// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "gmock/gmock.h" #include "test/unit_spirv.h" #include "test/val/val_fixtures.h" namespace spvtools { namespace val { namespace { using ::testing::HasSubstr; using ::testing::Not; using ValidateAtomics = spvtest::ValidateBase; std::string GenerateShaderCodeImpl( const std::string& body, const std::string& capabilities_and_extensions, const std::string& definitions, const std::string& memory_model, const std::string& execution) { std::ostringstream ss; ss << R"( OpCapability Shader )"; ss << capabilities_and_extensions; ss << "OpMemoryModel Logical " << memory_model << "\n"; ss << execution; ss << R"( %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f32 = OpTypeFloat 32 %u32 = OpTypeInt 32 0 %f32vec4 = OpTypeVector %f32 4 %f32_0 = OpConstant %f32 0 %f32_1 = OpConstant %f32 1 %u32_0 = OpConstant %u32 0 %u32_1 = OpConstant %u32 1 %f32vec4_0000 = OpConstantComposite %f32vec4 %f32_0 %f32_0 %f32_0 %f32_0 %cross_device = OpConstant %u32 0 %device = OpConstant %u32 1 %workgroup = OpConstant %u32 2 %subgroup = OpConstant %u32 3 %invocation = OpConstant %u32 4 %queuefamily = OpConstant %u32 5 %relaxed = OpConstant %u32 0 %acquire = OpConstant %u32 2 %release = OpConstant %u32 4 %acquire_release = OpConstant %u32 8 %acquire_and_release = OpConstant %u32 6 %sequentially_consistent = OpConstant %u32 16 %acquire_release_uniform_workgroup = OpConstant %u32 328 %f32_ptr = OpTypePointer Workgroup %f32 %f32_var = OpVariable %f32_ptr Workgroup %u32_ptr = OpTypePointer Workgroup %u32 %u32_var = OpVariable %u32_ptr Workgroup %f32vec4_ptr = OpTypePointer Workgroup %f32vec4 %f32vec4_var = OpVariable %f32vec4_ptr Workgroup %f32_ptr_function = OpTypePointer Function %f32 )"; ss << definitions; ss << R"( %main = OpFunction %void None %func %main_entry = OpLabel )"; ss << body; ss << R"( OpReturn OpFunctionEnd)"; return ss.str(); } std::string GenerateShaderCode( const std::string& body, const std::string& capabilities_and_extensions = "", const std::string& memory_model = "GLSL450") { const std::string execution = R"( OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft )"; const std::string defintions = R"( %u64 = OpTypeInt 64 0 %s64 = OpTypeInt 64 1 %u64_1 = OpConstant %u64 1 %s64_1 = OpConstant %s64 1 %u64_ptr = OpTypePointer Workgroup %u64 %s64_ptr = OpTypePointer Workgroup %s64 %u64_var = OpVariable %u64_ptr Workgroup %s64_var = OpVariable %s64_ptr Workgroup )"; return GenerateShaderCodeImpl( body, "OpCapability Int64\n" + capabilities_and_extensions, defintions, memory_model, execution); } std::string GenerateShaderComputeCode( const std::string& body, const std::string& capabilities_and_extensions = "", const std::string& memory_model = "GLSL450") { const std::string execution = R"( OpEntryPoint GLCompute %main "main" OpExecutionMode %main LocalSize 32 1 1 )"; const std::string defintions = R"( %u64 = OpTypeInt 64 0 %s64 = OpTypeInt 64 1 %u64_1 = OpConstant %u64 1 %s64_1 = OpConstant %s64 1 %u64_ptr = OpTypePointer Workgroup %u64 %s64_ptr = OpTypePointer Workgroup %s64 %u64_var = OpVariable %u64_ptr Workgroup %s64_var = OpVariable %s64_ptr Workgroup )"; return GenerateShaderCodeImpl( body, "OpCapability Int64\n" + capabilities_and_extensions, defintions, memory_model, execution); } std::string GenerateKernelCode( const std::string& body, const std::string& capabilities_and_extensions = "") { std::ostringstream ss; ss << R"( OpCapability Addresses OpCapability Kernel OpCapability Linkage OpCapability Int64 )"; ss << capabilities_and_extensions; ss << R"( OpMemoryModel Physical32 OpenCL %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f32 = OpTypeFloat 32 %u32 = OpTypeInt 32 0 %u64 = OpTypeInt 64 0 %f32vec4 = OpTypeVector %f32 4 %f32_0 = OpConstant %f32 0 %f32_1 = OpConstant %f32 1 %u32_0 = OpConstant %u32 0 %u32_1 = OpConstant %u32 1 %u64_1 = OpConstant %u64 1 %f32vec4_0000 = OpConstantComposite %f32vec4 %f32_0 %f32_0 %f32_0 %f32_0 %cross_device = OpConstant %u32 0 %device = OpConstant %u32 1 %workgroup = OpConstant %u32 2 %subgroup = OpConstant %u32 3 %invocation = OpConstant %u32 4 %relaxed = OpConstant %u32 0 %acquire = OpConstant %u32 2 %release = OpConstant %u32 4 %acquire_release = OpConstant %u32 8 %acquire_and_release = OpConstant %u32 6 %sequentially_consistent = OpConstant %u32 16 %acquire_release_uniform_workgroup = OpConstant %u32 328 %acquire_release_atomic_counter_workgroup = OpConstant %u32 1288 %f32_ptr = OpTypePointer Workgroup %f32 %f32_var = OpVariable %f32_ptr Workgroup %u32_ptr = OpTypePointer Workgroup %u32 %u32_var = OpVariable %u32_ptr Workgroup %u64_ptr = OpTypePointer Workgroup %u64 %u64_var = OpVariable %u64_ptr Workgroup %f32vec4_ptr = OpTypePointer Workgroup %f32vec4 %f32vec4_var = OpVariable %f32vec4_ptr Workgroup %f32_ptr_function = OpTypePointer Function %f32 %f32_ptr_uniformconstant = OpTypePointer UniformConstant %f32 %f32_uc_var = OpVariable %f32_ptr_uniformconstant UniformConstant %f32_ptr_image = OpTypePointer Image %f32 %f32_im_var = OpVariable %f32_ptr_image Image %main = OpFunction %void None %func %main_entry = OpLabel )"; ss << body; ss << R"( OpReturn OpFunctionEnd)"; return ss.str(); } TEST_F(ValidateAtomics, AtomicLoadShaderSuccess) { const std::string body = R"( %val1 = OpAtomicLoad %u32 %u32_var %device %relaxed %val2 = OpAtomicLoad %u32 %u32_var %workgroup %acquire %val3 = OpAtomicLoad %u64 %u64_var %subgroup %sequentially_consistent )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicLoadKernelSuccess) { const std::string body = R"( %val1 = OpAtomicLoad %f32 %f32_var %device %relaxed %val2 = OpAtomicLoad %u32 %u32_var %workgroup %sequentially_consistent %val3 = OpAtomicLoad %u64 %u64_var %subgroup %acquire )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicLoadInt32VulkanSuccess) { const std::string body = R"( %val1 = OpAtomicLoad %u32 %u32_var %device %relaxed %val2 = OpAtomicLoad %u32 %u32_var %workgroup %acquire )"; CompileSuccessfully(GenerateShaderComputeCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateAtomics, AtomicAddIntVulkanWrongType1) { const std::string body = R"( %val1 = OpAtomicIAdd %f32 %f32_var %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicIAdd: " "expected Result Type to be int scalar type")); } TEST_F(ValidateAtomics, AtomicAddIntVulkanWrongType2) { const std::string body = R"( %val1 = OpAtomicIAdd %f32vec4 %f32vec4_var %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicIAdd: " "expected Result Type to be integer scalar type")); } TEST_F(ValidateAtomics, AtomicAddFloatVulkan) { const std::string body = R"( %val1 = OpAtomicFAddEXT %f32 %f32_var %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_CAPABILITY, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Opcode AtomicFAddEXT requires one of these capabilities: " "AtomicFloat32AddEXT AtomicFloat64AddEXT")); } TEST_F(ValidateAtomics, AtomicAddFloatVulkanWrongType1) { const std::string body = R"( %val1 = OpAtomicFAddEXT %f32vec4 %f32vec4_var %device %relaxed %f32_1 )"; const std::string extra = R"( OpCapability AtomicFloat32AddEXT OpExtension "SPV_EXT_shader_atomic_float_add" )"; CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFAddEXT: " "expected Result Type to be float scalar type")); } TEST_F(ValidateAtomics, AtomicAddFloatVulkanWrongType2) { const std::string body = R"( %val1 = OpAtomicFAddEXT %u32 %u32_var %device %relaxed %u32_1 )"; const std::string extra = R"( OpCapability AtomicFloat32AddEXT OpExtension "SPV_EXT_shader_atomic_float_add" )"; CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFAddEXT: " "expected Result Type to be float scalar type")); } TEST_F(ValidateAtomics, AtomicAddFloatVulkanWrongType3) { const std::string body = R"( %val1 = OpAtomicFAddEXT %u64 %u64_var %device %relaxed %u64_1 )"; const std::string extra = R"( OpCapability AtomicFloat32AddEXT OpExtension "SPV_EXT_shader_atomic_float_add" )"; CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFAddEXT: " "expected Result Type to be float scalar type")); } TEST_F(ValidateAtomics, AtomicAddFloatVulkanWrongCapability) { const std::string body = R"( %val1 = OpAtomicFAddEXT %f32 %f32_var %device %relaxed %f32_1 )"; const std::string extra = R"( OpCapability AtomicFloat64AddEXT OpExtension "SPV_EXT_shader_atomic_float_add" )"; CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFAddEXT: float add atomics " "require the AtomicFloat32AddEXT capability")); } TEST_F(ValidateAtomics, AtomicAddFloatVulkanSuccess) { const std::string body = R"( %val1 = OpAtomicFAddEXT %f32 %f32_var %device %relaxed %f32_1 )"; const std::string extra = R"( OpCapability AtomicFloat32AddEXT OpExtension "SPV_EXT_shader_atomic_float_add" )"; CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateAtomics, AtomicLoadFloatVulkan) { const std::string body = R"( %val1 = OpAtomicLoad %f32 %f32_var %device %relaxed %val2 = OpAtomicLoad %f32 %f32_var %workgroup %acquire )"; CompileSuccessfully(GenerateShaderComputeCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateAtomics, AtomicStoreFloatVulkan) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateAtomics, AtomicExchangeFloatVulkan) { const std::string body = R"( %val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %f32_0 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateAtomics, AtomicLoadInt64WithCapabilityVulkanSuccess) { const std::string body = R"( %val1 = OpAtomicLoad %u64 %u64_var %device %relaxed %val2 = OpAtomicLoad %u64 %u64_var %workgroup %acquire )"; CompileSuccessfully( GenerateShaderComputeCode(body, "OpCapability Int64Atomics\n"), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateAtomics, AtomicLoadInt64WithoutCapabilityVulkan) { const std::string body = R"( %val1 = OpAtomicLoad %u64 %u64_var %device %relaxed %val2 = OpAtomicLoad %u64 %u64_var %workgroup %acquire )"; CompileSuccessfully(GenerateShaderComputeCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), HasSubstr("64-bit atomics require the Int64Atomics capability")); } TEST_F(ValidateAtomics, AtomicStoreOpenCLFunctionPointerStorageTypeSuccess) { const std::string body = R"( %f32_var_function = OpVariable %f32_ptr_function Function OpAtomicStore %f32_var_function %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body), SPV_ENV_OPENCL_1_2); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_OPENCL_1_2)); } TEST_F(ValidateAtomics, AtomicStoreVulkanFunctionPointerStorageType) { const std::string body = R"( %f32_var_function = OpVariable %f32_ptr_function Function OpAtomicStore %f32_var_function %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), AnyVUID("VUID-StandaloneSpirv-None-04686")); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicStore: Vulkan spec only allows storage classes for " "atomic to be: Uniform, Workgroup, Image, StorageBuffer, or " "PhysicalStorageBuffer.")); } TEST_F(ValidateAtomics, AtomicStoreFunctionPointerStorageType) { const std::string body = R"( %f32_var_function = OpVariable %f32_ptr_function Function OpAtomicStore %f32_var_function %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicStore: Function storage class forbidden when " "the Shader capability is declared.")); } // TODO(atgoo@github.com): the corresponding check fails Vulkan CTS, // reenable once fixed. TEST_F(ValidateAtomics, DISABLED_AtomicLoadVulkanSubgroup) { const std::string body = R"( %val1 = OpAtomicLoad %u32 %u32_var %subgroup %acquire )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicLoad: in Vulkan environment memory scope is " "limited to Device, Workgroup and Invocation")); } TEST_F(ValidateAtomics, AtomicLoadVulkanRelease) { const std::string body = R"( %val1 = OpAtomicLoad %u32 %u32_var %workgroup %release )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT( getDiagnosticString(), HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics " "Release, AcquireRelease and SequentiallyConsistent")); } TEST_F(ValidateAtomics, AtomicLoadVulkanAcquireRelease) { const std::string body = R"( %val1 = OpAtomicLoad %u32 %u32_var %workgroup %acquire_release )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT( getDiagnosticString(), HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics " "Release, AcquireRelease and SequentiallyConsistent")); } TEST_F(ValidateAtomics, AtomicLoadVulkanSequentiallyConsistent) { const std::string body = R"( %val1 = OpAtomicLoad %u32 %u32_var %workgroup %sequentially_consistent )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT( getDiagnosticString(), HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics " "Release, AcquireRelease and SequentiallyConsistent")); } TEST_F(ValidateAtomics, AtomicLoadShaderFloat) { const std::string body = R"( %val1 = OpAtomicLoad %f32 %f32_var %device %relaxed )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicLoadVulkanInt64) { const std::string body = R"( %val1 = OpAtomicLoad %u64 %u64_var %device %relaxed )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT( getDiagnosticString(), HasSubstr( "AtomicLoad: 64-bit atomics require the Int64Atomics capability")); } TEST_F(ValidateAtomics, VK_KHR_shader_atomic_int64Success) { const std::string body = R"( %val1 = OpAtomicUMin %u64 %u64_var %device %relaxed %u64_1 %val2 = OpAtomicUMax %u64 %u64_var %device %relaxed %u64_1 %val3 = OpAtomicSMin %u64 %u64_var %device %relaxed %u64_1 %val4 = OpAtomicSMax %u64 %u64_var %device %relaxed %u64_1 %val5 = OpAtomicAnd %u64 %u64_var %device %relaxed %u64_1 %val6 = OpAtomicOr %u64 %u64_var %device %relaxed %u64_1 %val7 = OpAtomicXor %u64 %u64_var %device %relaxed %u64_1 %val8 = OpAtomicIAdd %u64 %u64_var %device %relaxed %u64_1 %val9 = OpAtomicExchange %u64 %u64_var %device %relaxed %u64_1 %val10 = OpAtomicCompareExchange %u64 %u64_var %device %relaxed %relaxed %u64_1 %u64_1 %val11 = OpAtomicUMin %s64 %s64_var %device %relaxed %s64_1 %val12 = OpAtomicUMax %s64 %s64_var %device %relaxed %s64_1 %val13 = OpAtomicSMin %s64 %s64_var %device %relaxed %s64_1 %val14 = OpAtomicSMax %s64 %s64_var %device %relaxed %s64_1 %val15 = OpAtomicAnd %s64 %s64_var %device %relaxed %s64_1 %val16 = OpAtomicOr %s64 %s64_var %device %relaxed %s64_1 %val17 = OpAtomicXor %s64 %s64_var %device %relaxed %s64_1 %val18 = OpAtomicIAdd %s64 %s64_var %device %relaxed %s64_1 %val19 = OpAtomicExchange %s64 %s64_var %device %relaxed %s64_1 %val20 = OpAtomicCompareExchange %s64 %s64_var %device %relaxed %relaxed %s64_1 %s64_1 %val21 = OpAtomicLoad %u64 %u64_var %device %relaxed %val22 = OpAtomicLoad %s64 %s64_var %device %relaxed OpAtomicStore %u64_var %device %relaxed %u64_1 OpAtomicStore %s64_var %device %relaxed %s64_1 )"; CompileSuccessfully(GenerateShaderCode(body, "OpCapability Int64Atomics\n"), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateAtomics, VK_KHR_shader_atomic_int64MissingCapability) { const std::string body = R"( %val1 = OpAtomicUMin %u64 %u64_var %device %relaxed %u64_1 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT( getDiagnosticString(), HasSubstr( "AtomicUMin: 64-bit atomics require the Int64Atomics capability")); } TEST_F(ValidateAtomics, AtomicLoadWrongResultType) { const std::string body = R"( %val1 = OpAtomicLoad %f32vec4 %f32vec4_var %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicLoad: " "expected Result Type to be int or float scalar type")); } TEST_F(ValidateAtomics, AtomicLoadWrongPointerType) { const std::string body = R"( %val1 = OpAtomicLoad %f32 %f32_ptr %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand 27[%_ptr_Workgroup_float] cannot be a type")); } TEST_F(ValidateAtomics, AtomicLoadWrongPointerDataType) { const std::string body = R"( %val1 = OpAtomicLoad %u32 %f32_var %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicLoad: " "expected Pointer to point to a value of type Result Type")); } TEST_F(ValidateAtomics, AtomicLoadWrongScopeType) { const std::string body = R"( %val1 = OpAtomicLoad %f32 %f32_var %f32_1 %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicLoad: expected scope to be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicLoadWrongMemorySemanticsType) { const std::string body = R"( %val1 = OpAtomicLoad %f32 %f32_var %device %u64_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicLoad: expected Memory Semantics to be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicStoreKernelSuccess) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 OpAtomicStore %u32_var %subgroup %release %u32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicStoreShaderSuccess) { const std::string body = R"( OpAtomicStore %u32_var %device %release %u32_1 OpAtomicStore %u32_var %subgroup %sequentially_consistent %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicStoreVulkanSuccess) { const std::string body = R"( OpAtomicStore %u32_var %device %release %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateAtomics, AtomicStoreVulkanAcquire) { const std::string body = R"( OpAtomicStore %u32_var %device %acquire %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT( getDiagnosticString(), HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics " "Acquire, AcquireRelease and SequentiallyConsistent")); } TEST_F(ValidateAtomics, AtomicStoreVulkanAcquireRelease) { const std::string body = R"( OpAtomicStore %u32_var %device %acquire_release %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT( getDiagnosticString(), HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics " "Acquire, AcquireRelease and SequentiallyConsistent")); } TEST_F(ValidateAtomics, AtomicStoreVulkanSequentiallyConsistent) { const std::string body = R"( OpAtomicStore %u32_var %device %sequentially_consistent %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT( getDiagnosticString(), HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics " "Acquire, AcquireRelease and SequentiallyConsistent")); } TEST_F(ValidateAtomics, AtomicStoreWrongPointerType) { const std::string body = R"( OpAtomicStore %f32_1 %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicStore: expected Pointer to be of type OpTypePointer")); } TEST_F(ValidateAtomics, AtomicStoreWrongPointerDataType) { const std::string body = R"( OpAtomicStore %f32vec4_var %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicStore: " "expected Pointer to be a pointer to int or float scalar " "type")); } TEST_F(ValidateAtomics, AtomicStoreWrongPointerStorageTypeForOpenCL) { const std::string body = R"( OpAtomicStore %f32_im_var %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_OPENCL_1_2)); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicStore: storage class must be Function, Workgroup, " "CrossWorkGroup or Generic in the OpenCL environment.")); } TEST_F(ValidateAtomics, AtomicStoreWrongPointerStorageType) { const std::string body = R"( OpAtomicStore %f32_uc_var %device %relaxed %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicStore: storage class forbidden by universal " "validation rules.")); } TEST_F(ValidateAtomics, AtomicStoreWrongScopeType) { const std::string body = R"( OpAtomicStore %f32_var %f32_1 %relaxed %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicStore: expected scope to be a 32-bit int\n " "OpAtomicStore %28 %float_1 %uint_0_1 %float_1\n")); } TEST_F(ValidateAtomics, AtomicStoreWrongMemorySemanticsType) { const std::string body = R"( OpAtomicStore %f32_var %device %f32_1 %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicStore: expected Memory Semantics to be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicStoreWrongValueType) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %u32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicStore: " "expected Value type and the type pointed to by Pointer to " "be the same")); } TEST_F(ValidateAtomics, AtomicExchangeShaderSuccess) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val2 = OpAtomicExchange %u32 %u32_var %device %relaxed %u32_0 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicExchangeKernelSuccess) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %f32_0 OpAtomicStore %u32_var %device %relaxed %u32_1 %val4 = OpAtomicExchange %u32 %u32_var %device %relaxed %u32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicExchangeShaderFloat) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %f32_0 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicExchangeWrongResultType) { const std::string body = R"( OpStore %f32vec4_var %f32vec4_0000 %val2 = OpAtomicExchange %f32vec4 %f32vec4_var %device %relaxed %f32vec4_0000 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicExchange: " "expected Result Type to be int or float scalar type")); } TEST_F(ValidateAtomics, AtomicExchangeWrongPointerType) { const std::string body = R"( %val2 = OpAtomicExchange %f32 %f32vec4_ptr %device %relaxed %f32vec4_0000 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand 33[%_ptr_Workgroup_v4float] cannot be a " "type")); } TEST_F(ValidateAtomics, AtomicExchangeWrongPointerDataType) { const std::string body = R"( OpStore %f32vec4_var %f32vec4_0000 %val2 = OpAtomicExchange %f32 %f32vec4_var %device %relaxed %f32vec4_0000 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicExchange: " "expected Pointer to point to a value of type Result Type")); } TEST_F(ValidateAtomics, AtomicExchangeWrongScopeType) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicExchange %f32 %f32_var %f32_1 %relaxed %f32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicExchange: expected scope to be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicExchangeWrongMemorySemanticsType) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicExchange %f32 %f32_var %device %f32_1 %f32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "AtomicExchange: expected Memory Semantics to be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicExchangeWrongValueType) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %u32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicExchange: " "expected Value to be of type Result Type")); } TEST_F(ValidateAtomics, AtomicCompareExchangeShaderSuccess) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val2 = OpAtomicCompareExchange %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicCompareExchangeKernelSuccess) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1 OpAtomicStore %u32_var %device %relaxed %u32_1 %val4 = OpAtomicCompareExchange %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicCompareExchangeShaderFloat) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val1 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchange: " "expected Result Type to be int scalar type")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWrongResultType) { const std::string body = R"( OpStore %f32vec4_var %f32vec4_0000 %val2 = OpAtomicCompareExchange %f32vec4 %f32vec4_var %device %relaxed %relaxed %f32vec4_0000 %f32vec4_0000 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchange: " "expected Result Type to be int or float scalar type")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWrongPointerType) { const std::string body = R"( %val2 = OpAtomicCompareExchange %f32 %f32vec4_ptr %device %relaxed %relaxed %f32vec4_0000 %f32vec4_0000 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand 33[%_ptr_Workgroup_v4float] cannot be a " "type")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWrongPointerDataType) { const std::string body = R"( OpStore %f32vec4_var %f32vec4_0000 %val2 = OpAtomicCompareExchange %f32 %f32vec4_var %device %relaxed %relaxed %f32_0 %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicCompareExchange: " "expected Pointer to point to a value of type Result Type")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWrongScopeType) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicCompareExchange %f32 %f32_var %f32_1 %relaxed %relaxed %f32_0 %f32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchange: expected scope to be a 32-bit " "int")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWrongMemorySemanticsType1) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicCompareExchange %f32 %f32_var %device %f32_1 %relaxed %f32_0 %f32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchange: expected Memory Semantics to " "be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWrongMemorySemanticsType2) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %f32_1 %f32_0 %f32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchange: expected Memory Semantics to " "be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicCompareExchangeUnequalRelease) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %release %f32_0 %f32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchange: Memory Semantics Release and " "AcquireRelease cannot be used for operand Unequal")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWrongValueType) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %u32_0 %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchange: " "expected Value to be of type Result Type")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWrongComparatorType) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %u32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchange: " "expected Comparator to be of type Result Type")); } TEST_F(ValidateAtomics, AtomicCompareExchangeWeakSuccess) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val4 = OpAtomicCompareExchangeWeak %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicCompareExchangeWeakWrongResultType) { const std::string body = R"( OpAtomicStore %f32_var %device %relaxed %f32_1 %val2 = OpAtomicCompareExchangeWeak %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicCompareExchangeWeak: " "expected Result Type to be int scalar type")); } TEST_F(ValidateAtomics, AtomicArithmeticsSuccess) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release %val2 = OpAtomicIDecrement %u32 %u32_var %device %acquire_release %val3 = OpAtomicIAdd %u32 %u32_var %device %acquire_release %u32_1 %val4 = OpAtomicISub %u32 %u32_var %device %acquire_release %u32_1 %val5 = OpAtomicUMin %u32 %u32_var %device %acquire_release %u32_1 %val6 = OpAtomicUMax %u32 %u32_var %device %acquire_release %u32_1 %val7 = OpAtomicSMin %u32 %u32_var %device %sequentially_consistent %u32_1 %val8 = OpAtomicSMax %u32 %u32_var %device %sequentially_consistent %u32_1 %val9 = OpAtomicAnd %u32 %u32_var %device %sequentially_consistent %u32_1 %val10 = OpAtomicOr %u32 %u32_var %device %sequentially_consistent %u32_1 %val11 = OpAtomicXor %u32 %u32_var %device %sequentially_consistent %u32_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicFlagsSuccess) { const std::string body = R"( OpAtomicFlagClear %u32_var %device %release %val1 = OpAtomicFlagTestAndSet %bool %u32_var %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongResultType) { const std::string body = R"( %val1 = OpAtomicFlagTestAndSet %u32 %u32_var %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFlagTestAndSet: " "expected Result Type to be bool scalar type")); } TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotPointer) { const std::string body = R"( %val1 = OpAtomicFlagTestAndSet %bool %u32_1 %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFlagTestAndSet: " "expected Pointer to be of type OpTypePointer")); } TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotIntPointer) { const std::string body = R"( %val1 = OpAtomicFlagTestAndSet %bool %f32_var %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicFlagTestAndSet: " "expected Pointer to point to a value of 32-bit int type")); } TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotInt32Pointer) { const std::string body = R"( %val1 = OpAtomicFlagTestAndSet %bool %u64_var %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicFlagTestAndSet: " "expected Pointer to point to a value of 32-bit int type")); } TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongScopeType) { const std::string body = R"( %val1 = OpAtomicFlagTestAndSet %bool %u32_var %u64_1 %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicFlagTestAndSet: expected scope to be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongMemorySemanticsType) { const std::string body = R"( %val1 = OpAtomicFlagTestAndSet %bool %u32_var %device %u64_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFlagTestAndSet: " "expected Memory Semantics to be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicFlagClearAcquire) { const std::string body = R"( OpAtomicFlagClear %u32_var %device %acquire )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Memory Semantics Acquire and AcquireRelease cannot be " "used with AtomicFlagClear")); } TEST_F(ValidateAtomics, AtomicFlagClearNotPointer) { const std::string body = R"( OpAtomicFlagClear %u32_1 %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFlagClear: " "expected Pointer to be of type OpTypePointer")); } TEST_F(ValidateAtomics, AtomicFlagClearNotIntPointer) { const std::string body = R"( OpAtomicFlagClear %f32_var %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicFlagClear: " "expected Pointer to point to a value of 32-bit int type")); } TEST_F(ValidateAtomics, AtomicFlagClearNotInt32Pointer) { const std::string body = R"( OpAtomicFlagClear %u64_var %device %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicFlagClear: " "expected Pointer to point to a value of 32-bit int type")); } TEST_F(ValidateAtomics, AtomicFlagClearWrongScopeType) { const std::string body = R"( OpAtomicFlagClear %u32_var %u64_1 %relaxed )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicFlagClear: expected scope to be a 32-bit " "int\n OpAtomicFlagClear %30 %ulong_1 %uint_0_1\n")); } TEST_F(ValidateAtomics, AtomicFlagClearWrongMemorySemanticsType) { const std::string body = R"( OpAtomicFlagClear %u32_var %device %u64_1 )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "AtomicFlagClear: expected Memory Semantics to be a 32-bit int")); } TEST_F(ValidateAtomics, AtomicIIncrementAcquireAndRelease) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_and_release )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicIIncrement: Memory Semantics can have at most " "one of the following bits set: Acquire, Release, " "AcquireRelease or SequentiallyConsistent")); } TEST_F(ValidateAtomics, AtomicUniformMemorySemanticsShader) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_uniform_workgroup )"; CompileSuccessfully(GenerateShaderCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicUniformMemorySemanticsKernel) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_uniform_workgroup )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicIIncrement: Memory Semantics UniformMemory " "requires capability Shader")); } // Lack of the AtomicStorage capability is intentionally ignored, see // https://github.com/KhronosGroup/glslang/issues/1618 for the reasoning why. TEST_F(ValidateAtomics, AtomicCounterMemorySemanticsNoCapability) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_atomic_counter_workgroup )"; CompileSuccessfully(GenerateKernelCode(body)); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, AtomicCounterMemorySemanticsWithCapability) { const std::string body = R"( OpAtomicStore %u32_var %device %relaxed %u32_1 %val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_atomic_counter_workgroup )"; CompileSuccessfully(GenerateKernelCode(body, "OpCapability AtomicStorage\n")); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicLoad) { const std::string body = R"( %ld = OpAtomicLoad %u32 %u32_var %workgroup %sequentially_consistent )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicStore) { const std::string body = R"( OpAtomicStore %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicExchange) { const std::string body = R"( %ex = OpAtomicExchange %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicCompareExchangeEqual) { const std::string body = R"( %ex = OpAtomicCompareExchange %u32 %u32_var %workgroup %sequentially_consistent %relaxed %u32_0 %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicCompareExchangeUnequal) { const std::string body = R"( %ex = OpAtomicCompareExchange %u32 %u32_var %workgroup %relaxed %sequentially_consistent %u32_0 %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicIIncrement) { const std::string body = R"( %inc = OpAtomicIIncrement %u32 %u32_var %workgroup %sequentially_consistent )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicIDecrement) { const std::string body = R"( %dec = OpAtomicIDecrement %u32 %u32_var %workgroup %sequentially_consistent )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicIAdd) { const std::string body = R"( %add = OpAtomicIAdd %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicISub) { const std::string body = R"( %sub = OpAtomicISub %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicSMin) { const std::string body = R"( %min = OpAtomicSMin %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicUMin) { const std::string body = R"( %min = OpAtomicUMin %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicSMax) { const std::string body = R"( %max = OpAtomicSMax %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicUMax) { const std::string body = R"( %max = OpAtomicUMax %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicAnd) { const std::string body = R"( %and = OpAtomicAnd %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicOr) { const std::string body = R"( %or = OpAtomicOr %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicXor) { const std::string body = R"( %xor = OpAtomicXor %u32 %u32_var %workgroup %sequentially_consistent %u32_0 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT(getDiagnosticString(), HasSubstr("SequentiallyConsistent memory semantics cannot be " "used with the VulkanKHR memory model.")); } TEST_F(ValidateAtomics, OutputMemoryKHRRequiresVulkanMemoryModelKHR) { const std::string text = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %1 "func" OpExecutionMode %1 OriginUpperLeft %2 = OpTypeVoid %3 = OpTypeInt 32 0 %semantics = OpConstant %3 4100 %5 = OpTypeFunction %2 %workgroup = OpConstant %3 2 %ptr = OpTypePointer Workgroup %3 %var = OpVariable %ptr Workgroup %1 = OpFunction %2 None %5 %7 = OpLabel OpAtomicStore %var %workgroup %semantics %workgroup OpReturn OpFunctionEnd )"; CompileSuccessfully(text); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicStore: Memory Semantics OutputMemoryKHR " "requires capability VulkanMemoryModelKHR")); } TEST_F(ValidateAtomics, MakeAvailableKHRRequiresVulkanMemoryModelKHR) { const std::string text = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %1 "func" OpExecutionMode %1 OriginUpperLeft %2 = OpTypeVoid %3 = OpTypeInt 32 0 %semantics = OpConstant %3 8196 %5 = OpTypeFunction %2 %workgroup = OpConstant %3 2 %ptr = OpTypePointer Workgroup %3 %var = OpVariable %ptr Workgroup %1 = OpFunction %2 None %5 %7 = OpLabel OpAtomicStore %var %workgroup %semantics %workgroup OpReturn OpFunctionEnd )"; CompileSuccessfully(text); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicStore: Memory Semantics MakeAvailableKHR " "requires capability VulkanMemoryModelKHR")); } TEST_F(ValidateAtomics, MakeVisibleKHRRequiresVulkanMemoryModelKHR) { const std::string text = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %1 "func" OpExecutionMode %1 OriginUpperLeft %2 = OpTypeVoid %3 = OpTypeInt 32 0 %semantics = OpConstant %3 16386 %5 = OpTypeFunction %2 %workgroup = OpConstant %3 2 %ptr = OpTypePointer Workgroup %3 %var = OpVariable %ptr Workgroup %1 = OpFunction %2 None %5 %7 = OpLabel %ld = OpAtomicLoad %3 %var %workgroup %semantics OpReturn OpFunctionEnd )"; CompileSuccessfully(text); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicLoad: Memory Semantics MakeVisibleKHR requires " "capability VulkanMemoryModelKHR")); } TEST_F(ValidateAtomics, MakeAvailableKHRRequiresReleaseSemantics) { const std::string text = R"( OpCapability Shader OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical VulkanKHR OpEntryPoint Fragment %1 "func" OpExecutionMode %1 OriginUpperLeft %2 = OpTypeVoid %3 = OpTypeInt 32 0 %semantics = OpConstant %3 8448 %5 = OpTypeFunction %2 %workgroup = OpConstant %3 2 %ptr = OpTypePointer Workgroup %3 %var = OpVariable %ptr Workgroup %1 = OpFunction %2 None %5 %7 = OpLabel OpAtomicStore %var %workgroup %semantics %workgroup OpReturn OpFunctionEnd )"; CompileSuccessfully(text, SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicStore: MakeAvailableKHR Memory Semantics also requires " "either Release or AcquireRelease Memory Semantics")); } TEST_F(ValidateAtomics, MakeVisibleKHRRequiresAcquireSemantics) { const std::string text = R"( OpCapability Shader OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical VulkanKHR OpEntryPoint Fragment %1 "func" OpExecutionMode %1 OriginUpperLeft %2 = OpTypeVoid %3 = OpTypeInt 32 0 %semantics = OpConstant %3 16640 %5 = OpTypeFunction %2 %workgroup = OpConstant %3 2 %ptr = OpTypePointer Workgroup %3 %var = OpVariable %ptr Workgroup %1 = OpFunction %2 None %5 %7 = OpLabel %ld = OpAtomicLoad %3 %var %workgroup %semantics OpReturn OpFunctionEnd )"; CompileSuccessfully(text, SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT( getDiagnosticString(), HasSubstr("AtomicLoad: MakeVisibleKHR Memory Semantics also requires " "either Acquire or AcquireRelease Memory Semantics")); } TEST_F(ValidateAtomics, MakeAvailableKHRRequiresStorageSemantics) { const std::string text = R"( OpCapability Shader OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical VulkanKHR OpEntryPoint Fragment %1 "func" OpExecutionMode %1 OriginUpperLeft %2 = OpTypeVoid %3 = OpTypeInt 32 0 %semantics = OpConstant %3 8196 %5 = OpTypeFunction %2 %workgroup = OpConstant %3 2 %ptr = OpTypePointer Workgroup %3 %var = OpVariable %ptr Workgroup %1 = OpFunction %2 None %5 %7 = OpLabel OpAtomicStore %var %workgroup %semantics %workgroup OpReturn OpFunctionEnd )"; CompileSuccessfully(text, SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT( getDiagnosticString(), HasSubstr( "AtomicStore: expected Memory Semantics to include a storage class")); } TEST_F(ValidateAtomics, MakeVisibleKHRRequiresStorageSemantics) { const std::string text = R"( OpCapability Shader OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical VulkanKHR OpEntryPoint Fragment %1 "func" OpExecutionMode %1 OriginUpperLeft %2 = OpTypeVoid %3 = OpTypeInt 32 0 %semantics = OpConstant %3 16386 %5 = OpTypeFunction %2 %workgroup = OpConstant %3 2 %ptr = OpTypePointer Workgroup %3 %var = OpVariable %ptr Workgroup %1 = OpFunction %2 None %5 %7 = OpLabel %ld = OpAtomicLoad %3 %var %workgroup %semantics OpReturn OpFunctionEnd )"; CompileSuccessfully(text, SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT( getDiagnosticString(), HasSubstr( "AtomicLoad: expected Memory Semantics to include a storage class")); } TEST_F(ValidateAtomics, VulkanMemoryModelAllowsQueueFamilyKHR) { const std::string body = R"( %val = OpAtomicAnd %u32 %u32_var %queuefamily %relaxed %u32_1 )"; const std::string extra = R"( OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_VULKAN_1_1); EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_1)); } TEST_F(ValidateAtomics, NonVulkanMemoryModelDisallowsQueueFamilyKHR) { const std::string body = R"( %val = OpAtomicAnd %u32 %u32_var %queuefamily %relaxed %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_1); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_1)); EXPECT_THAT(getDiagnosticString(), HasSubstr("AtomicAnd: Memory Scope QueueFamilyKHR requires " "capability VulkanMemoryModelKHR\n %42 = OpAtomicAnd " "%uint %29 %uint_5 %uint_0_1 %uint_1\n")); } TEST_F(ValidateAtomics, SemanticsSpecConstantShader) { const std::string spirv = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %func "func" OpExecutionMode %func OriginUpperLeft %void = OpTypeVoid %int = OpTypeInt 32 0 %spec_const = OpSpecConstant %int 0 %workgroup = OpConstant %int 2 %ptr_int_workgroup = OpTypePointer Workgroup %int %var = OpVariable %ptr_int_workgroup Workgroup %voidfn = OpTypeFunction %void %func = OpFunction %void None %voidfn %entry = OpLabel %ld = OpAtomicLoad %int %var %workgroup %spec_const OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Memory Semantics ids must be OpConstant when Shader " "capability is present")); } TEST_F(ValidateAtomics, SemanticsSpecConstantKernel) { const std::string spirv = R"( OpCapability Kernel OpCapability Linkage OpMemoryModel Logical OpenCL %void = OpTypeVoid %int = OpTypeInt 32 0 %spec_const = OpSpecConstant %int 0 %workgroup = OpConstant %int 2 %ptr_int_workgroup = OpTypePointer Workgroup %int %var = OpVariable %ptr_int_workgroup Workgroup %voidfn = OpTypeFunction %void %func = OpFunction %void None %voidfn %entry = OpLabel %ld = OpAtomicLoad %int %var %workgroup %spec_const OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, ScopeSpecConstantShader) { const std::string spirv = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %func "func" OpExecutionMode %func OriginUpperLeft %void = OpTypeVoid %int = OpTypeInt 32 0 %spec_const = OpSpecConstant %int 0 %relaxed = OpConstant %int 0 %ptr_int_workgroup = OpTypePointer Workgroup %int %var = OpVariable %ptr_int_workgroup Workgroup %voidfn = OpTypeFunction %void %func = OpFunction %void None %voidfn %entry = OpLabel %ld = OpAtomicLoad %int %var %spec_const %relaxed OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Scope ids must be OpConstant when Shader capability is present")); } TEST_F(ValidateAtomics, ScopeSpecConstantKernel) { const std::string spirv = R"( OpCapability Kernel OpCapability Linkage OpMemoryModel Logical OpenCL %void = OpTypeVoid %int = OpTypeInt 32 0 %spec_const = OpSpecConstant %int 0 %relaxed = OpConstant %int 0 %ptr_int_workgroup = OpTypePointer Workgroup %int %var = OpVariable %ptr_int_workgroup Workgroup %voidfn = OpTypeFunction %void %func = OpFunction %void None %voidfn %entry = OpLabel %ld = OpAtomicLoad %int %var %spec_const %relaxed OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, VulkanMemoryModelDeviceScopeBad) { const std::string body = R"( %val = OpAtomicAnd %u32 %u32_var %device %relaxed %u32_1 )"; const std::string extra = R"(OpCapability VulkanMemoryModelKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT( getDiagnosticString(), HasSubstr("Use of device scope with VulkanKHR memory model requires the " "VulkanMemoryModelDeviceScopeKHR capability")); } TEST_F(ValidateAtomics, VulkanMemoryModelDeviceScopeGood) { const std::string body = R"( %val = OpAtomicAnd %u32 %u32_var %device %relaxed %u32_1 )"; const std::string extra = R"(OpCapability VulkanMemoryModelKHR OpCapability VulkanMemoryModelDeviceScopeKHR OpExtension "SPV_KHR_vulkan_memory_model" )"; CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); } TEST_F(ValidateAtomics, CompareExchangeWeakV13ValV14Good) { const std::string body = R"( %val1 = OpAtomicCompareExchangeWeak %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0 )"; CompileSuccessfully(GenerateKernelCode(body), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4)); } TEST_F(ValidateAtomics, CompareExchangeWeakV14Bad) { const std::string body = R"( %val1 = OpAtomicCompareExchangeWeak %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0 )"; CompileSuccessfully(GenerateKernelCode(body), SPV_ENV_UNIVERSAL_1_4); EXPECT_EQ(SPV_ERROR_WRONG_VERSION, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4)); EXPECT_THAT( getDiagnosticString(), HasSubstr( "AtomicCompareExchangeWeak requires SPIR-V version 1.3 or earlier")); } TEST_F(ValidateAtomics, CompareExchangeVolatileMatch) { const std::string spirv = R"( OpCapability Shader OpCapability VulkanMemoryModelKHR OpCapability Linkage OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical VulkanKHR %void = OpTypeVoid %int = OpTypeInt 32 0 %int_0 = OpConstant %int 0 %int_1 = OpConstant %int 1 %workgroup = OpConstant %int 2 %volatile = OpConstant %int 32768 %ptr_wg_int = OpTypePointer Workgroup %int %wg_var = OpVariable %ptr_wg_int Workgroup %void_fn = OpTypeFunction %void %func = OpFunction %void None %void_fn %entry = OpLabel %cmp_ex = OpAtomicCompareExchange %int %wg_var %workgroup %volatile %volatile %int_0 %int_1 OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, CompareExchangeVolatileMismatch) { const std::string spirv = R"( OpCapability Shader OpCapability VulkanMemoryModelKHR OpCapability Linkage OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical VulkanKHR %void = OpTypeVoid %int = OpTypeInt 32 0 %int_0 = OpConstant %int 0 %int_1 = OpConstant %int 1 %workgroup = OpConstant %int 2 %volatile = OpConstant %int 32768 %non_volatile = OpConstant %int 0 %ptr_wg_int = OpTypePointer Workgroup %int %wg_var = OpVariable %ptr_wg_int Workgroup %void_fn = OpTypeFunction %void %func = OpFunction %void None %void_fn %entry = OpLabel %cmp_ex = OpAtomicCompareExchange %int %wg_var %workgroup %non_volatile %volatile %int_0 %int_1 OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Volatile mask setting must match for Equal and " "Unequal memory semantics")); } TEST_F(ValidateAtomics, CompareExchangeVolatileMismatchCooperativeMatrix) { const std::string spirv = R"( OpCapability Shader OpCapability VulkanMemoryModelKHR OpCapability Linkage OpCapability CooperativeMatrixNV OpExtension "SPV_KHR_vulkan_memory_model" OpExtension "SPV_NV_cooperative_matrix" OpMemoryModel Logical VulkanKHR %void = OpTypeVoid %int = OpTypeInt 32 0 %int_0 = OpConstant %int 0 %int_1 = OpConstant %int 1 %workgroup = OpConstant %int 2 %volatile = OpSpecConstant %int 32768 %non_volatile = OpSpecConstant %int 32768 %ptr_wg_int = OpTypePointer Workgroup %int %wg_var = OpVariable %ptr_wg_int Workgroup %void_fn = OpTypeFunction %void %func = OpFunction %void None %void_fn %entry = OpLabel %cmp_ex = OpAtomicCompareExchange %int %wg_var %workgroup %volatile %non_volatile %int_0 %int_1 OpReturn OpFunctionEnd )"; // This is ok because we cannot evaluate the spec constant defaults. CompileSuccessfully(spirv); EXPECT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateAtomics, VolatileRequiresVulkanMemoryModel) { const std::string spirv = R"( OpCapability Shader OpCapability Linkage OpMemoryModel Logical GLSL450 %void = OpTypeVoid %int = OpTypeInt 32 0 %int_0 = OpConstant %int 0 %int_1 = OpConstant %int 1 %workgroup = OpConstant %int 2 %volatile = OpConstant %int 32768 %ptr_wg_int = OpTypePointer Workgroup %int %wg_var = OpVariable %ptr_wg_int Workgroup %void_fn = OpTypeFunction %void %func = OpFunction %void None %void_fn %entry = OpLabel %ld = OpAtomicLoad %int %wg_var %workgroup %volatile OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Memory Semantics Volatile requires capability " "VulkanMemoryModelKHR")); } TEST_F(ValidateAtomics, CooperativeMatrixSemanticsMustBeConstant) { const std::string spirv = R"( OpCapability Shader OpCapability Linkage OpCapability CooperativeMatrixNV OpExtension "SPV_NV_cooperative_matrix" OpMemoryModel Logical GLSL450 %void = OpTypeVoid %int = OpTypeInt 32 0 %int_0 = OpConstant %int 0 %int_1 = OpConstant %int 1 %workgroup = OpConstant %int 2 %undef = OpUndef %int %ptr_wg_int = OpTypePointer Workgroup %int %wg_var = OpVariable %ptr_wg_int Workgroup %void_fn = OpTypeFunction %void %func = OpFunction %void None %void_fn %entry = OpLabel %ld = OpAtomicLoad %int %wg_var %workgroup %undef OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Memory Semantics must be a constant instruction when " "CooperativeMatrixNV capability is present")); } } // namespace } // namespace val } // namespace spvtools