap.sliceP.y = mipmap.sliceP.z = mipmap.sliceP.w = 0; mipmap.onePitchP[0] = mipmap.onePitchP[2] = 1; mipmap.onePitchP[1] = mipmap.onePitchP[3] = 0; } } else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || entry.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE) { SampledImageDescriptor *sampledImage = reinterpret_cast(memToWrite); for(uint32_t i = 0; i < entry.descriptorCount; i++) { auto *update = reinterpret_cast(src + entry.offset + entry.stride * i); vk::ImageView *imageView = vk::Cast(update->imageView); Format format = imageView->getFormat(ImageView::SAMPLING); sw::Texture *texture = &sampledImage[i].texture; if(entry.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) { // "All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those with a // descriptorCount of zero, must all either use immutable samplers or must all not use immutable samplers." if(!binding.immutableSamplers) { sampledImage[i].updateSampler(vk::Cast(update->sampler)); } } const auto &extent = imageView->getMipLevelExtent(0); sampledImage[i].imageViewId = imageView->id; sampledImage[i].width = extent.width; sampledImage[i].height = extent.height; sampledImage[i].depth = imageView->getDepthOrLayerCount(0); sampledImage[i].mipLevels = imageView->getSubresourceRange().levelCount; sampledImage[i].sampleCount = imageView->getSampleCount(); sampledImage[i].type = imageView->getType(); sampledImage[i].swizzle = imageView->getComponentMapping(); sampledImage[i].format = format; sampledImage[i].device = device; sampledImage[i].memoryOwner = imageView; auto &subresourceRange = imageView->getSubresourceRange(); if(format.isYcbcrFormat()) { ASSERT(subresourceRange.levelCount == 1); // YCbCr images can only have one level, so we can store parameters for the // different planes in the descriptor's mipmap levels instead. const int level = 0; VkOffset3D offset = { 0, 0, 0 }; texture->mipmap[0].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_0_BIT, level, 0, ImageView::SAMPLING); texture->mipmap[1].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_1_BIT, level, 0, ImageView::SAMPLING); if(format.getAspects() & VK_IMAGE_ASPECT_PLANE_2_BIT) { texture->mipmap[2].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_2_BIT, level, 0, ImageView::SAMPLING); } VkExtent2D extent = imageView->getMipLevelExtent(0); int width = extent.width; int height = extent.height; int pitchP0 = imageView->rowPitchBytes(VK_IMAGE_ASPECT_PLANE_0_BIT, level, ImageView::SAMPLING) / imageView->getFormat(VK_IMAGE_ASPECT_PLANE_0_BIT).bytes(); // Write plane 0 parameters to mipmap level 0. WriteTextureLevelInfo(texture, 0, width, height, 1, pitchP0, 0, 0, 0); // Plane 2, if present, has equal parameters to plane 1, so we use mipmap level 1 for both. int pitchP1 = imageView->rowPitchBytes(VK_IMAGE_ASPECT_PLANE_1_BIT, level, ImageView::SAMPLING) / imageView->getFormat(VK_IMAGE_ASPECT_PLANE_1_BIT).bytes(); WriteTextureLevelInfo(texture, 1, width / 2, height / 2, 1, pitchP1, 0, 0, 0); } else { for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++) { int level = sw::clamp(mipmapLevel, 0, (int)subresourceRange.levelCount - 1); // Level within the image view VkImageAspectFlagBits aspect = static_cast(imageView->getSubresourceRange().aspectMask); sw::Mipmap &mipmap = texture->mipmap[mipmapLevel]; if((imageView->getType() == VK_IMAGE_VIEW_TYPE_CUBE) || (imageView->getType() == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)) { // Obtain the pointer to the corner of the level including the border, for seamless sampling. // This is taken into account in the sampling routine, which can't handle negative texel coordinates. VkOffset3D offset = { -1, -1, 0 }; mipmap.buffer = imageView->getOffsetPointer(offset, aspect, level, 0, ImageView::SAMPLING); } else { VkOffset3D offset = { 0, 0, 0 }; mipmap.buffer = imageView->getOffsetPointer(offset, aspect, level, 0, ImageView::SAMPLING); } VkExtent2D extent = imageView->getMipLevelExtent(level); int width = extent.width; int height = extent.height; int layerCount = imageView->getSubresourceRange().layerCount; int depth = imageView->getDepthOrLayerCount(level); int bytes = format.bytes(); int pitchP = imageView->rowPitchBytes(aspect, level, ImageView::SAMPLING) / bytes; int sliceP = (layerCount > 1 ? imageView->layerPitchBytes(aspect, ImageView::SAMPLING) : imageView->slicePitchBytes(aspect, level, ImageView::SAMPLING)) / bytes; int samplePitchP = imageView->getMipLevelSize(aspect, level, ImageView::SAMPLING) / bytes; int sampleMax = imageView->getSampleCount() - 1; WriteTextureLevelInfo(texture, mipmapLevel, width, height, depth, pitchP, sliceP, samplePitchP, sampleMax); } } } } else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE || entry.descriptorType == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) { auto storageImage = reinterpret_cast(memToWrite); for(uint32_t i = 0; i < entry.descriptorCount; i++) { auto *update = reinterpret_cast(src + entry.offset + entry.stride * i); auto *imageView = vk::Cast(update->imageView); const auto &extent = imageView->getMipLevelExtent(0); auto layerCount = imageView->getSubresourceRange().layerCount; storageImage[i].ptr = imageView->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_COLOR_BIT, 0, 0); storageImage[i].width = extent.width; storageImage[i].height = extent.height; storageImage[i].depth = imageView->getDepthOrLayerCount(0); storageImage[i].rowPitchBytes = imageView->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); storageImage[i].samplePitchBytes = imageView->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); storageImage[i].slicePitchBytes = layerCount > 1 ? imageView->layerPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT) : imageView->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); storageImage[i].sampleCount = imageView->getSampleCount(); storageImage[i].sizeInBytes = static_cast(imageView->getSizeInBytes()); storageImage[i].memoryOwner = imageView; if(imageView->getFormat().isStencil()) { storageImage[i].stencilPtr = imageView->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, 0); storageImage[i].stencilRowPitchBytes = imageView->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0); storageImage[i].stencilSamplePitchBytes = imageView->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0); storageImage[i].stencilSlicePitchBytes = (imageView->getSubresourceRange().layerCount > 1) ? imageView->layerPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT) : imageView->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0); } } } else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER) { auto *storageImage = reinterpret_cast(memToWrite); for(uint32_t i = 0; i < entry.descriptorCount; i++) { auto update = reinterpret_cast(src + entry.offset + entry.stride * i); auto bufferView = vk::Cast(*update); storageImage[i].ptr = bufferView->getPointer(); storageImage[i].width = bufferView->getElementCount(); storageImage[i].height = 1; storageImage[i].depth = 1; storageImage[i].rowPitchBytes = 0; storageImage[i].slicePitchBytes = 0; storageImage[i].samplePitchBytes = 0; storageImage[i].sampleCount = 1; storageImage[i].sizeInBytes = bufferView->getRangeInBytes(); } } else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) { auto *bufferDescriptor = reinterpret_cast(memToWrite); for(uint32_t i = 0; i < entry.descriptorCount; i++) { auto update = reinterpret_cast(src + entry.offset + entry.stride * i); auto buffer = vk::Cast(update->buffer); bufferDescriptor[i].ptr = buffer->getOffsetPointer(update->offset); bufferDescriptor[i].sizeInBytes = static_cast((update->range == VK_WHOLE_SIZE) ? buffer->getSize() - update->offset : update->range); bufferDescriptor[i].robustnessSize = static_cast(buffer->getSize() - update->offset); } } } void DescriptorSetLayout::WriteTextureLevelInfo(sw::Texture *texture, int level, int width, int height, int depth, int pitchP, int sliceP, int samplePitchP, int sampleMax) { if(level == 0) { texture->widthWidthHeightHeight[0] = static_cast(width); texture->widthWidthHeightHeight[1] = static_cast(width); texture->widthWidthHeightHeight[2] = static_cast(height); texture->widthWidthHeightHeight[3] = static_cast(height); texture->width = sw::float4(static_cast(width)); texture->height = sw::float4(static_cast(height)); texture->depth = sw::float4(static_cast(depth)); } sw::Mipmap &mipmap = texture->mipmap[level]; short halfTexelU = 0x8000 / width; short halfTexelV = 0x8000 / height; short halfTexelW = 0x8000 / depth; mipmap.uHalf = sw::short4(halfTexelU); mipmap.vHalf = sw::short4(halfTexelV); mipmap.wHalf = sw::short4(halfTexelW); mipmap.width = sw::int4(width); mipmap.height = sw::int4(height); mipmap.depth = sw::int4(depth); mipmap.onePitchP[0] = 1; mipmap.onePitchP[1] = static_cast(pitchP); mipmap.onePitchP[2] = 1; mipmap.onePitchP[3] = static_cast(pitchP); mipmap.pitchP = sw::int4(pitchP); mipmap.sliceP = sw::int4(sliceP); mipmap.samplePitchP = sw::int4(samplePitchP); mipmap.sampleMax = sw::int4(sampleMax); } void DescriptorSetLayout::WriteDescriptorSet(Device *device, const VkWriteDescriptorSet &writeDescriptorSet) { DescriptorSet *dstSet = vk::Cast(writeDescriptorSet.dstSet); VkDescriptorUpdateTemplateEntry e; e.descriptorType = writeDescriptorSet.descriptorType; e.dstBinding = writeDescriptorSet.dstBinding; e.dstArrayElement = writeDescriptorSet.dstArrayElement; e.descriptorCount = writeDescriptorSet.descriptorCount; e.offset = 0; void const *ptr = nullptr; switch(writeDescriptorSet.descriptorType) { case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: ptr = writeDescriptorSet.pTexelBufferView; e.stride = sizeof(VkBufferView); break; case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: ptr = writeDescriptorSet.pImageInfo; e.stride = sizeof(VkDescriptorImageInfo); break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: ptr = writeDescriptorSet.pBufferInfo; e.stride = sizeof(VkDescriptorBufferInfo); break; default: UNSUPPORTED("descriptor type %u", writeDescriptorSet.descriptorType); } WriteDescriptorSet(device, dstSet, e, reinterpret_cast(ptr)); } void DescriptorSetLayout::CopyDescriptorSet(const VkCopyDescriptorSet &descriptorCopies) { DescriptorSet *srcSet = vk::Cast(descriptorCopies.srcSet); DescriptorSetLayout *srcLayout = srcSet->header.layout; ASSERT(srcLayout); DescriptorSet *dstSet = vk::Cast(descriptorCopies.dstSet); DescriptorSetLayout *dstLayout = dstSet->header.layout; ASSERT(dstLayout); size_t srcTypeSize = 0; uint8_t *memToRead = srcLayout->getDescriptorPointer(srcSet, descriptorCopies.srcBinding, descriptorCopies.srcArrayElement, descriptorCopies.descriptorCount, &srcTypeSize); size_t dstTypeSize = 0; uint8_t *memToWrite = dstLayout->getDescriptorPointer(dstSet, descriptorCopies.dstBinding, descriptorCopies.dstArrayElement, descriptorCopies.descriptorCount, &dstTypeSize); ASSERT(srcTypeSize == dstTypeSize); size_t writeSize = dstTypeSize * descriptorCopies.descriptorCount; memcpy(memToWrite, memToRead, writeSize); } } // namespace vk