/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ // This is the operation definition file for TensorFlow Lite. #ifndef TFL_OPS #define TFL_OPS include "mlir/IR/OpBase.td" include "mlir/Interfaces/InferTypeOpInterface.td" include "mlir/Interfaces/LoopLikeInterface.td" include "mlir/Interfaces/SideEffectInterfaces.td" include "tensorflow/compiler/mlir/lite/ir/tfl_op_interfaces.td" include "tensorflow/compiler/mlir/lite/ir/tfl_structs.td" include "tensorflow/compiler/mlir/lite/quantization/quantization.td" //===----------------------------------------------------------------------===// // TFLite dialect string type - uses the TF string type as implementation //===----------------------------------------------------------------------===// def TFL_Str : Type()">, "TFLite string type">, BuildableType<"getType()">; //===----------------------------------------------------------------------===// // TFLite dialect quint8 type - uses the TF quint8 type as implementation //===----------------------------------------------------------------------===// def TFL_Quint8 : Type()">, "TFLite quint8 type">, BuildableType<"getType()">; //===----------------------------------------------------------------------===// // Activation function enum definitions. //===----------------------------------------------------------------------===// // Allowed activation function cases // These should match the ActivationFunctionType enum in TFLite schema. def TFL_AF_None : StrEnumAttrCase<"NONE">; def TFL_AF_Relu : StrEnumAttrCase<"RELU">; def TFL_AF_Relu1 : StrEnumAttrCase<"RELU_N1_TO_1">; def TFL_AF_Relu6 : StrEnumAttrCase<"RELU6">; def TFL_AF_Tanh : StrEnumAttrCase<"TANH">; def TFL_AF_Sign : StrEnumAttrCase<"SIGN_BIT">; def TFL_AFAttr : StrEnumAttr< "ActivationFunctionType", "fused activation enum", [ TFL_AF_None, TFL_AF_Relu, TFL_AF_Relu1, TFL_AF_Relu6, TFL_AF_Tanh, TFL_AF_Sign ]>; //===----------------------------------------------------------------------===// // Padding enum definitions. //===----------------------------------------------------------------------===// // Allowed padding cases // These should match the padding enum in TFLite schema. def TFL_PAD_Same : StrEnumAttrCase<"SAME">; def TFL_PAD_Valid : StrEnumAttrCase<"VALID">; def TFL_MIRRORPAD_Reflect : StrEnumAttrCase<"REFLECT">; def TFL_MIRRORPAD_Symmetric : StrEnumAttrCase<"SYMMETRIC">; def TFL_PaddingAttr : StrEnumAttr<"Padding", "padding enum", [ TFL_PAD_Same, TFL_PAD_Valid ]>; def TFL_MirrorPaddingAttr : StrEnumAttr<"Padding", "Mirror pad enum", [ TFL_MIRRORPAD_Reflect, TFL_MIRRORPAD_Symmetric ]>; //===----------------------------------------------------------------------===// // TensorType attribute definitions. //===----------------------------------------------------------------------===// // A type attribute containing the TensorType. def TensorTypeAttr : TypeAttrBase<"TensorType", "Tensor type attribute">; // A type attribute containing OpaqueElementsAttr and bytes. def OpaqueBytesAttr : ElementsAttrBase< And<[ CPred<"$_self.isa() ">, CPred<"$_self.cast().getType()" ".getElementType().isInteger(8)">, ]>, "opaque bytes attribute" > { let storageType = [{ OpaqueElementsAttr }]; let returnType = [{ OpaqueElementsAttr }]; let convertFromStorage = "$_self"; } //===----------------------------------------------------------------------===// // Derived shape attribute class. //===----------------------------------------------------------------------===// class DerivedShapeAttr : DerivedAttr<"ArrayRef", body>; class DerivedTFLiteTypeAttr : DerivedAttr<"tflite::TensorType", body, convert>; // TFL Runtime op trait predicate. class TFL_RuntimePredOpTrait : GenInternalOpTrait<"TFLRuntimeOpTrait"> { Pred tflRuntimePredicate = pred; string tflRuntimeDescription = desc; } class TFL_OperandsHaveSameShapesOrBroadcastableShape< list indices, int max_bcast_rank> : TFL_RuntimePredOpTrait<"operands do not have the same shape or " "broadcastable shapes within the rank " # max_bcast_rank, CPred<"TFL::VerifyOperandsHaveSameShapesOrBroadcastableShape(" "$_op, llvm::ArrayRef({" # !interleave(indices, ", ") # "}), " # max_bcast_rank # ")">>; // These additional types/type constraints here are used to decouple the ops // from runtime support for the ops. Prefer to use these types when defining // new TF_Ops for uniformity. // TFL Runtime type predicate. class TFL_RuntimeType { Pred tflRuntimeTypePredicate = t.predicate; string tflRuntimeTypeDescription = t.summary; } class TFL_AnyTypeOf allowedRuntimeTypes, string description = "", list allowedOpTypes = [AnyType]> : AnyTypeOf, TFL_RuntimeType>; class TFL_TensorOf allowedRuntimeTypes, list allowedOpTypes = [AnyType]> : TensorOf, TFL_RuntimeType>; class TFL_TensorOfOrNone allowedRuntimeTypes, string description = "", list allowedOpTypes = [AnyType]> : AnyTypeOf<[TFL_TensorOf, NoneType], description>, TFL_RuntimeType, NoneType]>>; class TFL_VariadicTensorOf allowedRuntimeTypes, list allowedOpTypes = [AnyType]> : Variadic>, TFL_RuntimeType>>; def TFL_Int32Or64 : SignlessIntOfWidths<[32, 64]>; def TFL_BoolTensor : TFL_TensorOf<[I1]>; def TFL_FpTensor : TFL_TensorOf<[F32]>; def TFL_I32OrI64Tensor : TFL_TensorOf<[TFL_Int32Or64]>; def TFL_I32Tensor : TFL_TensorOf<[I32]>; def TFL_I64Tensor : TFL_TensorOf<[I64]>; def TFL_Complex64Tensor : TFL_TensorOf<[Complex>]>; // TODO(jpienaar): Expand to all int types. def TFL_IntTensor : TypeAlias; class TFL_0DTensorOf allowedRuntimeTypes, list allowedOpTypes = [AnyType]> : 0DTensorOf, TFL_RuntimeType>; class TFL_1DTensorOf allowedRuntimeTypes, list allowedOpTypes = [AnyType]> : 1DTensorOf, TFL_RuntimeType>; class TFL_2DTensorOf allowedRuntimeTypes, list allowedOpTypes = [AnyType]> : 2DTensorOf, TFL_RuntimeType>; // This is used to represent the type of "ref tensors" or tensors that are // used as variables to track state. def TFL_StatefulTensor : TypeAlias; //===----------------------------------------------------------------------===// // Rank/Shape helpers. //===----------------------------------------------------------------------===// // Returns true of operand is none type. class TFL_OperandIsNoneType : CPred<"$_op.getOperand(" # i # ").getType().isa()">; class TFL_OperandIsUnrankedPred : CPred<"$_op.getOperand(" # n # ").getType().isa()">; // TODO: Some of these could be generalized and/or moved to more general // location. // Returns true if the n-th operand has unknown rank or has rank m. class TFL_OperandHasRank : PredOpTrait<"operand " # n # " is " # m # "-D", Or<[TFL_OperandIsUnrankedPred, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() == " # m>]>>; // Returns true if the n-th operand is ranked and has rank dim. class TFL_OperandHasKnownRank : And<[ CPred<"$_op.getOperand(" # n # ").getType().isa()">, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() == " # dim>]>; // True if operand n is ranked and has a rank > dim. class TFL_OperandIsRankedAndHasDimPred : And<[ CPred<"$_op.getOperand(" # n # ").getType().isa()">, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() > " # dim>]>; // Returns true if the n-th operand is ranked and has a dimension length = size // at the rank dim. class TFL_OperandDimEquals : And<[ TFL_OperandIsRankedAndHasDimPred, CPred<"$_op.getOperand(" # n # ").getType().cast()" ".getShape()[" # dim # " ] == " # size>]>; // Returns true if the n-th operand is ranked and has a dimension length <= // size at the rank dim. class TFL_OperandDimIsAtMost : And<[ TFL_OperandIsRankedAndHasDimPred, CPred<"$_op.getOperand(" # n # ").getType().cast()" ".getShape()[" # dim # " ] <= " # size>]>; // Returns true if the n-th operand has unknown rank or at least rank m. class TFL_OperandHasAtleastRank : PredOpTrait<"operand " # n # " is " # m # "-D", Or<[CPred<"$_op.getOperand(" # n # ").getType().isa()">, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() >= " # m>]>>; class TFL_OperandRankEquals1DimOfOperand : PredOpTrait<"operand " # x # "'s rank equals operand " # y # "'s size", Or<[TFL_OperandIsUnrankedPred, TFL_OperandIsUnrankedPred, CPred<"!$_op.getOperand(" # y # ").getType().cast().hasStaticShape()">, CPred<"$_op.getOperand(" # x # ").getType().cast().getRank() == " "$_op.getOperand(" # y # ").getType().cast().getShape()[0]">]>>; class TFL_Operand0DOr1ElementTensor : PredOpTrait<"operand #" # x # " is an 0-d tensor or 1-d tensor w/ 1 element", Or<[TFL_OperandHasKnownRank, And<[TFL_OperandHasKnownRank, TFL_OperandDimEquals]>]>>; // Return true if i-th dim of x-th operand is the same as j-th dim of y-th // operand or any of those operands does not have static shape. class TFL_OperandsHaveSameDims : Or<[TFL_OperandIsUnrankedPred, TFL_OperandIsUnrankedPred, CPred<"!$_op.getOperand(" # x # ").getType().cast().hasStaticShape()">, CPred<"!$_op.getOperand(" # y # ").getType().cast().hasStaticShape()">, CPred<"$_op.getOperand(" # x # ").getType().cast().getShape()[" # i # "] == " "$_op.getOperand(" # y # ").getType().cast().getShape()[" # j # "]">]>; class TFL_OperandsHaveSameDimsTrait : PredOpTrait<"dim " # i # " of operand " # x # " equals to dim " # j # " of operand " # y, TFL_OperandsHaveSameDims>; // Return true if number of elements of x-th operand is the same as j-th dim of // y-th operand or any of those operands does not have static shape. class TFL_NumElementsEqualsDim : Or<[TFL_OperandIsUnrankedPred, TFL_OperandIsUnrankedPred, CPred<"!$_op.getOperand(" # x # ").getType().cast().hasStaticShape()">, CPred<"!$_op.getOperand(" # y # ").getType().cast().hasStaticShape()">, CPred<"$_op.getOperand(" # x # ").getType().cast().getNumElements() == " "$_op.getOperand(" # y # ").getType().cast().getShape()[" # j # "]">]>; class TFL_NumElementsEqualsDimTrait : PredOpTrait<"operand " # x # " has num of elements equals to dim " # j # " of operand " # y, TFL_NumElementsEqualsDim>; // tf.uint8 and tf.quint8 are mapped to the same tflite types, so they are equal // when used as element types. class TFL_TFTypesWithSameBits : And<[ Or<[CPred<"getElementTypeOrSelf($_op.getResult(" # i # ")).isa()">, CPred<"getElementTypeOrSelf($_op.getResult(" # i # ")).isUnsignedInteger(" # num # ")">]>, Or<[CPred<"getElementTypeOrSelf($_op.getOperand(" # j # ")).isa()">, CPred<"getElementTypeOrSelf($_op.getOperand(" # j # ")).isUnsignedInteger(" # num # ")">]>]>; class TFL_TFOperandTypesWithSameBits : And<[ Or<[CPred<"getElementTypeOrSelf($_op.getOperand(" # i # ")).isa()">, CPred<"getElementTypeOrSelf($_op.getOperand(" # i # ")).isUnsignedInteger(" # num # ")">]>, Or<[CPred<"getElementTypeOrSelf($_op.getOperand(" # j # ")).isa()">, CPred<"getElementTypeOrSelf($_op.getOperand(" # j # ")).isUnsignedInteger(" # num # ")">]>]>; class TFL_OperandIsNoneOrHasRank : PredOpTrait<"operand " # n # " is " # m # "-D", Or<[ TFL_OperandIsNoneType, TFL_OperandIsUnrankedPred, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() == " # m>]>>; class TFL_OperandIsNoneOrHasRankAtMost : PredOpTrait<"operand " # n # " is at most " # m # "-D", Or<[ TFL_OperandIsNoneType, TFL_OperandIsUnrankedPred, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() <= " # m>]>>; class TFL_OperandHasRankAtMost : PredOpTrait<"operand " # n # " is at most " # m # "-D", Or<[TFL_OperandIsUnrankedPred, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() <= " # m>]>>; class TFL_OperandHasRankAtLeast : PredOpTrait<"operand " # n # " is at least " # m # "-D", Or<[TFL_OperandIsUnrankedPred, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() >= " # m>]>>; class TFL_OperandHasRankRange : PredOpTrait<"operand " # n # " has rank range [" # x # ", " # y # "]", Or<[TFL_OperandIsUnrankedPred, CPred<"$_op.getOperand(" # n # ").getType().cast().getRank() " ">= " # x # " && $_op.getOperand(" # n # ").getType().cast()." "getRank() <= " # y>]>>; def TFL_FloatNonNegative : AttrConstraint< CPred<"$_self.isa() && " "!$_self.cast().getValue().isNegative()">, "whose value is non-negative">; def TFL_BoolTrue : AttrConstraint< CPred<"$_self.isa() && $_self.cast().getValue()">, "whose value is true">; def TFL_BoolFalse : AttrConstraint< CPred<"$_self.isa() && !$_self.cast().getValue()">, "whose value is false">; class TFL_StringEqualsTo : AttrConstraint< CPred<"$_self.cast().getValue() == \"" # value # "\"">, "whose value equals to '" # value # "'">; // Ensures the array attribute's size is within the given maximum size. class TFL_ArrayMaxCount : AttrConstraint< CPred<"$_self.isa() && $_self.cast().size() <= " # n>, "whose size is at most " # n>; // Ensures the given integer attribute has the given value. class TFL_IntEqualsTo : AttrConstraint< CPred<"$_self.isa() && " "$_self.cast().getInt() == " # n>, "whose value is " # n>; // This is a quantization-aware version of TCresVTEtIsSameAsOp class TFL_TCresVTEtIsSameAsOp : And<[ TCOpResIsShapedTypePred, Or<[ TCresVTEtIsSameAsOpBase, TFL_TFTypesWithSameBits, And<[ SubstLeaves<"$_self", "getElementTypeOrSelf($_op.getOperand(" # j # "))", quant_QuantizedType.predicate>, CPred<"quant::QuantizedType::castToStorageType(" "getElementTypeOrSelf($_op.getResult(" # i # "))) == " "quant::QuantizedType::castToStorageType(" "getElementTypeOrSelf($_op.getOperand(" # j # ")))">]>]>]>; def TFL_SameFirstOperandAndFirstResultElementType : PredOpTrait<"values and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>; // This is a quantization-aware version of TCopVTEtAreSameAt class TFL_TCopVTEtAreSameAt : Or<[ TCopVTEtAreSameAt<[i, j]>, TFL_TFOperandTypesWithSameBits, And<[ SubstLeaves<"$_self", "getElementTypeOrSelf($_op.getOperand(" # j # "))", quant_QuantizedType.predicate>, CPred<"quant::QuantizedType::castToStorageType(" "getElementTypeOrSelf($_op.getOperand(" # i # "))) == " "quant::QuantizedType::castToStorageType(" "getElementTypeOrSelf($_op.getOperand(" # j # ")))">]>]>; //===----------------------------------------------------------------------===// // TFL op common constraints. //===----------------------------------------------------------------------===// class OperandsSameElementTypeConstraintBase : PredOpTrait, // Two operands' values are both quantized and their type have the same // underlying storage type. And<[ SubstLeaves<"$_self", "getElementTypeOrSelf($_op.getOperand(0))", quant_QuantizedType.predicate>, CPred<"quant::QuantizedType::castToStorageType(" "getElementTypeOrSelf($_op.getOperand(0))) == " "quant::QuantizedType::castToStorageType(" "getElementTypeOrSelf($_op.getOperand(1)))">]>]>>; // This is a constraint for most of the binary ops, e.g., add, mul, div, etc. // Binary ops lhs & rhs should have the same value type, and is capable to // compare quantization types as well. def BinaryOpSameElementTypeConstraint : OperandsSameElementTypeConstraintBase<"binary op">; // This is a constraint for most of the comparison ops, e.g., equal, not_equal, // greater, greater_equal, less, etc. Comparison ops lhs & rhs should have the // same value type, and is capable to compare quantization types as well. def ComparisonOpSameElementTypeConstraint : OperandsSameElementTypeConstraintBase<"comparison op">; //===----------------------------------------------------------------------===// // TFL common builders. //===----------------------------------------------------------------------===// def TFL_BroadcastableBinaryBuilder : OpBuilderDAG<(ins "Value":$lhs, "Value":$rhs), [{ auto resultType = OpTrait::util::getBroadcastedType(lhs.getType(), rhs.getType()); if (!resultType) mlir::emitError($_state.location, "non-broadcastable operands"); $_state.addOperands({lhs, rhs}); $_state.types.push_back(resultType); }]>; def TFL_FusedBroadcastableBinaryBuilder : OpBuilderDAG<(ins "Value":$lhs, "Value":$rhs, "StringAttr":$fusedActivationFunction), [{ buildFusedBroadcastableBinOp( &$_builder, $_state, lhs, rhs, fusedActivationFunction); }]>; def TFL_ComparisonBinaryBuilder : OpBuilderDAG<(ins "Value":$lhs, "Value":$rhs), [{ buildComparisonBinOp(&$_builder, $_state, lhs, rhs); }]>; //===----------------------------------------------------------------------===// // TFL op base class. //===----------------------------------------------------------------------===// class TFL_Op traits = []> : Op])> { // FlatBuffer generation specific information. // ------------------------------------------- // When generating the FlatBuffer output some operations have // Options (as defined in the schema). These options are effectively // the attributes of the operations (e.g., what padding is to be used // for a pooling operator). Not all operations have Options and some // operations share Options. The following attributes indicate whether // the operation has Options in the serialized FlatBuffer. // Whether the TFLite operator has options in the schema representation. bit hasOptions = 0b0; // Use to specify a custom options type for TFLite operators where // the option's name does not match the TFLite operator's name. // If no customOption is specified then Options is used if the op // hasOptions. string customOption = ?; } class TFL_ConvOp : TFL_Op, AffineQuantizedOpInterface, AffineOpCoefficient, TFL_SparseOp]> { let summary = opSummary # " operator"; let description = [{ Performs convolution operation on inputs. Inputs: `inputs[0]`: required: the input activation tensor `inputs[1]`: required: the filter weight tensor `inputs[2]`: optional: the bias tensor }]; let arguments = ( ins TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$input, TFL_TensorOf<[F32, QI8, QUI8]>:$filter, TFL_TensorOfOrNone<[F32, I32, I64]>:$bias, I32Attr:$dilation_h_factor, I32Attr:$dilation_w_factor, TFL_AFAttr:$fused_activation_function, TFL_PaddingAttr:$padding, I32Attr:$stride_h, I32Attr:$stride_w ); let results = (outs TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$output); let hasOptions = 0b1; } //===----------------------------------------------------------------------===// // TFL op definitions. //===----------------------------------------------------------------------===// def TFL_AbsOp : TFL_Op<"abs", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, SameOperandsAndResultsScale, NoQuantizableResult]> { let summary = "Absolute value operator"; let description = [{ Given a tensor `x`, this operation returns a tensor containing the absolute value of each element in `x`. For example, if x is an input element and y is an output element, this operation computes \\(y = |x|\\). }]; let arguments = (ins TFL_TensorOf<[F32, QI8, QI16]>:$x); let results = (outs TFL_TensorOf<[F32, QI8, QI16]>:$y); let hasFolder = 1; } def TFL_AddOp : TFL_Op<"add", [ TFL_RuntimePredOpTrait<"Operands do not have valid shapes", CPred<"TFL::VerifyAddOpShapeConstraints(llvm::cast($_op))">>, ResultsBroadcastableShape, NoSideEffect, Commutative]> { let summary = "Addition operator"; let description = [{ Element-wise addition operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, QI8, QUI8, QI16]>:$lhs, TFL_TensorOf<[F32, I32, QI8, QUI8, QI16]>:$rhs, TFL_AFAttr:$fused_activation_function); let results = (outs TFL_TensorOf<[F32, I32, QI8, QUI8, QI16]>:$output); let hasFolder = 1; let builders = [TFL_FusedBroadcastableBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; let hasOptions = 1; } def TFL_AddNOp : TFL_Op<"add_n", [ Commutative, NoSideEffect, SameOperandsAndResultsScale, NoQuantizableResult]> { let summary = "add_n operator"; let description = [{ Adds all input tensors element-wise. }]; let arguments = (ins TFL_VariadicTensorOf<[F32, I32]>:$inputs ); let results = (outs TFL_TensorOf<[F32, I32]>:$sum ); } def TFL_ReduceAnyOp : TFL_Op<"reduce_any", [ NoSideEffect, NoQuantizableResult]> { let summary = [{ Computes the "logical or" of elements across dimensions of a tensor. }]; let description = [{ Reduces `input` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. }]; let arguments = (ins TFL_BoolTensor:$input, TFL_I32Tensor:$reduction_indices, DefaultValuedAttr:$keep_dims ); let results = (outs TFL_BoolTensor:$output ); let hasOptions = 1; let customOption = "ReducerOptions"; } def TFL_TransposeConvOp: TFL_Op<"transpose_conv", [ NoSideEffect, TFL_OperandHasRank<0, 1>, TFL_OperandHasRank<1, 4>, TFL_OperandHasRank<2, 4>, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 2>>, AccumulatorUniformScale<3, 1, 2>, AffineQuantizedOpInterface, AffineOpCoefficient<0, 1>, TFL_SparseOp]> { let summary = "Transpose convolution operator"; let description = [{ Performs transpose convolution operation on input. }]; let arguments = (ins TFL_I32Tensor:$output_shape, TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$weights, TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$input, TFL_TensorOfOrNone<[F32, QI32, I64]>:$bias, TFL_PaddingAttr:$padding, Confined:$stride_h, Confined:$stride_w ); let results = (outs TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$output); let hasOptions = 1; let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ // AffineQuantizedOpInterface: int GetChannelDimIndex() { return 0; } int GetQuantizationDimIndex() { return 0; } // SparseOpInterface: std::vector GetSparseOperands() { return {1}; } std::vector> GetFloatBlockSize() { return {}; } std::vector> GetQuantizedBlockSize() { return {}; } }]; } def TFL_AveragePool2DOp: TFL_Op<"average_pool_2d", [NoSideEffect, SameOperandsAndResultsScale]> { let summary = "Average_pool_2d operator"; let description = [{ Performs average-pooling operation on input. }]; let arguments = ( ins TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$input, I32Attr:$filter_height, I32Attr:$filter_width, TFL_PaddingAttr:$padding, I32Attr:$stride_h, I32Attr:$stride_w, TFL_AFAttr:$fused_activation_function ); let results = (outs TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$output); let hasOptions = 1; let customOption = "Pool2DOptions"; } def TFL_ArgMaxOp : TFL_Op<"arg_max", [NoSideEffect]> { let summary = "ArgMax operator"; let description = [{ Returns the index with the largest value across dimensions of a tensor. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I8, UI8, QI8, QUI8]>:$input, TFL_I32OrI64Tensor:$dim ); let results = (outs TFL_I32OrI64Tensor:$output ); let hasOptions = 1; DerivedTFLiteTypeAttr output_type = DerivedTFLiteTypeAttr<[{ return getResult().getType().cast().getElementType(). cast().getWidth() > 32 ? tflite::TensorType_INT64 : tflite::TensorType_INT32; }], [{ TypeAttr::get(getResult().getType().cast().getElementType()) }]>; } def TFL_ArgMinOp : TFL_Op<"arg_min", [NoSideEffect]> { let summary = "ArgMin operator"; let description = [{ Returns the index with the smallest value across dimensions of a tensor. a = [1, 10, 26.9, 2.8, 166.32, 62.3] b = tf.math.argmin(input = a) c = tf.keras.backend.eval(b) }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I8, UI8, QI8, QUI8]>:$input, TFL_I32OrI64Tensor:$dim ); let results = (outs TFL_I32OrI64Tensor:$output ); let hasOptions = 1; DerivedTFLiteTypeAttr output_type = DerivedTFLiteTypeAttr<[{ return getResult().getType().cast().getElementType(). cast().getWidth() > 32 ? tflite::TensorType_INT64 : tflite::TensorType_INT32; }], [{ TypeAttr::get(getResult().getType().cast().getElementType()) }]>; } def TFL_CeilOp: TFL_Op<"ceil", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Ceil operator"; let description = [{ Returns element-wise ceil value of the input. }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); } def TFL_ConcatenationOp : TFL_Op<"concatenation", [ NoSideEffect, TFL_SameFirstOperandAndFirstResultElementType, SameOperandsAndResultsScale ]> { let summary = "Concatenation operator"; let description = [{ Concatenates tensors along one dimension }]; let arguments = ( ins TFL_VariadicTensorOf< [F32, I64, I32, I16, I8, QI8, QUI8, UI8, I1]>:$values, I32Attr:$axis, TFL_AFAttr:$fused_activation_function ); let results = (outs TFL_TensorOf< [F32, I64, I32, I16, I8, QI8, QUI8, UI8, I1]>:$output ); let hasOptions = 1; let hasFolder = 1; let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ // SameScalesOpInterface: bool RequiredSameOperandsAndResultsScale(bool sign, int bit_width) { // uint8 doesn't require same operands and results scales. bool is_uint8 = !sign && (bit_width == 8); return !is_uint8; } }]; } def TFL_ConstOp : Op { let summary = "Constant pseudo op."; let description = [{ Represents a constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead. The op is allowed to have all the same type of attributes as tf.Const does (e.g., opaque TF attributes are allowed). }]; let arguments = (ins ElementsAttr:$value); let results = (outs AnyTensor:$output); let hasFolder = 1; let builders = [ OpBuilderDAG<(ins "Attribute":$value), [{ $_state.addAttribute("value", value); $_state.addTypes(value.getType()); }]> ]; } def TFL_SparseConstOp : Op { let summary = "Sparse constant pseudo op."; let description = [{ Represents a sparse constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead. }]; let arguments = (ins ElementsAttr:$value, SparsityParameterAttr:$s_param, ElementsAttr:$compressed_data); let results = (outs AnyTensor:$output); let builders = [ OpBuilderDAG<(ins "Attribute":$value, "SparsityParameterAttr":$s_param, "Attribute":$compressed_data), [{ $_state.addTypes(value.getType()); $_state.addAttribute("value", value); $_state.addAttribute("s_param", s_param); $_state.addAttribute("compressed_data", compressed_data); }]> ]; } def TFL_ExternalConstOp : Op { let summary = "External const op."; let description = [{ External const op holds a `buffer_index` which points to a constant in the flatbuffer. }]; let arguments = (ins I32Attr:$buffer_index); let results = (outs AnyTensor:$output); } def TFL_Conv2DOp : TFL_ConvOp<"conv_2d", "Convolution", 0> { let hasCanonicalizer = 1; let extraClassDeclaration = [{ // AffineQuantizedOpInterface: int GetChannelDimIndex() { return 0; } int GetQuantizationDimIndex() { return 0; } // SparseOpInterface: std::vector GetSparseOperands() { return {1}; } std::vector> GetFloatBlockSize() { return {}; } std::vector> GetQuantizedBlockSize() { return {}; } }]; } def TFL_CosOp: TFL_Op<"cos", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Cosine operator"; let description = [{ Computes element-wise Cosine of input }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); let hasFolder = 1; } def TFL_CumsumOp: TFL_Op<"cumsum", [ NoSideEffect, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoQuantizableResult, TFL_OperandHasRank<1, 0>]> { let summary = "Cumsum operator"; let description = [{ Compute the cumulative sum of the tensor x along axis. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I64]>:$input, TFL_I32Tensor:$axis, DefaultValuedAttr:$exclusive, DefaultValuedAttr:$reverse ); let results = (outs TFL_TensorOf<[F32, I32, I64]>:$output); let hasOptions = 1; } def TFL_DepthwiseConv2DOp : TFL_ConvOp<"depthwise_conv_2d", "Depthwise-separable convolution", 3> { let arguments = ( ins TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$input, TFL_TensorOf<[F32, QI8, QUI8]>:$filter, TFL_TensorOfOrNone<[F32, I32, I64]>:$bias, I32Attr:$dilation_h_factor, I32Attr:$dilation_w_factor, TFL_AFAttr:$fused_activation_function, TFL_PaddingAttr:$padding, I32Attr:$stride_h, I32Attr:$stride_w, I32Attr:$depth_multiplier ); let hasCanonicalizer = 1; let extraClassDeclaration = [{ // AffineQuantizedOpInterface: int GetChannelDimIndex() { return 3; } int GetQuantizationDimIndex() { return 3; } // SparseOpInterface: std::vector GetSparseOperands() { return {1}; } std::vector> GetFloatBlockSize() { return {}; } std::vector> GetQuantizedBlockSize() { return {}; } }]; } def TFL_FCWO_Default : StrEnumAttrCase<"DEFAULT">; def TFL_FCWO_Shuffled4x16i8 : StrEnumAttrCase<"SHUFFLED4x16INT8">; def TFL_FullyConnectedOptionsWeightFormatAttr : StrEnumAttr<"FullyConnectedOptionsWeightsFormat", "fully connected options weights format", [ TFL_FCWO_Default, TFL_FCWO_Shuffled4x16i8 ]>; // TODO(jpienaar): Update post discussion on semantics of FC OP. def TFL_FullyConnectedOp : TFL_Op<"fully_connected", [ NoSideEffect, AccumulatorUniformScale<2, 0, 1>, AffineQuantizedOpInterface, AffineOpCoefficient<-1, 1>, TFL_SparseOp]> { let summary = "Fully connected op"; let arguments = (ins TFL_TensorOf<[F32, QI8, QUI8, QI16, QUI16]>:$input, TFL_TensorOf<[F32, QI8, QUI8, QI16]>:$filter, TFL_TensorOfOrNone<[F32, QI32, QUI32]>:$bias, TFL_AFAttr:$fused_activation_function, TFL_FullyConnectedOptionsWeightFormatAttr:$weights_format, BoolAttr:$keep_num_dims ); // Depending on the weights format, this op can have one or two outputs. let results = (outs TFL_VariadicTensorOf<[F32, QI8, QUI8, QI16, QUI16]>:$output ); let verifier = [{ return Verify(*this); }]; let hasOptions = 1; let hasCanonicalizer = 1; let hasFolder = 1; let extraClassDeclaration = [{ // AffineQuantizedOpInterface: int GetChannelDimIndex() { return 0; } int GetQuantizationDimIndex() { return -1; } // SparseOpInterface: std::vector GetSparseOperands() { return {1}; } std::vector> GetFloatBlockSize() { return {{1, 4}}; } std::vector> GetQuantizedBlockSize() { return {{1, 16}}; } }]; } def TFL_BatchMatMulOp : TFL_Op<"batch_matmul", [ NoSideEffect, TFL_OperandHasAtleastRank<0, 2>, TFL_OperandHasAtleastRank<1, 2>, PredOpTrait<"x and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, PredOpTrait<"y and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 1>>]> { let summary = "Batch Matrix Multiply Operator"; let description = [{ Performs a batched matrix multiplication on the inputs. Follows the conventions of TensorFlow BatchMatMulV2, with support for unknown dimensions in the batch dimensions and broadcasting. Inputs: `inputs[0]`: required: input LHS `inputs[1]`: required: input RHS `adjoint_lhs`: optional: Transpose LHS (default false) `adjoint_lhs`: optional: Transpose LHS (default false) }]; let arguments = (ins TFL_TensorOf<[F32, QI8, QI16]>:$x, TFL_TensorOf<[F32, QI8, QI16]>:$y, DefaultValuedAttr:$adj_x, DefaultValuedAttr:$adj_y ); let results = (outs TFL_TensorOf<[F32, QI8, QI16]>:$output ); let hasOptions = 1; } def TFL_GatherOp : TFL_Op<"gather", [ NoSideEffect, SameOperandsAndResultsScale, TFL_OperandHasAtleastRank<0, 1>, PredOpTrait<"params and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>> ]> { let summary = "Gather operator"; let description = [{ Gather slices from `params` axis `axis` according to `indices`. }]; let arguments = (ins TFL_TensorOf<[F32, I1, I8, I32, I64, TFL_Str, UI8, QI8, QUI8, QI16]>:$params, TFL_TensorOf<[I32, I64]>:$indices, I32Attr:$axis ); let builders = [ OpBuilderDAG<(ins "Value":$params, "Value":$indices, "IntegerAttr":$axis), [{ BuildGatherOp(&$_builder, $_state, params, indices, axis); }]> ]; let results = (outs TFL_TensorOf<[F32, I1, I8, I32, I64, TFL_Str, UI8, QI8, QUI8, QI16]>:$output ); let hasOptions = 1; } def TFL_GatherNdOp : TFL_Op<"gather_nd", [ NoSideEffect, PredOpTrait<"params and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>]> { let summary = "Gather_nd operator"; let description = [{ Gather slices from `params` into a Tensor with shape specified by `indices`. }]; let arguments = (ins TFL_TensorOf<[F32, I8, I16, I64, I32, UI8, TFL_Str]>:$params, TFL_I32OrI64Tensor:$indices ); let results = (outs TFL_TensorOf<[F32, I8, I16, I64, I32, UI8, TFL_Str]>:$output ); } def TFL_ScatterNdOp : TFL_Op<"scatter_nd", [ NoSideEffect, TFL_OperandHasAtleastRank<0, 1>, TFL_OperandHasAtleastRank<1, 1>, PredOpTrait<"updates and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 1>> ]> { let summary = "Scatter_nd operator"; let description = [{ Scatter `updates` into a new tensor according to `indices` }]; let arguments = (ins TFL_TensorOf<[I32]>:$indices, TFL_TensorOf<[F32, I8, I64, I32, UI8]>:$updates, TFL_1DTensorOf<[I32]>:$shape ); let results = (outs TFL_TensorOf<[F32, I8, I64, I32, UI8]>:$output ); let verifier = [{ return Verify(*this); }]; let hasOptions = 1; } // Same type check of lhs and rhs is handled by the ResultsBroadcastableShape trait. def TFL_LessEqualOp : TFL_Op<"less_equal", [ ResultsBroadcastableShape, ComparisonOpSameElementTypeConstraint, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, NoSideEffect]> { let summary = "Less_equal operator"; let description = [{ Element-wise less_equal operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8]>:$lhs, TFL_TensorOf<[F32, I32, I64, QI8, QUI8]>:$rhs); let results = (outs TFL_BoolTensor:$output); let builders = [TFL_ComparisonBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; let hasOptions = 0; } def TFL_LocalResponseNormalizationOp : TFL_Op<"local_response_normalization", [ TFL_OperandHasRank<0, 4>, SameOperandsAndResultShape, SameOperandsAndResultType, NoSideEffect, NoQuantizableResult]> { let summary = "Local Response Normalization."; let description = [{ The 4-D `input` tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within `depth_radius`. In detail, sqr_sum[a, b, c, d] = sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2) output = input / (bias + alpha * sqr_sum) ** beta For details, see [Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks). }]; let arguments = (ins TFL_FpTensor:$input, I32Attr:$radius, F32Attr:$bias, F32Attr:$alpha, F32Attr:$beta ); let results = (outs TFL_FpTensor:$output ); let hasOptions = 1; } def TFL_GreaterEqualOp : TFL_Op<"greater_equal", [ TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, ResultsBroadcastableShape, ComparisonOpSameElementTypeConstraint, NoSideEffect]> { let summary = "Greater_equal operator"; let description = [{ Element-wise greater_equal operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I64, QUI8, QI8]>:$lhs, TFL_TensorOf<[F32, I32, I64, QUI8, QI8]>:$rhs); let results = (outs TFL_BoolTensor:$output); let builders = [TFL_ComparisonBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; let hasOptions = 0; } def TFL_MatrixDiagOp : TFL_Op<"matrix_diag", [ NoSideEffect, TFL_OperandHasAtleastRank<0, 1>, PredOpTrait<"operand and result must have the same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>]> { let summary = [{ Returns a tensor with the provided diagonal and everything else padded with zeros. }]; let description = [{ Given a diagonal, returns a tensor with the diagonal and everything else padded with zeros. Assume diagonal has k dimensions `[I, J, K, ..., N]`, then the output is a tensor of rank `k+1` with dimensions `[I, J, K, ..., N, N]` where: `output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n].` }]; let arguments = (ins TFL_TensorOf<[F32, I8, I16, I32, I64, UI8, QUI8, QI8, TFL_Quint8]>:$diagonal ); let results = (outs TFL_TensorOf<[F32, I8, I16, I32, I64, UI8, QUI8, QI8, TFL_Quint8]>:$output ); let hasOptions = 0; } def TFL_MatrixSetDiagOp : TFL_Op<"matrix_set_diag", [ TFL_OperandHasAtleastRank<0, 2>, PredOpTrait<"input and result must have the same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect]> { let summary = [{ Returns a batched matrix tensor with new batched diagonal values. }]; let description = [{ Given `input` and `diagonal`, this operation returns a tensor with the same shape and values as `input`, except for the main diagonal of the innermost matrices. These will be overwritten by the values in `diagonal`. }]; let arguments = (ins TFL_TensorOf<[F32, I8, I16, I32, I64, UI8, QI8, QI16, QUI8, TFL_Quint8]>:$input, TFL_TensorOf<[F32, I8, I16, I32, I64, UI8, QI8, QI16, QUI8, TFL_Quint8]>:$diagonal ); let results = (outs TFL_TensorOf<[F32, I8, I16, I32, I64, UI8, QI8, QI16, QUI8, TFL_Quint8]>:$result ); let hasOptions = 0; } // These ops are named NonMaxSuppressionV4 & NonMaxSuppressionV5 to be // consistent with TensorFlow's naming. They are NOT 'versions' of NMS in the // sense that one is an incremental change over the other. // In reality NonMaxSuppressionV5 implements Soft Non Max Suppression and // NonMaxSuppressionV4 performs hard NMS. def TFL_NonMaxSuppressionV4Op : TFL_Op<"non_max_suppression_v4", [ NoSideEffect, // Operand 0 (boxes) should have rank 2 with the dim[1] == 4 (box corners) TFL_OperandHasRank<0, 2>, PredOpTrait<"boxes should have dim[1] == 4", TFL_OperandDimEquals<0, 1, 4>>, // Operand 1 (scores) should be a 1-dim tensor TFL_OperandHasRank<1, 1>, // Other operands are scalar params. TFL_OperandHasRank<2, 0>, TFL_OperandHasRank<3, 0>, TFL_OperandHasRank<4, 0>, NoQuantizableResult]> { let summary = [{ Greedily selects a subset of bounding boxes in descending order of score, }]; let description = [{ pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than `score_threshold` are removed. Bounding boxes are supplied as [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.gather operation`. For example: selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices) }]; let arguments = (ins TFL_FpTensor:$boxes, TFL_FpTensor:$scores, TFL_I32Tensor:$max_output_size, TFL_FpTensor:$iou_threshold, TFL_FpTensor:$score_threshold ); let results = (outs TFL_I32Tensor:$selected_indices, TFL_I32Tensor:$valid_outputs ); } def TFL_NonMaxSuppressionV5Op : TFL_Op<"non_max_suppression_v5", [ NoSideEffect, // Operand 0 (boxes) should have rank 2 with the dim[1] == 4 (box corners) TFL_OperandHasRank<0, 2>, PredOpTrait<"boxes should have dim[1] == 4", TFL_OperandDimEquals<0, 1, 4>>, // Operand 1 (scores) should be a 1-dim tensor TFL_OperandHasRank<1, 1>, // Other operands are scalar params. TFL_OperandHasRank<2, 0>, TFL_OperandHasRank<3, 0>, TFL_OperandHasRank<4, 0>, TFL_OperandHasRank<5, 0>, NoQuantizableResult]> { let summary = [{ Greedily selects a subset of bounding boxes in descending order of score, }]; let description = [{ pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than `score_threshold` are removed. Bounding boxes are supplied as [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.gather operation`. For example: selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices) This op also supports a Soft-NMS (with Gaussian weighting) mode (c.f. Bodla et al, https://arxiv.org/abs/1704.04503) where boxes reduce the score of other overlapping boxes instead of directly causing them to be pruned. To enable this Soft-NMS mode, set the `soft_nms_sigma` parameter to be larger than 0. }]; let arguments = (ins TFL_FpTensor:$boxes, TFL_FpTensor:$scores, TFL_I32Tensor:$max_output_size, TFL_FpTensor:$iou_threshold, TFL_FpTensor:$score_threshold, TFL_FpTensor:$soft_nms_sigma ); let results = (outs TFL_I32Tensor:$selected_indices, TFL_FpTensor:$selected_scores, TFL_I32Tensor:$valid_outputs ); } def TFL_NotEqualOp : TFL_Op<"not_equal", [ TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, ComparisonOpSameElementTypeConstraint, ResultsBroadcastableShape, Commutative, NoSideEffect, NoQuantizableResult]> { let summary = "Not_equal operator"; let description = [{ Element-wise not_equal operation. }]; let arguments = ( ins TFL_TensorOf<[I1, F32, I32, I64, QUI8, QI8, TFL_Quint8, TFL_Str]>:$lhs, TFL_TensorOf<[I1, F32, I32, I64, QUI8, QI8, TFL_Quint8, TFL_Str]>:$rhs); let results = (outs TFL_BoolTensor:$output); let builders = [ OpBuilderDAG<(ins "Value":$lhs, "Value":$rhs), [{ buildComparisonBinOp(&$_builder, $_state, lhs, rhs); }]> ]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; } def TFL_DivOp : TFL_Op<"div", [ // TODO(fengliuai): NoQuantizableResult is only correct for int8 // quantization. update to handle Uint8 quantization. BinaryOpSameElementTypeConstraint, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 5>, ResultsBroadcastableShape, NoSideEffect, NoQuantizableResult]> { let summary = "Division operator"; let description = [{ Element-wise division operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, QUI8]>:$lhs, TFL_TensorOf<[F32, I32, QUI8]>:$rhs, TFL_AFAttr:$fused_activation_function); let results = (outs TFL_TensorOf<[F32, I32, QUI8]>:$output); let builders = [TFL_FusedBroadcastableBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; let hasOptions = 1; let hasFolder = 1; } def TFL_EluOp: TFL_Op<"elu", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Exponential Linear Unit operator"; let description = [{ Computes the exponential linear f(x) -> exp(x) - 1 for x < 0, x for x >= 0. element-wise. }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); let hasOptions = 0; } def TFL_EmbeddingLookupOp: TFL_Op<"embedding_lookup", [NoSideEffect, PredOpTrait<"value and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 1>>, TFL_OperandHasRank<0, 1>, TFL_OperandHasRankAtLeast<1, 2> ]> { let summary = "Embedding lookup operator"; let description = [{ Looks up ids in a list of embedding tensors. }]; let arguments = (ins TFL_TensorOf<[I32]>:$lookup, TFL_TensorOf<[F32, I8, UI8]>:$value ); let results = (outs TFL_TensorOf<[F32, I8, UI8]>:$output); } def TFL_EqualOp: TFL_Op<"equal", [ Commutative, NoSideEffect, ResultsBroadcastableShape, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, ComparisonOpSameElementTypeConstraint]> { let summary = "Equal operator"; let description = [{ Returns the truth element of x == y element-wise }]; let arguments = ( ins TFL_TensorOf<[I1, F32, I32, I64, QI8, QUI8, UI8, TFL_Str]>:$x, TFL_TensorOf<[I1, F32, I32, I64, QI8, QUI8, UI8, TFL_Str]>:$y ); let results = (outs TFL_BoolTensor:$output); let builders = [TFL_ComparisonBinaryBuilder]; } def TFL_ExpOp: TFL_Op<"exp", [ NoSideEffect, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Natural exponentiation operator"; let description = [{ Performs element-wise natural exponentiation operation on input. }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); let hasOptions = 0b1; } def TFL_ExpandDimsOp: TFL_Op<"expand_dims", [ NoSideEffect, SameOperandsAndResultsScale, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>]> { let summary = "Inserts a dimension of 1 into a tensor's shape."; let description = [{ Given a tensor `input`, this operation inserts a dimension of 1 at the dimension index `axis` of `input`'s shape. The dimension index `axis` starts at zero; if you specify a negative number for `axis` it is counted backward from the end. This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape `[height, width, channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`, which will make the shape `[1, height, width, channels]`. Other examples: ``` # 't' is a tensor of shape [2] shape(expand_dims(t, 0)) ==> [1, 2] shape(expand_dims(t, 1)) ==> [2, 1] shape(expand_dims(t, -1)) ==> [2, 1] # 't2' is a tensor of shape [2, 3, 5] shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5] shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5] shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1] ``` This operation requires that: `-1-input.dims() <= dim <= input.dims()` This operation is related to `squeeze()`, which removes dimensions of size 1. }]; // TODO: Restriction on dim's size and valid range are not modeled here. let arguments = (ins AnyTensor:$input, TFL_I32OrI64Tensor:$dim); let results = (outs AnyTensor:$output); let hasOptions = 1; } def TFL_SqueezeOp: TFL_Op<"squeeze", [NoSideEffect, SameOperandsAndResultsScale]> { let summary = "Removes dimensions of size 1 from the shape of a tensor."; let description = [{ Given a tensor `input`, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don't want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying `squeeze_dims`. For example: ``` # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t)) ==> [2, 3] ``` Or, to remove specific size 1 dimensions: ``` # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1] ``` }]; let arguments = (ins AnyTensor:$input, Confined, [TFL_ArrayMaxCount<8>]>:$squeeze_dims ); let results = (outs AnyTensor:$output ); let hasOptions = 1; let customOption = "SqueezeOptions"; } def TFL_FillOp: TFL_Op<"fill", [ NoSideEffect, PredOpTrait<"input and result must have same element type", TFL_TCresVTEtIsSameAsOp<0, 1>>]> { let summary = "Fill the tensor with given value."; let description = [{ Fill the tensor with given value. }]; let arguments = (ins TFL_I32OrI64Tensor:$dims, TFL_TensorOf<[F32, I32, I64, I1, QI8, QI16, TFL_Str]>:$input); let results = (outs TFL_TensorOf<[F32, I32, I64, I1, QI8, QI16, TFL_Str]>:$result); let hasOptions = 0; } def TFL_FloorOp: TFL_Op<"floor", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Floor operator"; let description = [{ Returns element-wise floor value of the input. }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); } def TFL_FloorDivOp : TFL_Op<"floor_div", [ ResultsBroadcastableShape, NoSideEffect, BinaryOpSameElementTypeConstraint, PredOpTrait<"lhs and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, NoQuantizableResult]> { let summary = "Floor div operator"; let description = [{ Element-wise floor div operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32]>:$lhs, TFL_TensorOf<[F32, I32]>:$rhs); let results = (outs TFL_TensorOf<[F32, I32]>:$output); let builders = [TFL_BroadcastableBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; } def TFL_FloorModOp : TFL_Op<"floor_mod", [ ResultsBroadcastableShape, NoSideEffect, BinaryOpSameElementTypeConstraint, PredOpTrait<"lhs and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, NoQuantizableResult]> { let summary = "Division reminder"; let description = [{ Element-wise division reminder operation. }]; let arguments = ( ins TFL_TensorOf<[I32, I64, F32]>:$lhs, TFL_TensorOf<[I32, I64, F32]>:$rhs); let results = (outs TFL_TensorOf<[I32, I64, F32]>:$output); let builders = [TFL_BroadcastableBinaryBuilder]; } def TFL_GreaterOp : TFL_Op<"greater", [ ResultsBroadcastableShape, ComparisonOpSameElementTypeConstraint, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, NoSideEffect]> { let summary = "Greater operator"; let description = [{ Element-wise greater operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I64, QUI8, QI8, TFL_Quint8]>:$lhs, TFL_TensorOf<[F32, I32, I64, QUI8, QI8, TFL_Quint8]>:$rhs); let results = (outs TFL_BoolTensor:$output); let builders = [TFL_ComparisonBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; } def TFL_HardSwishOp: TFL_Op<"hard_swish", [ NoSideEffect, SameOperandsAndResultShape, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>]> { let summary = "Hardswish activation function."; let description = [{ Computes hard-swish activation function f(x) -> (x * relu6(x+3))/6 element-wise. }]; let arguments = (ins TFL_TensorOf<[F32, QUI8, QI8]>:$input); let results = (outs TFL_TensorOf<[F32, QUI8, QI8]>:$output); let hasOptions = 0; } def TFL_L2NormalizationOp : TFL_Op<"l2_normalization", [NoSideEffect, FixedOutputRangeInterface]> { let summary = "L2 Normalize Operator"; let description = [{ L2Normalization Op }]; let arguments = (ins TFL_TensorOf<[F32, QUI8, QI8, QUI16, QI16, I8]>:$input, TFL_AFAttr:$fused_activation_function ); let results = (outs TFL_TensorOf<[F32, QUI8, QI8, QUI16, QI16, I8]>:$output); let hasOptions = 1; let customOption = "L2NormOptions"; let extraClassDeclaration = [{ // FixedOutputRangeInterface: quant::UniformQuantizedType GetFixedOutputRange( bool is_signed, int bit_width) { auto result_type = output().getType(); // central_value = min_value / 2 + (max_value - 1) / 2 + 1 // zero_point = central_value // scale = 1. / (central_value - min_value) return quant::GetFixedOutputRange(is_signed, bit_width, result_type, /*scale=*/1.0 / 128, /*zero_point=*/0); } }]; } def TFL_LeakyReluOp: TFL_Op<"leaky_relu", [ SameOperandsAndResultShape, NoSideEffect, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>]> { let summary = "Leaky Relu operator"; let description = [{ Element-wise Leaky ReLU operator x -> x >= 0 ? x : (alpha * x) }]; let arguments = ( ins TFL_TensorOf<[F32, QUI8, QI8, TFL_Quint8, QI16]>:$input, // Slope of the activation function at x < 0. F32Attr:$alpha ); let results = (outs TFL_TensorOf<[F32, QUI8, QI8, TFL_Quint8, QI16]>:$output); let hasOptions = 0b1; } def TFL_LessOp : TFL_Op<"less", [ ResultsBroadcastableShape, ComparisonOpSameElementTypeConstraint, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, NoSideEffect]> { let summary = "Less operator"; let description = [{ Element-wise less operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I64, QUI8, QI8, TFL_Quint8]>:$lhs, TFL_TensorOf<[F32, I32, I64, QUI8, QI8, TFL_Quint8]>:$rhs); let results = (outs TFL_BoolTensor:$output); let builders = [TFL_ComparisonBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; } def TFL_LogicalAndOp : TFL_Op<"logical_and", [ NoSideEffect, NoQuantizableResult]> { let summary = "Logical AND operator"; let description = [{ Element-wise logical AND operation. }]; let arguments = ( ins TFL_BoolTensor:$lhs, TFL_BoolTensor:$rhs); let results = (outs TFL_BoolTensor:$output); let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; } def TFL_LogicalNotOp : TFL_Op<"logical_not", [ NoSideEffect, SameOperandsAndResultShape, NoQuantizableResult]> { let summary = "Logical NOT operator"; let description = [{ Element-wise logical NOT operation. }]; let arguments = (ins TFL_BoolTensor:$lhs); let results = (outs TFL_BoolTensor:$output); } def TFL_LogicalOrOp : TFL_Op<"logical_or", [ NoSideEffect, NoQuantizableResult]> { let summary = "Logical OR operator"; let description = [{ Element-wise logical OR operation. }]; let arguments = ( ins TFL_BoolTensor:$lhs, TFL_BoolTensor:$rhs); let results = (outs TFL_BoolTensor:$output); let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; } def TFL_LogisticOp: TFL_Op<"logistic", [ NoSideEffect, PredOpTrait<"x and y must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, SameOperandsAndResultShape, FixedOutputRangeInterface]> { let summary = "Logistic operator"; let description = [{ Computes element-wise Sigmoid of input }]; let arguments = (ins TFL_TensorOf<[F32, QI8, QUI8, QI16, TFL_Quint8]>:$x); let results = (outs TFL_TensorOf<[F32, QI8, QUI8, QI16, TFL_Quint8]>:$y); let extraClassDeclaration = [{ // FixedOutputRangeInterface: quant::UniformQuantizedType GetFixedOutputRange( bool is_signed, int bit_width) { auto result_type = y().getType(); // zero_point = 0 // scale = 1. / (max_value + 1) return quant::GetFixedOutputRange(is_signed, bit_width, result_type, /*scale=*/1.0 / 256, /*zero_point=*/-128); } }]; } def TFL_LogOp: TFL_Op<"log", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Natural logarithm operator"; let description = [{ Performs element-wise natural logarithm operation on input. }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); let hasFolder = 1; } def TFL_LogSoftmaxOp : TFL_Op<"log_softmax", [ NoSideEffect, SameOperandsAndResultShape, PredOpTrait<"x and y must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, FixedOutputRangeInterface]> { let summary = "Log softmax operator"; let description = [{ Computes element-wise log softmax activations with the following formula input - log(reduce_sum(exp(input), dim)) }]; let arguments = (ins TFL_TensorOf<[F32, QUI8, QI8, TFL_Quint8]>:$input); let results = (outs TFL_TensorOf<[F32, QUI8, QI8, TFL_Quint8]>:$output); let hasOptions = 1; let extraClassDeclaration = [{ // FixedOutputRangeInterface: quant::UniformQuantizedType GetFixedOutputRange( bool is_signed, int bit_width) { auto result_type = output().getType(); // zero_point = max_value // scale = -log_softmax_output_min / (max_value + 1) return quant::GetFixedOutputRange(is_signed, bit_width, result_type, /*scale=*/16.0 / 256, /*zero_point=*/127); } }]; } // TODO(ashwinm): Revisit the granularity of the PredOpTraits. We could // break this into smaller PredOpTraits, each with more descriptive messages // that would make it easier to trace failures OR, need a way to specify desc // per Predicate inside the trait and get tablegen to use that to emit error // message. def MaxPoolOperandAndResultConstraints : PredOpTrait<"MaxPool2D operand and " "result types match specified constraints", And<[ // The input and output tensors should have the same elemental type // and they should be one of the specified types below. TCopVTEtIs<0, AnyTypeOf<[F32, QI8, QUI8]>>, TFL_TCresVTEtIsSameAsOp<0, 0>]>>; def TFL_MaxPool2DOp : TFL_Op<"max_pool_2d", [ TFL_OperandHasRank<0, 4>, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, MaxPoolOperandAndResultConstraints, SameOperandsAndResultsScale]> { let summary = "Max Pool 2D op"; let description = [{ Performs max pool 2D on input. Inputs: `inputs[0]`: required: the input tensor }]; let arguments = ( ins TFL_TensorOf<[F32, QUI8, QI8, QI16, TFL_Quint8]>:$input, TFL_PaddingAttr:$padding, I32Attr:$stride_w, I32Attr:$stride_h, I32Attr:$filter_width, I32Attr:$filter_height, TFL_AFAttr:$fused_activation_function ); let results = (outs TFL_TensorOf<[F32, QUI8, QI8, QI16, TFL_Quint8]>:$output); let hasOptions = 1; let customOption = "Pool2DOptions"; } def TFL_MaximumOp : TFL_Op<"maximum", [ ResultsBroadcastableShape, NoSideEffect, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 5>, Commutative, SameOperandsAndResultsScale]> { let summary = "Max operator"; let description = [{ Element-wise max operation. }]; let arguments = ( ins TFL_TensorOf<[F32, TFL_Int32Or64, QI8, QUI8, QI16]>:$lhs, TFL_TensorOf<[F32, TFL_Int32Or64, QI8, QUI8, QI16]>:$rhs ); let results = (outs TFL_TensorOf<[F32, TFL_Int32Or64, QI8, QUI8, QI16]>:$max ); let builders = [TFL_BroadcastableBinaryBuilder]; let hasOptions = 0; } def TFL_MeanOp : TFL_Op<"mean", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect]> { let summary = "Mean operator"; let description = [{ Computes the mean of elements across dimensions of a tensor. Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each entry in axis. If keepdims is true, the reduced dimensions are retained with length 1. }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, UI8, QI16]>:$input, TFL_TensorOf<[I32, I64]>:$axis, BoolAttr:$keep_dims ); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, UI8, QI16]>:$output); let hasOptions = 1; let customOption = "ReducerOptions"; } def TFL_OneHotOp : TFL_Op<"one_hot", [NoSideEffect]> { let summary = "OneHot operator"; let description = [{ Returns a one-hot tensor.The locations represented by indices in `indices` take value `on_value`, while all other locations take value `off_value`. If the input `indices` is rank `N`, the output will have rank `N+1`, The new axis is created at dimension `axis` (default: the new axis is appended at the end). }]; let arguments = (ins TFL_TensorOf<[I32, I64]>:$indices, TFL_I32Tensor:$depth, TFL_TensorOf<[F32, I32, I64, I1, I8, UI8]>:$on_value, TFL_TensorOf<[F32, I32, I64, I1, I8, UI8]>:$off_value, I32Attr:$axis ); let results = (outs TFL_TensorOf<[F32, I32, I64, I1, I8, UI8]>:$output ); let hasOptions = 1; } def TFL_RoundOp: TFL_Op<"round", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Round operator"; let description = [{ Rounds the values of a tensor to the nearest integer, element-wise. }]; let arguments = (ins TFL_FpTensor:$x ); let results = (outs TFL_FpTensor:$y ); } def TFL_SliceOp : TFL_Op<"slice", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, SameOperandsAndResultsScale, TFL_OperandHasRankAtMost<0, 5>, TFL_OperandHasRankAtMost<1, 1>, TFL_OperandHasRankAtMost<2, 1>]> { let summary = "Return a slice from 'input'."; let description = [{ The output tensor is a tensor with dimensions described by 'size' whose values are extracted from 'input' starting at the offsets in 'begin'. `begin` is zero-based; `size` is one-based. If size[i] is -1, all remaining elements in dimension i are included in the slice. In other words, this is equivalent to setting: size[i] = input.dim_size(i) - begin[i] *Requirements*: 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n) }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, I8, UI8, I1, TFL_Str, QI8, QUI8, TFL_Quint8, QI16]>:$input, TFL_I32OrI64Tensor:$begin, TFL_I32OrI64Tensor:$size ); let results = (outs TFL_TensorOf<[F32, I32, I64, I8, UI8, I1, TFL_Str, QI8, QUI8, TFL_Quint8, QI16]>:$output ); let verifier = [{ return Verify(*this); }]; let hasCanonicalizer = 1; } def TFL_SumOp: TFL_Op<"sum", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect]> { let summary = "Sum operator"; let description = [{ Computes the sum reduction along the specified axes }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$input, TFL_I32Tensor:$axes, BoolAttr:$keep_dims ); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$output); let hasOptions = 1; let customOption = "ReducerOptions"; } def TFL_ReduceMinOp: TFL_Op<"reduce_min", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, SameOperandsAndResultsScale]> { let summary = "Min-reduction operator"; let description = [{ Computes the min reduction along the specified axes }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$input, TFL_I32Tensor:$axes, BoolAttr:$keep_dims ); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$output); let hasOptions = 1; let customOption = "ReducerOptions"; } def TFL_ReduceMaxOp: TFL_Op<"reduce_max", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, SameOperandsAndResultsScale]> { let summary = "Max-reduction operator"; let description = [{ Computes the max reduction along the specified axes }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$input, TFL_I32Tensor:$axes, BoolAttr:$keep_dims ); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$output); let hasOptions = 1; let customOption = "ReducerOptions"; } def TFL_ReduceProdOp: TFL_Op<"reduce_prod", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect]> { let summary = "Prod-reduction operator"; let description = [{ Computes the product along the specified axes }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$input, TFL_I32Tensor:$axes, BoolAttr:$keep_dims ); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$output); let hasOptions = 1; let customOption = "ReducerOptions"; } def TFL_MinimumOp : TFL_Op<"minimum", [ ResultsBroadcastableShape, NoSideEffect, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 5>, Commutative, SameOperandsAndResultsScale]> { let summary = "Min operator"; let description = [{ Element-wise min operation. }]; let arguments = ( ins TFL_TensorOf<[F32, TFL_Int32Or64, QI8, QUI8, QI16]>:$lhs, TFL_TensorOf<[F32, TFL_Int32Or64, QI8, QUI8, QI16]>:$rhs ); let results = (outs TFL_TensorOf<[F32, TFL_Int32Or64, QI8, QUI8, QI16]>:$min ); let builders = [TFL_BroadcastableBinaryBuilder]; let hasOptions = 0; } def TFL_MulOp : TFL_Op<"mul", [ ResultsBroadcastableShape, NoSideEffect, Commutative, BinaryOpSameElementTypeConstraint, TFL_RuntimePredOpTrait<"Operands do not have valid shapes", CPred<"TFL::VerifyMulOpShapeConstraints(llvm::cast($_op))">>]> { let summary = "Multiplication operator"; let description = [{ Element-wise multiplication operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, QI8, QUI8, QI16]>:$lhs, TFL_TensorOf<[F32, I32, QI8, QUI8, QI16]>:$rhs, TFL_AFAttr:$fused_activation_function); let results = (outs TFL_TensorOf<[F32, I32, QI8, QUI8, QI16]>:$output); let hasFolder = 1; let builders = [TFL_FusedBroadcastableBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; let hasOptions = 1; } def TFL_NegOp: TFL_Op<"neg", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Negation operator"; let description = [{ Computes element-wise negation of input }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64]>:$x); let results = (outs TFL_TensorOf<[F32, I32, I64]>:$y); let hasOptions = 0b1; let hasFolder = 1; } def TFL_PackOp : TFL_Op<"pack", [ TFL_SameFirstOperandAndFirstResultElementType, NoSideEffect, SameOperandsAndResultsScale]> { let summary = "Packs a list of tensors along a dimension into one tensor"; let description = [{ Packs a list of `values_count` rank-`R` tensors into one rank-`(R+1)` tensor. Packs the `values_count` tensors in `values` into a tensor with rank one higher than each tensor in `values`, by packing them along the `axis` dimension. Given a list of tensors of shape `(A, B, C)`; if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`. if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. Etc. For example: ``` # 'x' is [1, 4] # 'y' is [2, 5] # 'z' is [3, 6] pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim. pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]] ``` This is the opposite of `unpack`. }]; let arguments = (ins TFL_VariadicTensorOf<[F32, I8, I16, I32, I64, UI8, QI8, QUI8, QI16, TFL_Quint8]>:$values, Confined:$values_count, I32Attr:$axis ); let results = (outs TFL_TensorOf<[F32, I8, I16, I32, I64, UI8, QI8, QUI8, QI16, TFL_Quint8]>:$output ); let verifier = [{ return Verify(*this); }]; let hasCanonicalizer = 1; let hasOptions = 1; } def TFL_PadOp : TFL_Op<"pad", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, SameOperandsAndResultsScale, TFL_OperandHasRankAtMost<0, 4>, TFL_OperandHasRank<1, 2>, TFL_OperandRankEquals1DimOfOperand<0, 1>, PredOpTrait<"the first dim size of the padding argument must be at most 4", Or<[TFL_OperandIsUnrankedPred<1>, TFL_OperandDimIsAtMost<1, 0, 4>]>>]> { let summary = "Padding operator"; let description = [{ This operation pads a `input` with zeros according to the `paddings` you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many zeros to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many zeros to add after the contents of `input` in that dimension. The padded size of each dimension D of the output is: `paddings(D, 0) + input.dim_size(D) + paddings(D, 1)` For example: ``` # 't' is [[1, 1], [2, 2]] # 'paddings' is [[1, 1], [2, 2]] # rank of 't' is 2 pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0] [0, 0, 1, 1, 0, 0] [0, 0, 2, 2, 0, 0] [0, 0, 0, 0, 0, 0]] ``` }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$input, TFL_I32OrI64Tensor:$padding); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8, QI16]>:$output); let hasOptions = 1; } def TFL_PadV2Op : TFL_Op<"padv2", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, SameOperandsAndResultsScale, TFL_OperandHasRankAtMost<0, 4>, TFL_OperandHasRank<1, 2>, TFL_OperandHasRank<2, 0>, TFL_OperandRankEquals1DimOfOperand<0, 1>, PredOpTrait<"the first dim size of the padding argument must be at most 4", Or<[TFL_OperandIsUnrankedPred<1>, TFL_OperandDimIsAtMost<1, 0, 4>]>>, PredOpTrait<"input and constant value operands must have same element type", TFL_TCopVTEtAreSameAt<0, 2>>]> { let summary = "Padding operator v2"; let description = [{ This operation pads a `input` according to the `paddings` and `constant_values` you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many zeros to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many zeros to add after the contents of `input` in that dimension. `constant_values` is a scalar tensor of the same type as `input` that indicates the value to use for padding `input`. The padded size of each dimension D of the output is: `paddings(D, 0) + input.dim_size(D) + paddings(D, 1)` For example: ``` # 't' is [[1, 1], [2, 2]] # 'paddings' is [[1, 1], [2, 2]] # rank of 't' is 2 pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0] [0, 0, 1, 1, 0, 0] [0, 0, 2, 2, 0, 0] [0, 0, 0, 0, 0, 0]] ``` }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I64, UI8, QI8, QUI8, TFL_Quint8]>:$input, TFL_I32OrI64Tensor:$padding, TFL_TensorOf<[F32, I32, I64, UI8, QI8, QUI8, TFL_Quint8]>:$constant_values); let results = (outs TFL_TensorOf<[F32, I32, I64, UI8, QI8, QUI8, TFL_Quint8]>:$output); let hasOptions = 1; } def TFL_PowOp : TFL_Op<"pow", [ ResultsBroadcastableShape, NoSideEffect, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, NoQuantizableResult]> { let summary = "Power operator"; let description = [{ Element-wise power operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32]>:$lhs, TFL_TensorOf<[F32, I32]>:$rhs); let results = (outs TFL_TensorOf<[F32, I32]>:$output); let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; let builders = [TFL_BroadcastableBinaryBuilder]; } def TFL_PReluOp : TFL_Op<"prelu", [ NoSideEffect, ResultsBroadcastableShape, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, BinaryOpSameElementTypeConstraint, PredOpTrait<"input and output must have the same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, AffineQuantizedOpInterface]> { let summary = "Parameterized Relu operator"; let description = [{ Parameterized Relu operator x -> x >= 0 ? x : (alpha * x) where alpha is a trainable tensor. input and alpha should be the same size as input or be broadcastable. }]; let arguments = ( ins TFL_TensorOf<[F32, QI8, QUI8, TFL_Quint8]>:$input, TFL_TensorOf<[F32, QI8, QUI8, TFL_Quint8]>:$alpha ); let results = (outs TFL_TensorOf<[F32, QI8, QUI8, TFL_Quint8]>:$output); let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ // AffineQuantizedOpInterface: int GetChannelDimIndex() { return 0; } int GetQuantizationDimIndex() { return -1; } }]; } def TFL_RankOp: TFL_Op<"rank", [NoSideEffect]> { let summary = "Rank operator."; let description = [{ Returns the rank of a tensor. }]; let arguments = (ins AnyTensor:$input); let results = (outs TFL_IntTensor:$output); let hasFolder = 1; } def TFL_ReluOp: TFL_Op<"relu", [ PredOpTrait<"x and y must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, SameOperandsAndResultShape]> { let summary = "Relu operator"; let description = [{ Element-wise Relu operator x -> max(0, x) }]; let arguments = (ins TFL_TensorOf<[F32, QUI8, QI8, QI16]>:$x); let results = (outs TFL_TensorOf<[F32, QUI8, QI8, QI16]>:$y); // This builder doesn't work with quantized type, so it can only be used by // non-quantization tablegen patterns. Currently, it is used by the // elementwise-move reordering pattern in the optimize_patterns.td let builders = [ OpBuilderDAG<(ins "Value":$input), [{ $_state.addOperands({input}); $_state.addTypes(input.getType()); }]> ]; } def TFL_Relu6Op: TFL_Op<"relu6", [ PredOpTrait<"x and y must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, SameOperandsAndResultShape]> { let summary = "Relu6 operator"; let description = [{ Element-wise Relu6 operator x -> max(0, min(6, x)) }]; let arguments = (ins TFL_TensorOf<[F32, QUI8, QI8]>:$x); let results = (outs TFL_TensorOf<[F32, QUI8, QI8]>:$y); // This builder doesn't work with quantized type, so it can only be used by // non-quantization tablegen patterns. Currently, it is used by the // elementwise-move reordering pattern in the optimize_patterns.td let builders = [ OpBuilderDAG<(ins "Value":$input), [{ $_state.addOperands({input}); $_state.addTypes(input.getType()); }]> ]; } def TFL_Relu1Op: TFL_Op<"relu_n1_to_1", [ PredOpTrait<"x and y must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, SameOperandsAndResultShape]> { let summary = "Relu1 operator"; let description = [{ Element-wise Relu1 operator x -> max(-1, min(1, x)) }]; let arguments = (ins TFL_TensorOf<[F32, QUI8, QI8]>:$x); let results = (outs TFL_TensorOf<[F32, QUI8, QI8]>:$y); // This builder doesn't work with quantized type, so it can only be used by // non-quantization tablegen patterns. Currently, it is used by the // elementwise-move reordering pattern in the optimize_patterns.td let builders = [ OpBuilderDAG<(ins "Value":$input), [{ $_state.addOperands({input}); $_state.addTypes(input.getType()); }]> ]; } def TFL_ReshapeOp: TFL_Op<"reshape", [ NoSideEffect, SameOperandsAndResultsScale]> { let summary = "Reshape operator"; let description = [{ Produces a tensor with the same values but different static shape defined by the output type. }]; let arguments = ( ins AnyTensor:$input, TFL_I32Tensor:$shape); let results = (outs AnyTensor:$output); let hasCanonicalizer = 0b1; let hasFolder = 1; let verifier = [{ return Verify(*this); }]; } def TFL_ReverseSequenceOp : TFL_Op<"reverse_sequence", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, TFL_OperandHasRank<1, 1>]> { let summary = "Reverses variable length slices."; let description = [{ This op first slices `input` along the dimension `batch_dim`, and for each slice `i`, reverses the first `seq_lengths[i]` elements along the dimension `seq_dim`. The elements of `seq_lengths` must obey `seq_lengths[i] <= input.dims[seq_dim]`, and `seq_lengths` must be a vector of length `input.dims[batch_dim]`. The output slice `i` along dimension `batch_dim` is then given by input slice `i`, with the first `seq_lengths[i]` slices along dimension `seq_dim` reversed. }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI16, QUI8, TFL_Quint8]>:$input, TFL_I32OrI64Tensor:$seq_lengths, Confined:$seq_dim, Confined:$batch_dim ); let results = (outs TFL_TensorOf<[F32, I32, I64, QI16, QUI8, TFL_Quint8]>:$output ); let hasOptions = 1; } def TFL_RsqrtOp: TFL_Op<"rsqrt", [NoSideEffect, TFL_SameFirstOperandAndFirstResultElementType, SameOperandsAndResultShape]> { let summary = "Reciprocal of square root operator"; let description = [{ Computes element-wise reverse square root of input }]; let arguments = (ins TFL_TensorOf<[F32, QI8, QI16]>:$x); let results = (outs TFL_TensorOf<[F32, QI8, QI16]>:$y); let hasFolder = 1; } def TFL_ShapeOp: TFL_Op<"shape", [NoSideEffect]> { let summary = "Shape operator"; let description = [{ Returns the shape of a tensor. }]; let arguments = (ins AnyTensor:$input); let results = (outs TFL_TensorOf<[I32, I64]>:$output); DerivedTypeAttr out_type = DerivedTypeAttr<[{ return getResult().getType().cast().getElementType(); }]>; let hasOptions = 1; } def TFL_RangeOp: TFL_Op<"range", [ NoSideEffect, TFL_OperandHasRank<0, 0>, TFL_OperandHasRank<1, 0>, TFL_OperandHasRank<2, 0>, PredOpTrait<"operands and output must have same element type", And<[TCresVTEtIsSameAsOp<0, 0>, TCresVTEtIsSameAsOp<0, 1>, TCresVTEtIsSameAsOp<0, 2>]>>, NoQuantizableResult]> { let summary = "Range operator"; let description = [{ Returns a 1D tensor defined by a sequence from `start` to `limit` with a given `delta`. }]; let arguments = (ins TFL_TensorOf<[I32, F32]>:$start, TFL_TensorOf<[I32, F32]>:$limit, TFL_TensorOf<[I32, F32]>:$delta); let results = (outs TFL_TensorOf<[I32, F32]>:$result); let hasFolder = 1; } def TFL_ReverseV2Op: TFL_Op<"reverse_v2", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoSideEffect, TFL_OperandHasRank<1, 1>]> { let summary = "ReverseV2 Operator"; let description = [{ Reverses specific dimensions of a tensor. Given a tensor, and a int32/int64 tensor axis representing the set of dimensions of tensor to reverse. This operation reverses each dimension i for which there exists j s.t. axis[j] == i. Args: tensor: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, float32, bool Up to 8-D. axis: A Tensor. Must be one of the following types: int32, int64. with only 1 element which is the axis index. TODO: Add support for multiple elements. }]; let arguments = ( ins TFL_TensorOf<[F32, UI8, I16, I32, I64, QI16, QUI8, QI8, TFL_Quint8, I1]>:$input, TFL_I32Tensor:$axis ); let results = (outs TFL_TensorOf<[F32, UI8, I16, I32, I64, QI16, QUI8, QI8, TFL_Quint8, I1]>:$output); } // Select has many instances in TF models where one or more of its operands // are unranked. Therefore, we skip adding shape constraints here. def TFL_SelectOp : TFL_Op<"select", [ NoSideEffect, SameOperandsAndResultsScale, PredOpTrait<"operands have same element type", TCopVTEtIsSameAs<1, 2>>, PredOpTrait<"operands and result have same element type", TFL_TCresVTEtIsSameAsOp<0, 1>>]> { let summary = "Select operator"; let description = [{ Select values of 'x' if the corresponding value of 'condition' is true or the value of 'y' if false. There are valid condition input sizes: 1. Either the same shape (in which case the select is elementwise), or 2. condition must be Rank 1 and match over the first dimension. }]; let arguments = (ins TFL_BoolTensor:$condition, TFL_TensorOf<[F32, I1, I8, I16, I32, I64, QI8, QUI8, QI16, TFL_Quint8]>:$x, TFL_TensorOf<[F32, I1, I8, I16, I32, I64, QI8, QUI8, QI16, TFL_Quint8]>:$y); let results = (outs TFL_TensorOf<[F32, I1, I8, I16, I32, I64, QI8, QUI8, QI16, TFL_Quint8]>:$output); // TODO(jpienaar): autogenerate this. let builders = [ OpBuilderDAG<(ins "Value":$condition, "Value":$x, "Value":$y), [{ auto resultType = x.getType(); $_state.addOperands({condition, x, y}); $_state.types.push_back(resultType); }]>]; let hasOptions = 1; } def TFL_SelectV2Op : TFL_Op<"select_v2", [ ResultsBroadcastableShape, NoSideEffect, TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1, 2], 4>, PredOpTrait<"operands have same element type", TCopVTEtIsSameAs<1, 2>>, PredOpTrait<"operands and result have same element type", TFL_TCresVTEtIsSameAsOp<0, 1>>]> { let summary = "SelectV2 operator"; let description = [{ Select values of 'x' if the corresponding value of 'condition' is true or the value of 'y' if false. There are valid condition input sizes: 1. Either the same shape (in which case the select is elementwise), or 2. Broadcastable shapes between 'condition', 'x' and 'y'. }]; let arguments = (ins TFL_BoolTensor:$condition, TFL_TensorOf<[F32, I1, I8, I16, I32, I64, QI8, QUI8, QI16, TFL_Quint8]>:$x, TFL_TensorOf<[F32, I1, I8, I16, I32, I64, QI8, QUI8, QI16, TFL_Quint8]>:$y); let results = (outs TFL_TensorOf<[F32, I1, I8, I16, I32, I64, QI8, QUI8, QI16, TFL_Quint8]>:$output); let builders = [ OpBuilderDAG<(ins "Value":$cond, "Value":$x, "Value":$y), [{ BuildSelectV2Op(&$_builder, $_state, cond, x, y); }]>]; let hasOptions = 1; } def TFL_SinOp: TFL_Op<"sin", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Sine operator"; let description = [{ Computes element-wise Sine of input }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); let hasFolder = 1; } def TFL_SoftmaxOp : TFL_Op<"softmax", [ NoSideEffect, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandHasRankRange<0, 1, 4>, SameOperandsAndResultShape, FixedOutputRangeInterface]> { let summary = "Softmax operator"; let description = [{ Computes element-wise softmax activations with the following formula exp(input) / tf.reduce_sum(exp(input * beta), dim) }]; let arguments = ( ins TFL_TensorOf<[F32, QI8, QUI8, TFL_Quint8, QI16]>:$input, F32Attr:$beta ); let results = (outs TFL_TensorOf<[F32, QI8, QUI8, TFL_Quint8, QI16]>:$output); let hasOptions = 1; let extraClassDeclaration = [{ // FixedOutputRangeInterface: quant::UniformQuantizedType GetFixedOutputRange( bool is_signed, int bit_width) { auto result_type = output().getType(); // zero_point = 0 // scale = 1. / (max_value + 1) return quant::GetFixedOutputRange(is_signed, bit_width, result_type, /*scale=*/1.0 / 256, /*zero_point=*/-128); } }]; } def TFL_SqrtOp: TFL_Op<"sqrt", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Square root operator"; let description = [{ Computes element-wise Square root of input }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); let hasFolder = 1; } def TFL_SquareOp: TFL_Op<"square", [ NoSideEffect, SameOperandsAndResultShape, SameOperandsAndResultType, NoQuantizableResult]> { let summary = "Square operator"; let description = [{ Computes element-wise Square of input }]; let arguments = (ins TFL_FpTensor:$x); let results = (outs TFL_FpTensor:$y); let hasOptions = 0b1; let hasFolder = 1; } def TFL_SubOp : TFL_Op<"sub", [ ResultsBroadcastableShape, BinaryOpSameElementTypeConstraint, TFL_RuntimePredOpTrait<"Operands do not have valid shapes", CPred<"TFL::VerifySubOpShapeConstraints(llvm::cast($_op))">>, NoSideEffect]> { let summary = "Subtraction operator"; let description = [{ Element-wise subtraction operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, QI16]>:$lhs, TFL_TensorOf<[F32, I32, I64, QI8, QUI8, QI16]>:$rhs, TFL_AFAttr:$fused_activation_function); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, QI16]>:$output); let hasFolder = 1; let builders = [TFL_FusedBroadcastableBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; let hasOptions = 1; } def TFL_SquaredDifferenceOp : TFL_Op<"squared_difference", [ TFL_OperandsHaveSameShapesOrBroadcastableShape<[0, 1], 4>, BinaryOpSameElementTypeConstraint, TFL_SameFirstOperandAndFirstResultElementType, ResultsBroadcastableShape, NoSideEffect, NoQuantizableResult]> { let summary = "Squared difference operator"; let description = [{ Element-wise squared difference operation. }]; let arguments = ( ins TFL_TensorOf<[F32, I32, QI8]>:$lhs, TFL_TensorOf<[F32, I32, QI8]>:$rhs); let results = (outs TFL_TensorOf<[F32, I32, QI8]>:$output); let builders = [TFL_BroadcastableBinaryBuilder]; let parser = [{ return mlir::impl::parseOneResultSameOperandTypeOp(parser, result); }]; let printer = [{ return mlir::impl::printOneResultOp(getOperation(), p); }]; } def TFL_TanhOp: TFL_Op<"tanh", [ NoSideEffect, SameOperandsAndResultShape, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, FixedOutputRangeInterface]> { let summary = "Hyperbolic tangent operator"; let description = [{ Computes element-wise Hyperbolic tangent of input }]; let arguments = (ins TFL_TensorOf<[F32, QI8, QUI8, QI16, TFL_Quint8]>:$input); let results = (outs TFL_TensorOf<[F32, QI8, QUI8, QI16, TFL_Quint8]>:$output); // This builder doesn't work with quantized type, so it can only be used by // non-quantization tablegen patterns. Currently, it is used by the // elementwise-move reordering pattern in the optimize_patterns.td let builders = [ OpBuilderDAG<(ins "Value":$input), [{ $_state.addOperands({input}); $_state.addTypes(input.getType()); }]> ]; let extraClassDeclaration = [{ // FixedOutputRangeInterface: quant::UniformQuantizedType GetFixedOutputRange( bool is_signed, int bit_width) { auto result_type = output().getType(); // central_value = min_value / 2 + (max_value - 1) / 2 + 1 // zero_point = central_value // scale = 1. / (central_value - min_value) return quant::GetFixedOutputRange(is_signed, bit_width, result_type, /*scale=*/1.0 / 128, /*zero_point=*/0); } }]; } def TFL_TileOp: TFL_Op<"tile", [ NoSideEffect, SameOperandsAndResultsScale, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>]> { let summary = "Tile operator."; let description = [{ Constructs a tensor by tiling a given tensor. This operation creates a new tensor by replicating input multiples times. The output tensor's i'th dimension has input.dims(i) * multiples[i] elements, and the values of input are replicated multiples[i] times along the 'i'th dimension. For example, tiling [a b c d] by [2] produces [a b c d a b c d]. }]; let arguments = (ins TFL_TensorOf<[F32, I1, I32, I64, UI8, QUI8, TFL_Str]>:$input, TFL_I32OrI64Tensor:$multiples); let results = (outs TFL_TensorOf<[F32, I1, I32, I64, UI8, QUI8, TFL_Str]>:$output); let hasOptions = 0; } // TODO(jpienaar): Maybe make it accept any single element tensor as `k`. // TODO(jpienaar): Check that input has one or more dimensions. // TODO(jpienaar): Check that k is less or equal the internal dimension def TFL_TopKV2Op: TFL_Op<"topk_v2", [ NoSideEffect, TFL_OperandHasRankAtLeast<0, 1>, TFL_OperandHasRank<1, 0>, PredOpTrait<"result and input element type match", TFL_TCresVTEtIsSameAsOp<0,0>>, SameOperandsAndResultsScale]> { let summary = "TopK operator"; let description = [{ Returns the top `k` largest element along each last dimensional slice of `input` and the indices of values within the last dimension of the input tensor. }]; let arguments = (ins TFL_TensorOf<[F32, I8, I32, I64, UI8, QI8, QUI8]>:$input, TFL_I32Tensor:$k); let results = (outs TFL_TensorOf<[F32, I8, I32, I64, UI8, QI8, QUI8]>:$values, TFL_I32Tensor:$indices); let builders = [ OpBuilderDAG<(ins "Value":$input, "Value":$k), [{ BuildTopKOp(&$_builder, $_state, input, k); }]>]; let hasOptions = 1; } def TFL_TransposeOp : TFL_Op<"transpose", [ NoSideEffect, TFL_OperandHasRankAtMost<0, 5>, TFL_OperandHasRank<1, 1>, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, SameOperandsAndResultsScale]> { let summary = "Transpose operator"; let description = [{ Returns the Transpose of x }]; let arguments = (ins TFL_TensorOf<[I32, F32, I8, UI8, QI8, QUI8, TFL_Quint8, I1, I64, QI16]>:$input, TFL_TensorOf<[I32]>:$perm ); let results = (outs TFL_TensorOf<[I32, F32, I8, UI8, QI8, QUI8, TFL_Quint8, I1, I64, QI16]>:$output ); let verifier = [{ return Verify(*this); }]; let hasFolder = 1; } def TFL_UnpackOp : TFL_Op<"unpack", [ NoSideEffect, SameOperandsAndResultElementType, SameOperandsAndResultsScale, DeclareOpInterfaceMethods]> { let summary = "Unpacks a tensor along a dimension into multiple tensors"; let description = [{ Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. Unpacks `num` tensors from `value` by chipping it along the `axis` dimension. For example, given a tensor of shape `(A, B, C, D)`; If `axis == 0` then the i'th tensor in `output` is the slice `value[i, :, :, :]` and each tensor in `output` will have shape `(B, C, D)`. (Note that the dimension unpacked along is gone, unlike `split`). If `axis == 1` then the i'th tensor in `output` is the slice `value[:, i, :, :]` and each tensor in `output` will have shape `(A, C, D)`. Etc. This is the opposite of `pack`. }]; let arguments = (ins TFL_TensorOf<[F32, I1, I8, UI8, I32, QI8, QUI8, I16, QI16]>:$input, Confined:$num, I32Attr:$axis ); let results = (outs TFL_VariadicTensorOf<[F32, I1, I8, UI8, I32, QI8, QUI8, I16, QI16]>:$outputs ); let extraClassDeclaration = [{ static bool isCompatibleReturnTypes(ArrayRef l, ArrayRef r); }]; let hasOptions = 1; } def TFL_ZerosLikeOp: TFL_Op<"zeros_like", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, SameOperandsAndResultType, SameOperandsAndResultShape, NoSideEffect, NoQuantizableResult]> { let summary = "ZerosLike operator"; let description = [{ Returns a tensor of zeros with the same shape and type as the input tensor. }]; let arguments = (ins TFL_TensorOf<[I64, I32, F32]>:$input); let results = (outs TFL_TensorOf<[I64, I32, F32]>:$output); let hasOptions = 1; } def TFL_BatchToSpaceNdOp: TFL_Op<"batch_to_space_nd", [ NoSideEffect, SameOperandsAndResultsScale, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandHasRankRange<0, 3, 4>, TFL_OperandHasRank<1, 1>, TFL_OperandHasRank<2, 2> ]> { let summary = "BatchToSpaceNd operator"; let description = [{ This operation reshapes the "batch" dimension 0 into space dimensions. }]; let arguments = (ins TFL_TensorOf<[F32, I8, I32, I64, UI8, QI8, QUI8]>:$input, TFL_TensorOf<[I32]>:$block_shape, TFL_TensorOf<[I32]>:$indices ); let results = (outs TFL_TensorOf<[F32, I16, I32, I64, UI8, QI8, QUI8]>:$output ); } def TFL_SpaceToBatchNdOp: TFL_Op<"space_to_batch_nd", [ NoSideEffect, SameOperandsAndResultsScale, TFL_OperandHasRankRange<0, 3, 4>, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>> ]> { let summary = "SpaceToBatchNd operator"; let description = [{ This operation reshapes space dimensions into the "batch" dimension 0 }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8]>:$input, TFL_I32Tensor:$block_shape, TFL_I32Tensor:$paddings ); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8]>:$output ); } def TFL_SpaceToDepthOp: TFL_Op<"space_to_depth", [ NoSideEffect, SameOperandsAndResultsScale, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandHasRankAtMost<0, 4> ]> { let summary = "SpaceToDepth operator"; let description = [{ Rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the input tensor where values from the `height` and `width` dimensions are moved to the `depth` dimension. `block_size` indicates the input block size. }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8]>:$input, Confined:$block_size ); let results = (outs TFL_TensorOf<[F32, I32, I64, QI8, QUI8, TFL_Quint8]>:$output ); let hasOptions = 1; } def TFL_DepthToSpaceOp: TFL_Op<"depth_to_space", [ NoSideEffect, SameOperandsAndResultsScale, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandHasRankAtMost<0, 4> ]> { let summary = "DepthToSpace operator"; let description = [{ Rearranges data from depth into blocks of spatial data. This is the reverse transformation of SpaceToDepth. More specifically, this op outputs a copy of the input tensor where values from the `depth` dimension are moved in spatial blocks to the `height` and `width` dimensions. The attr `block_size` indicates the input block size and how the data is moved. }]; let arguments = (ins TFL_TensorOf<[F32, I8, I32, I64, TFL_Quint8, UI8, QI8, QUI8]>:$input, Confined:$block_size ); let results = (outs TFL_TensorOf<[F32, I8, I32, I64, TFL_Quint8, UI8, QI8, QUI8]>:$output ); let hasOptions = 1; } def TFL_SplitOp : TFL_Op<"split", [ NoSideEffect, TFL_Operand0DOr1ElementTensor<0>, SameOperandsAndResultsScale]> { let summary = "Splits a tensor into `num_split` tensors along one dimension."; let description = [{ Splits the `value` tensor along `split_dim` into a number of sub-tensors with same shape as the original one, except for `split_dim`. Same as tf.Split. }]; let arguments = (ins TFL_TensorOf<[I32]>:$split_dim, TFL_TensorOf<[F32, I16, I32, I64, I8, UI8, QI8, QUI8, QI16]>:$value, Confined:$num_splits ); let results = (outs TFL_VariadicTensorOf<[F32, I16, I32, I64, I8, UI8, QI8, QUI8, QI16]>:$outputs ); let verifier = [{ return Verify(*this); }]; let hasOptions = 1; } def TFL_SplitVOp : TFL_Op<"split_v", [NoSideEffect, SameOperandsAndResultsScale]> { let summary = "Splits a tensor into `num_split` tensors along one dimension."; let description = [{ Splits the `value` tensor along `split_dim` into a number of sub-tensors with same shape as the original one, except for `split_dim`. The grouping of the resultant sub-tensors is decided by `size-splits`. Same as tf.SplitV. }]; let arguments = (ins TFL_TensorOf<[F32, I16, I32, I64, I8, UI8, QI8, QUI8, QI16]>:$value, TFL_1DTensorOf<[I32], [I32]>:$size_splits, TFL_0DTensorOf<[I32], [I32]>:$split_dim, Confined:$num_splits ); let results = (outs TFL_VariadicTensorOf<[F32, I16, I32, I64, I8, UI8, QI8, QUI8, QI16]>:$outputs ); let verifier = [{ return Verify(*this); }]; let hasOptions = 1; } def TFL_ResizeBilinearOp: TFL_Op<"resize_bilinear", [ NoSideEffect, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandHasRank<0, 4>, TFL_OperandHasRank<1, 1>, SameOperandsAndResultsScale]> { let summary = "ResizeBilinear Op"; let description = [{ Resize `images` to `size` using bilinear interpolation. }]; let arguments = (ins TFL_TensorOf<[F32, TFL_Quint8, QUI8, QI8, QI16]>:$input, TFL_I32Tensor:$size, BoolAttr:$align_corners, DefaultValuedAttr:$half_pixel_centers ); let results = (outs TFL_TensorOf<[F32, TFL_Quint8, QUI8, QI8, QI16]>:$output ); let hasOptions = 1; } def TFL_ResizeNearestNeighborOp : TFL_Op<"resize_nearest_neighbor", [ NoSideEffect, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandHasRank<0, 4>, TFL_OperandHasRank<1, 1>, SameOperandsAndResultsScale]> { let summary = "ResizeNearestNeighbor Op"; let description = [{ Resize `images` to `size` using nearest neighbor interpolation. }]; let arguments = (ins TFL_TensorOf<[F32, TFL_Quint8, QUI8, QI8, QI16]>:$input, TFL_I32Tensor:$size, BoolAttr:$align_corners, DefaultValuedAttr:$half_pixel_centers ); let results = (outs TFL_TensorOf<[F32, TFL_Quint8, QUI8, QI8, QI16]>:$output ); let hasOptions = 1; } def TFL_SparseToDenseOp : TFL_Op<"sparse_to_dense", [ NoSideEffect, PredOpTrait<"sparse_values and dense must have same element type", TFL_TCresVTEtIsSameAsOp<0, 2>>, PredOpTrait<"default_value and dense must have same element type", TFL_TCresVTEtIsSameAsOp<0, 3>>, TFL_OperandHasRankAtMost<0, 2>, TFL_OperandHasRankAtMost<1, 1>, TFL_OperandHasRankAtMost<2, 1>]> { let summary = "Converts a sparse representation into a dense tensor."; let description = [{ Builds an array `dense` with shape `output_shape` such that ``` # If sparse_indices is scalar dense[i] = (i == sparse_indices ? sparse_values : default_value) # If sparse_indices is a vector, then for each i dense[sparse_indices[i]] = sparse_values[i] # If sparse_indices is an n by d matrix, then for each i in [0, n) dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i] ``` All other values in `dense` are set to `default_value`. If `sparse_values` is a scalar, all sparse indices are set to this single value. Indices should be sorted in lexicographic order, and indices must not contain any repeats. If `validate_indices` is true, these properties are checked during execution. }]; let arguments = (ins TFL_I32OrI64Tensor:$sparse_indices, TFL_I32OrI64Tensor:$output_shape, TFL_TensorOf<[I32, I64, I8, QI8, UI8, QUI8, TFL_Quint8, F32]>:$sparse_values, TFL_TensorOf<[I32, I64, I8, QI8, UI8, QUI8, TFL_Quint8, F32]>:$default_value ); let results = (outs TFL_TensorOf<[I32, I64, I8, QI8, UI8, QUI8, TFL_Quint8, F32]>:$dense ); } def TFL_StridedSliceOp: TFL_Op<"strided_slice", [ NoSideEffect, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, SameOperandsAndResultsScale, TFL_OperandHasRankAtMost<0, 5>, TFL_OperandHasRank<1, 1>, TFL_OperandHasRank<2, 1>, TFL_OperandHasRank<3, 1> ]> { let summary = "StridedSlice Op"; let description = [{ Return a strided slice from `input`. }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, I8, UI8, QI8, QUI8, I1, I16, QI16, TFL_Quint8, TFL_Str]>:$input, TFL_I32Tensor:$begin, TFL_I32Tensor:$end, TFL_I32Tensor:$strides, I32Attr:$begin_mask, I32Attr:$end_mask, Confined]>:$ellipsis_mask, Confined]>:$new_axis_mask, I32Attr:$shrink_axis_mask ); let results = (outs TFL_TensorOf<[F32, I32, I64, I8, UI8, QI8, QUI8, I1, I16, QI16, TFL_Quint8, TFL_Str]>:$output ); let hasOptions = 1; } // If there is a change in supporting more types in the TFLite cast op kernel, // the While loop outline pass should be updated since it inserts cast op(s) // after the TF -> TFL legalization pass is done. // LINT.IfChange def TFL_CastOp : TFL_Op<"cast", [ NoSideEffect, SameOperandsAndResultShape, NoQuantizableResult]> { let summary = "Cast operator"; let description = [{ Casts input from input type to output type. }]; let arguments = (ins TFL_TensorOf<[F32, I1, I16, I32, I64, TFL_Quint8, UI8, Complex>]>:$input ); let results = (outs TFL_TensorOf<[F32, I1, I16, I32, I64, TFL_Quint8, UI8, Complex>]>:$output); // TFLite's cast op does not utilize CastOptions, instead derives types // from the TfLiteTensors. let hasOptions = 0; let hasFolder = 1; } // LINT.ThenChange(//tensorflow/compiler/mlir/lite/transforms/while_loop_outline.cc) def TFL_MirrorPadOp: TFL_Op<"mirror_pad", [ NoSideEffect, TFL_OperandHasRank<1, 2>]> { let summary = "MirrorPad Operator. Pads a tensor with mirrored values."; let description = [{ This operation pads a input with mirrored values according to the paddings you specify. paddings is an integer tensor with shape [n, 2], where n is the rank of input. For each dimension D of input, paddings[D, 0] indicates how many values to add before the contents of input in that dimension, and paddings[D, 1] indicates how many values to add after the contents of input in that dimension. Both paddings[D, 0] and paddings[D, 1] must be no greater than input.dim_size(D) (or input.dim_size(D) - 1) if copy_border is true (if false, respectively). The padded size of each dimension D of the output is: paddings(D, 0) + input.dim_size(D) + paddings(D, 1) }]; let arguments = (ins TFL_TensorOf<[F32, I32, I64, I8, UI8, QI8, QUI8]>:$input, TFL_TensorOf<[I32, I64]>:$pad, TFL_MirrorPaddingAttr:$mode ); let results = (outs TFL_TensorOf<[F32, I32, I64, I8, UI8, QI8, QUI8]>:$output ); let hasOptions = 1; } def TFL_UniqueOp: TFL_Op<"unique", [ TFL_OperandHasRank<0, 1>, NoSideEffect]> { let summary = "Unique Op."; let description = [{ This operation returns a tensor `output` containing all of the unique elements of `input` sorted in the same order that they occur in `input`. This operation also returns a tensor `idx` the same size as `x` that contains the index of each value of `input` in the unique output `output`. In other words: }]; let arguments = (ins TFL_TensorOf<[I8, QI8, UI8, QUI8, I16, QI16, I32, I64, F32]>:$input ); let results = (outs TFL_TensorOf<[I8, QI8, UI8, QUI8, I16, QI16, I32, I64, F32]>:$output, TFL_I32OrI64Tensor:$idx ); DerivedTFLiteTypeAttr idx_out_type = DerivedTFLiteTypeAttr<[{ return getResult(1).getType().cast().getElementType(). cast().getWidth() > 32 ? tflite::TensorType_INT64 : tflite::TensorType_INT32; }], [{ TypeAttr::get(getResult(1).getType().cast().getElementType()) }]>; let hasOptions = 1; } //===----------------------------------------------------------------------===// // Quantization ops. //===----------------------------------------------------------------------===// def TFL_DequantizeOp: TFL_Op<"dequantize", [NoQuantizableResult]> { let summary = "Dequantize operator"; let description = [{ Converts quantized array of integers to floating-points according to the quantization parameters. }]; let arguments = (ins TFL_TensorOf<[QI8, QUI8, QI16, F16]>:$input); let results = (outs TFL_FpTensor:$output); } def TFL_FakeQuantOp : TFL_Op<"fake_quant", [NoSideEffect]> { let summary = "FakeQuant operator"; let description = [{ Fake-quantize the 'inputs' tensor of type float via float scalars min and max to 'outputs' tensor of same shape as inputs. }]; let arguments = ( ins TFL_FpTensor:$input, // The expected [min, max] range of values. F32Attr:$min, F32Attr:$max, // The bitwidth of the quantization; between 2 and 16, inclusive. Confined, IntMaxValue<16>]>:$num_bits, // Quantization range starts from 0 or 1; starts from 1 if true. Confined:$narrow_range); let results = (outs TFL_FpTensor:$output); let hasCanonicalizer = 0b1; let hasOptions = 1; } def TFL_QConstOp : Op { let summary = "Quantized constant pseudo op"; let description = [{ Represents a quantized constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead. The quantization parameters are stored as a type attribute in this constant. }]; let arguments = ( ins TensorTypeAttr:$qtype, ElementsAttr:$value ); let results = (outs TFL_TensorOf<[QUI8, QI8, QI16, QUI16, TFL_Quint8]>:$output); let builders = [ OpBuilderDAG<(ins "TypeAttr":$qtype, "Attribute":$value), [{ $_state.addAttribute("qtype", qtype); $_state.addAttribute("value", value); $_state.addTypes(qtype.getValue()); }]> ]; } def TFL_SparseQConstOp : Op { let summary = "Sparse quantized constant pseudo op"; let description = [{ Represents a sparse quantized constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead. The quantization parameters are stored as a type attribute in this constant. }]; let arguments = ( ins TensorTypeAttr:$qtype, ElementsAttr:$value, SparsityParameterAttr:$s_param, ElementsAttr:$compressed_data ); let results = (outs TFL_TensorOf<[QUI8, QI8, QI16, QUI16, TFL_Quint8]>:$output); let builders = [ OpBuilderDAG<(ins "TypeAttr":$qtype, "Attribute":$value, "SparsityParameterAttr":$s_param, "Attribute":$compressed_data), [{ $_state.addTypes(qtype.getValue()); $_state.addAttribute("qtype", qtype); $_state.addAttribute("value", value); $_state.addAttribute("s_param", s_param); $_state.addAttribute("compressed_data", compressed_data); }]> ]; } def TFL_QuantizeOp: TFL_Op<"quantize", [ FirstAttrDerivedResultType, SameOperandsAndResultShape, NoQuantizableResult]> { let summary = "Quantize operator"; let description = [{ Converts floating point tensors to quantized integer tensors according to the quantization parameters defined in the type attribute. }]; let arguments = ( ins TFL_TensorOf<[F32, QI8, QUI8, QI16, TFL_Quint8]>:$input, TensorTypeAttr:$qtype ); let results = (outs TFL_TensorOf<[QI8, QUI8, QI16, TFL_Quint8]>:$output); } def TFL_DensifyOp: TFL_Op<"densify", [ NoSideEffect, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoQuantizableResult]> { let summary = "Densify operator"; let description = [{ Converts sparse tensor to dense format. }]; let arguments = (ins TFL_TensorOf<[F32, I8]>:$input); let results = (outs TFL_TensorOf<[F32, I8]>:$output); } //===----------------------------------------------------------------------===// // LSTM Ops //===----------------------------------------------------------------------===// // LSTM Kernel Type attributes def TFL_LSTM_KT_FULL : StrEnumAttrCase<"FULL">; def TFL_LSTM_KT_BASIC : StrEnumAttrCase<"BASIC">; def TFL_LSTMKernelTypeAttr : StrEnumAttr<"LSTMKernelType", "lstm kernel type enum", [ TFL_LSTM_KT_FULL, TFL_LSTM_KT_BASIC ]>; def LstmMandatoryInputsConstraint : PredOpTrait< "mandatory operands element types should match", // TODO(ashwinm): Replace the indices with input tensor names when that // support is available. Or<[ TCopVTEtAreSameAt<[0, 2, 3, 4, 6, 7, 8, 13, 14, 15, 18, 19]>, Neg>]>>; def LstmOptionalPeepholeWeightConstraint : PredOpTrait< "the optional peephole weights should all be specified or none", // Ignore input 9 (cell_to_input_weights) for LSTM with CIFG. And<[ TFL_TCopVTEtAreSameAt<10, 11, 16>, Or<[TFL_TCopVTEtAreSameAt<9, 10, 16>, And<[TypeIsPred<"input_to_input_weights", NoneType>, TypeIsPred<"cell_to_input_weights", NoneType>]>]>]>>; def LstmProjectionWeightBiasConstraint : PredOpTrait< "either projection weight must be specified or both projection weight and " "projection bias must not be specified", Or<[ And<[TypeIsPred<"projection_weights", NoneType>, TypeIsPred<"projection_bias", NoneType>]>, Neg>]>>; def LstmCifgInputConstraint : PredOpTrait< "the cifg inputs should all be specified or none", // If LSTM has combined input/forget gate, input 1, 5, 9, 12, 20 are all none // or 1, 5, 12 should not be none. Inputs 9 and 20 depend on LSTM's variants. Or<[ And<[TypeIsPred<"input_to_input_weights", NoneType>, TypeIsPred<"recurrent_to_input_weights", NoneType>, TypeIsPred<"cell_to_input_weights", NoneType>, TypeIsPred<"input_gate_bias", NoneType>, TypeIsPred<"input_layer_norm_coefficients", NoneType>]>, Neg, TypeIsPred<"recurrent_to_input_weights", NoneType>, TypeIsPred<"input_gate_bias", NoneType>]>>]>>; // TODO(b/137798843): Need to add an additional constraint for both LSTM and // UnidirectionalSequenceLstm // For layer norm: if layer norm is false, tensor {20, 21, 22, 23} // are null; if layer norm is true, tensors {21, 22, 23} are not null; tensor // {20} is not null if additionally cifg = false. def LstmResultConstraint : PredOpTrait< "the input and result tensor elemental types must be same", TFL_TCresVTEtIsSameAsOp<0, 0>>; // This is the basic kernel type LSTM op. // TODO(b/142417845): Refactor this part to return its tflite node name as // "lstm". def TFL_BasicLSTMOp : TFL_Op<"basic_lstm", [NoSideEffect, TFL_OperandHasRank<0, 2>, TFL_OperandHasRank<1, 2>, TFL_OperandHasRank<2, 2>, TFL_OperandHasRank<3, 1>, TFL_OperandHasRank<4, 2>]> { let summary = "The basic lstm operator"; let description = [{ basic LSTM Cell Operator. }]; let arguments = ( ins TFL_TensorOf<[F32, QUI8]>:$data_input, TFL_TensorOf<[F32, QUI8]>:$prev_activ_input, TFL_TensorOf<[F32, QUI8]>:$weights_input, TFL_TensorOf<[F32, QI32]>:$biases_input, TFL_TensorOf<[F32, QI16]>:$prev_state_input, // Attributes DefaultValuedAttr:$fused_activation_function, Confined, [TFL_FloatNonNegative]>:$cell_clip, Confined, [TFL_FloatNonNegative]>:$proj_clip, // Since this op is the BASIC kernel only, constrain it. Confined< DefaultValuedAttr, [TFL_LSTM_KT_BASIC]>:$kernel_type ); let hasOptions = 1; let results = (outs TFL_2DTensorOf<[F32, QUI8]>:$activ_output, TFL_2DTensorOf<[F32, QUI16]>:$state_output, TFL_2DTensorOf<[F32, QUI8]>:$concat_temp, TFL_2DTensorOf<[F32, QUI16]>:$activ_temp); } // This is the FULL kernel type LSTM op. def TFL_LSTMOp : TFL_Op<"lstm", [LstmMandatoryInputsConstraint, LstmOptionalPeepholeWeightConstraint, LstmProjectionWeightBiasConstraint, LstmCifgInputConstraint, LstmResultConstraint, TFL_OperandHasRank<2, 2>, // input_to_forget_weights TFL_OperandHasRank<3, 2>, // input_to_cell_weights TFL_OperandIsNoneOrHasRank<5, 2>, // recurrent_to_input_weights TFL_OperandHasRank<6, 2>, // recurrent_to_forget_weights TFL_OperandHasRank<7, 2>, // recurrent_to_cell_weights TFL_OperandIsNoneOrHasRank<9, 1>, // cell_to_input_weights TFL_OperandIsNoneOrHasRank<10, 1>, // cell_to_forget_weights TFL_OperandIsNoneOrHasRank<11, 1>, // cell_to_output_weights TFL_OperandHasRank<13, 1>, // forget_gate_bias TFL_OperandHasRank<14, 1>, // cell_gate_bias TFL_OperandHasRank<15, 1>, // output_gate_bias TFL_OperandIsNoneOrHasRank<16, 2>, // projection_weights TFL_OperandIsNoneOrHasRank<17, 1>, // projection_bias TFL_StatefulOp]> { let summary = "The full lstm operator"; let description = [{ Long short-term memory unit (LSTM) recurrent network layer. The default non-peephole implementation is based on: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf S. Hochreiter and J. Schmidhuber. 'Long Short-Term Memory'. Neural Computation, 9(8):1735-1780, 1997. The peephole implementation is based on: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, and Francoise Beaufays. 'Long short-term memory recurrent neural network architectures for large scale acoustic modeling.' INTERSPEECH, 2014. The coupling of input and forget gate (CIFG) is based on: http://arxiv.org/pdf/1503.04069.pdf Greff et al. 'LSTM: A Search Space Odyssey' The layer normalization is based on: https://arxiv.org/pdf/1607.06450.pdf Ba et al. 'Layer Normalization' }]; let arguments = ( ins TFL_TensorOf<[F32, QI8]>:$input, // Weights TFL_TensorOfOrNone<[F32, QI8]>:$input_to_input_weights, TFL_TensorOf<[F32, QI8]>:$input_to_forget_weights, TFL_TensorOf<[F32, QI8]>:$input_to_cell_weights, TFL_TensorOf<[F32, QI8]>:$input_to_output_weights, // Recurrent weights TFL_TensorOfOrNone<[F32, QI8]>:$recurrent_to_input_weights, TFL_TensorOf<[F32, QI8]>:$recurrent_to_forget_weights, TFL_TensorOf<[F32, QI8]>:$recurrent_to_cell_weights, TFL_TensorOf<[F32, QI8]>:$recurrent_to_output_weights, // Cell weights TFL_TensorOfOrNone<[F32, QI8, QI16]>:$cell_to_input_weights, // Optional input TFL_TensorOfOrNone<[F32, QI8, QI16]>:$cell_to_forget_weights, // Optional input TFL_TensorOfOrNone<[F32, QI8, QI16]>:$cell_to_output_weights, // Bias TFL_TensorOfOrNone<[F32, QI32]>:$input_gate_bias, TFL_TensorOf<[F32, QI32]>:$forget_gate_bias, TFL_TensorOf<[F32, QI32]>:$cell_bias, TFL_TensorOf<[F32, QI32]>:$output_gate_bias, // Projection weight and bias TFL_TensorOfOrNone<[F32, QI8]>:$projection_weights, // Optional input TFL_TensorOfOrNone<[F32, QI32]>:$projection_bias, // Stateful activation and cell states. TFL_StatefulTensor:$input_activation_state, TFL_StatefulTensor:$input_cell_state, // Layer norm coefficients TFL_TensorOfOrNone<[F32, QI16]>:$input_layer_norm_coefficients, TFL_TensorOfOrNone<[F32, QI16]>:$forget_layer_norm_coefficients, TFL_TensorOfOrNone<[F32, QI16]>:$cell_layer_norm_coefficients, TFL_TensorOfOrNone<[F32, QI16]>:$output_layer_norm_coefficients, // Attributes TFL_AFAttr:$fused_activation_function, Confined, [TFL_FloatNonNegative]>:$cell_clip, Confined, [TFL_FloatNonNegative]>:$proj_clip, // Since this op is the FULL kernel only, constrain it. Confined< DefaultValuedAttr, [TFL_LSTM_KT_FULL]>:$kernel_type, // Types of the optional intermediate tensors, which exist for fully // quantized LSTM op and hold the ranges of the intermediate tensors. // The type for intermediate tenssors are be quant.calibrated when imported // to only store calibrated min, max values. The proper quantization spec is // determined while going through quantization passes. OptionalAttr:$input_to_input_intermediate, OptionalAttr:$input_to_forget_intermediate, OptionalAttr:$input_to_cell_intermediate, OptionalAttr:$input_to_output_intermediate, OptionalAttr:$effective_hidden_scale_intermediate ); let results = (outs AnyTensor:$output); // TODO(fengliuai): customize printer and parser to not display // empty region. let regions = (region AnyRegion:$internal); let hasOptions = 1; let hasCanonicalizer = 1; let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ // StatefulOpInterface: std::vector GetStatefulOperands() { return {18, 19}; } }]; } // UnidirectionalSequenceLstm op. // TODO(ashwinm): Add constraint to validate the combination of operands // that are valid for hybrid vs fully quantized vs float only semantics def TFL_UnidirectionalSequenceLSTMOp : TFL_Op<"unidirectional_sequence_lstm", [LstmMandatoryInputsConstraint, LstmOptionalPeepholeWeightConstraint, LstmProjectionWeightBiasConstraint, LstmCifgInputConstraint, LstmResultConstraint, TFL_OperandHasRankAtLeast<0, 2>, // input TFL_OperandIsNoneOrHasRank<1, 2>, // input_to_input_weights TFL_OperandHasRank<2, 2>, // input_to_forget_weights TFL_OperandHasRank<3, 2>, // input_to_cell_weights TFL_OperandHasRank<4, 2>, // input_to_output_weights TFL_OperandIsNoneOrHasRank<5, 2>, // recurrent_to_input_weights TFL_OperandHasRank<6, 2>, // recurrent_to_forget_weights TFL_OperandHasRank<7, 2>, // recurrent_to_cell_weights TFL_OperandHasRank<8, 2>, // recurrent_to_output_weights TFL_OperandIsNoneOrHasRank<9, 1>, // cell_to_input_weights TFL_OperandIsNoneOrHasRank<10, 1>, // cell_to_forget_weights TFL_OperandIsNoneOrHasRank<11, 1>, // cell_to_output_weights TFL_OperandIsNoneOrHasRank<12, 1>, // input_gate_bias TFL_OperandHasRank<13, 1>, // forget_gate_bias TFL_OperandHasRank<14, 1>, // cell_gate_bias TFL_OperandHasRank<15, 1>, // output_gate_bias TFL_OperandIsNoneOrHasRank<16, 2>, // projection_weights TFL_OperandIsNoneOrHasRank<17, 1>, // projection_bias TFL_StatefulOp]> { let summary = "Unidirectional sequence lstm operator"; let description = [{ A recurrent neural network specified by an LSTM cell. This Op supports unrolling the input along the time or batch dimensions, and implements the following operation for each element in the sequence s = 1...sequence_length: outputs[s] = state = activation(LSTMOp(inputs[s])) where LSTMOp is LSTM TF Lite Op and the “activation” is the function passed as the “fused_activation_function” argument (if not “NONE”). }]; let arguments = ( ins TFL_FpTensor:$input, // Weights TFL_TensorOfOrNone<[F32, QI8]>:$input_to_input_weights, TFL_TensorOf<[F32, QI8]>:$input_to_forget_weights, TFL_TensorOf<[F32, QI8]>:$input_to_cell_weights, TFL_TensorOf<[F32, QI8]>:$input_to_output_weights, // Recurrent weights TFL_TensorOfOrNone<[F32, QI8]>:$recurrent_to_input_weights, TFL_TensorOf<[F32, QI8]>:$recurrent_to_forget_weights, TFL_TensorOf<[F32, QI8]>:$recurrent_to_cell_weights, TFL_TensorOf<[F32, QI8]>:$recurrent_to_output_weights, // Cell weights TFL_TensorOfOrNone<[F32, QI8]>:$cell_to_input_weights, // Optional input TFL_TensorOfOrNone<[F32, QI8]>:$cell_to_forget_weights, // Optional input TFL_TensorOfOrNone<[F32, QI8]>:$cell_to_output_weights, // Bias TFL_TensorOfOrNone<[F32]>:$input_gate_bias, TFL_FpTensor:$forget_gate_bias, TFL_FpTensor:$cell_bias, TFL_FpTensor:$output_gate_bias, // Projection weight and bias TFL_TensorOfOrNone<[F32, QI8]>:$projection_weights, // Optional input TFL_TensorOfOrNone<[F32]>:$projection_bias, // Stateful activation and cell states. TFL_StatefulTensor:$input_activation_state, TFL_StatefulTensor:$input_cell_state, // Layer norm coefficients TFL_TensorOfOrNone<[F32, QI8]>:$input_layer_norm_coefficients, TFL_TensorOfOrNone<[F32, QI8]>:$forget_layer_norm_coefficients, TFL_TensorOfOrNone<[F32, QI8]>:$cell_layer_norm_coefficients, TFL_TensorOfOrNone<[F32, QI8]>:$output_layer_norm_coefficients, // Attributes TFL_AFAttr:$fused_activation_function, Confined, [TFL_FloatNonNegative]>:$cell_clip, Confined, [TFL_FloatNonNegative]>:$proj_clip, BoolAttr:$time_major, // Types of the optional intermediate tensors, which exist for fully // quantized op and hold the ranges of the intermediate tensors. // The type for intermediate tenssors are be quant.calibrated when imported // to only store calibrated min, max values. The proper quantization spec is // determined while going through quantization passes. OptionalAttr:$input_to_input_intermediate, OptionalAttr:$input_to_forget_intermediate, OptionalAttr:$input_to_cell_intermediate, OptionalAttr:$input_to_output_intermediate, OptionalAttr:$effective_hidden_scale_intermediate ); let results = (outs TFL_TensorOf<[F32, QI8]>:$output); let hasOptions = 1; let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ // StatefulOpInterface: std::vector GetStatefulOperands() { return {18, 19}; } }]; } def BidiLstmMandatoryInputsConstraint : PredOpTrait< "mandatory operands element types should match", // TODO(ashwinm): Replace the indices with input tensor names when that // support is available. Or<[ TCopVTEtAreSameAt<[0, 2, 3, 4, 6, 7, 8, 13, 14, 15, 19, 20, 21, 23, 24, 25, 30, 31, 32, 35, 36, 37, 38]>, Neg>]>>; // TODO(b/172517537): support quantized types def BidiLstmOptionalPeepholeWeightConstraint : PredOpTrait< "the optional peephole weights should all be specified or none", TCopVTEtAreSameAt<[9, 10, 11, 26, 27, 28]>>; def BidiLstmProjectionWeightBiasConstraint : PredOpTrait< "either projection weight must be specified or both projection weight and " "projection bias must not be specified", Or<[ And<[TypeIsPred<"fw_projection_weights", NoneType>, TypeIsPred<"fw_projection_bias", NoneType>, TypeIsPred<"bw_projection_weights", NoneType>, TypeIsPred<"bw_projection_bias", NoneType>]>, And<[ Neg>, Neg>, ]> ]>>; // BidirectionalSequenceLstm op. // TODO(ashwinm): Add constraint to validate the combination of operands // that are valid for hybrid vs fully quantized vs float only semantics def TFL_BidirectionalSequenceLSTMOp : TFL_Op<"bidirectional_sequence_lstm", [BidiLstmMandatoryInputsConstraint, BidiLstmOptionalPeepholeWeightConstraint, BidiLstmProjectionWeightBiasConstraint, LstmResultConstraint, TFL_OperandHasRank<0, 3>, // input TFL_OperandHasRank<1, 2>, // fw_input_to_input_weights TFL_OperandHasRank<2, 2>, // fw_input_to_forget_weights TFL_OperandHasRank<3, 2>, // fw_input_to_cell_weights TFL_OperandHasRank<4, 2>, // fw_input_to_output_weights TFL_OperandHasRank<5, 2>, // fw_recurrent_to_input_weights TFL_OperandHasRank<6, 2>, // fw_recurrent_to_forget_weights TFL_OperandHasRank<7, 2>, // fw_recurrent_to_cell_weights TFL_OperandHasRank<8, 2>, // fw_recurrent_to_output_weights TFL_OperandHasRank<9, 1>, // fw_cell_to_input_weights TFL_OperandHasRank<10, 1>, // fw_cell_to_forget_weights TFL_OperandHasRank<11, 1>, // fw_cell_to_output_weights TFL_OperandHasRank<12, 1>, // fw_input_gate_bias TFL_OperandHasRank<13, 1>, // fw_forget_gate_bias TFL_OperandHasRank<14, 1>, // fw_cell_bias TFL_OperandHasRank<15, 1>, // fw_output_gate_bias TFL_OperandHasRank<16, 2>, // fw_projection_weights TFL_OperandHasRank<17, 1>, // fw_projection_bias TFL_OperandHasRank<18, 2>, // bw_input_to_input_weights TFL_OperandHasRank<19, 2>, // bw_input_to_forget_weights TFL_OperandHasRank<20, 2>, // bw_input_to_cell_weights TFL_OperandHasRank<21, 2>, // bw_input_to_output_weights TFL_OperandHasRank<22, 2>, // bw_recurrent_to_input_weights TFL_OperandHasRank<23, 2>, // bw_recurrent_to_forget_weights TFL_OperandHasRank<24, 2>, // bw_recurrent_to_cell_weights TFL_OperandHasRank<25, 2>, // bw_recurrent_to_output_weights TFL_OperandHasRank<26, 1>, // bw_cell_to_input_weights TFL_OperandHasRank<27, 1>, // bw_cell_to_forget_weights TFL_OperandHasRank<28, 1>, // bw_cell_to_output_weights TFL_OperandHasRank<29, 1>, // bw_input_gate_bias TFL_OperandHasRank<30, 1>, // bw_forget_gate_bias TFL_OperandHasRank<31, 1>, // bw_cell_bias TFL_OperandHasRank<32, 1>, // bw_output_gate_bias TFL_OperandHasRank<33, 2>, // bw_projection_weights TFL_OperandHasRank<34, 1>, // bw_projection_bias TFL_StatefulOp]> { let summary = "Bidirectional sequence lstm operator"; let description = [{ Bidirectional lstm is essentially two lstms, one running forward & the other running backward. And the output is the concatenation of the two lstms. }]; let arguments = ( ins TFL_TensorOf<[F32, I8]>:$input, // Forward LSTM Weights TFL_TensorOfOrNone<[F32, I8]>:$fw_input_to_input_weights, TFL_TensorOf<[F32, I8]>:$fw_input_to_forget_weights, TFL_TensorOf<[F32, I8]>:$fw_input_to_cell_weights, TFL_TensorOf<[F32, I8]>:$fw_input_to_output_weights, // Forward Recurrent weights TFL_TensorOfOrNone<[F32, I8]>:$fw_recurrent_to_input_weights, TFL_TensorOf<[F32, I8]>:$fw_recurrent_to_forget_weights, TFL_TensorOf<[F32, I8]>:$fw_recurrent_to_cell_weights, TFL_TensorOf<[F32, I8]>:$fw_recurrent_to_output_weights, // Forward Cell weights TFL_TensorOfOrNone<[F32, I8]>:$fw_cell_to_input_weights, // Optional Forward cell weights TFL_TensorOfOrNone<[F32, I8]>:$fw_cell_to_forget_weights, // Optional Forward cell weights TFL_TensorOfOrNone<[F32, I8]>:$fw_cell_to_output_weights, // Forward Bias TFL_TensorOfOrNone<[F32]>:$fw_input_gate_bias, TFL_TensorOf<[F32]>:$fw_forget_gate_bias, TFL_TensorOf<[F32]>:$fw_cell_bias, TFL_TensorOf<[F32]>:$fw_output_gate_bias, // Forward Projection weight and bias TFL_TensorOfOrNone<[F32, I8]>:$fw_projection_weights, // Forward Optional input TFL_TensorOfOrNone<[F32]>:$fw_projection_bias, // Backward LSTM Weights TFL_TensorOfOrNone<[F32, I8]>:$bw_input_to_input_weights, TFL_TensorOf<[F32, I8]>:$bw_input_to_forget_weights, TFL_TensorOf<[F32, I8]>:$bw_input_to_cell_weights, TFL_TensorOf<[F32, I8]>:$bw_input_to_output_weights, // Backward Recurrent weights TFL_TensorOfOrNone<[F32, I8]>:$bw_recurrent_to_input_weights, TFL_TensorOf<[F32, I8]>:$bw_recurrent_to_forget_weights, TFL_TensorOf<[F32, I8]>:$bw_recurrent_to_cell_weights, TFL_TensorOf<[F32, I8]>:$bw_recurrent_to_output_weights, // Backward Cell weights TFL_TensorOfOrNone<[F32, I8]>:$bw_cell_to_input_weights, // Optional Forward cell weights TFL_TensorOfOrNone<[F32, I8]>:$bw_cell_to_forget_weights, // Optional Forward cell weights TFL_TensorOfOrNone<[F32, I8]>:$bw_cell_to_output_weights, // Backward Bias TFL_TensorOfOrNone<[F32]>:$bw_input_gate_bias, TFL_TensorOf<[F32]>:$bw_forget_gate_bias, TFL_TensorOf<[F32]>:$bw_cell_bias, TFL_TensorOf<[F32]>:$bw_output_gate_bias, // Backward Projection weight and bias TFL_TensorOfOrNone<[F32, I8]>:$bw_projection_weights, // Backward Optional input TFL_TensorOfOrNone<[F32]>:$bw_projection_bias, // Stateful activation and cell states. TFL_StatefulTensor:$fw_input_activation_state, TFL_StatefulTensor:$fw_input_cell_state, TFL_StatefulTensor:$bw_input_activation_state, TFL_StatefulTensor:$bw_input_cell_state, // Auxiliary input & weights. TFL_TensorOfOrNone<[F32, I8]>:$aux_input, // Auxiliary fw weights. TFL_TensorOfOrNone<[F32, I8]>:$fw_aux_input_to_input_weights, TFL_TensorOfOrNone<[F32, I8]>:$fw_aux_input_to_forget_weights, TFL_TensorOfOrNone<[F32, I8]>:$fw_aux_input_to_cell_weights, TFL_TensorOfOrNone<[F32, I8]>:$fw_aux_input_to_output_weights, // Auxiliary bw weights. TFL_TensorOfOrNone<[F32, I8]>:$bw_aux_input_to_input_weights, TFL_TensorOfOrNone<[F32, I8]>:$bw_aux_input_to_forget_weights, TFL_TensorOfOrNone<[F32, I8]>:$bw_aux_input_to_cell_weights, TFL_TensorOfOrNone<[F32, I8]>:$bw_aux_input_to_output_weights, // Attributes TFL_AFAttr:$fused_activation_function, Confined, [TFL_FloatNonNegative]>:$cell_clip, Confined, [TFL_FloatNonNegative]>:$proj_clip, BoolAttr:$merge_outputs, BoolAttr:$time_major ); let results = (outs AnyTensor:$fw_output, AnyTensor:$bw_output ); let hasOptions = 1; let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ // StatefulOpInterface: std::vector GetStatefulOperands() { return {35, 36, 37, 38}; } }]; } // UnidirectionalSequenceRNN op. def TFL_UnidirectionalSequenceRNNOp : TFL_Op<"unidirectional_sequence_rnn", [ TFL_OperandHasRank<4, 2>, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, PredOpTrait<"input and constant value operands must have same element type", TFL_TCopVTEtAreSameAt<1, 2>>, TFL_StatefulOp]> { let summary = "Unidirectional sequence rnn operator"; let description = [{ A recurrent neural network specified by an RNN cell. This Op takes in input in a format {batch_size, seq_len, input_size} or {seq_len, batch_size, input_size} if it's time-majored. It implements the following operation for each element in the sequence s = 1...sequence_length: outputs[s] = state = activation(RNNOp(inputs[s])) where RNNOp is RNNOp TF Lite Op and the “activation” is the function passed as the “fused_activation_function” argument (if not “NONE”). }]; let arguments = ( ins TFL_FpTensor:$input, // Weights TFL_TensorOf<[F32, QI8]>:$input_to_input_weights, // Recurrent weights TFL_TensorOf<[F32, QI8]>:$recurrent_to_input_weights, // Bias TFL_FpTensor:$input_gate_bias, // Hidden state. TFL_StatefulTensor:$hidden_state, // Attributes BoolAttr:$time_major, TFL_AFAttr:$fused_activation_function ); let results = (outs TFL_FpTensor:$output); let hasOptions = 1; let customOption = "SequenceRNNOptions"; let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ // StatefulOpInterface: std::vector GetStatefulOperands() { return {4}; } }]; } def TFL_WhereOp : TFL_Op<"where", [NoSideEffect]> { let summary = "Returns locations of nonzero / true values in a tensor."; let description = [{ This operation returns the coordinates of true elements in `condition`. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in `condition`. Indices are output in row-major order. }]; let arguments = (ins TFL_BoolTensor:$input ); let results = (outs TFL_I64Tensor:$index ); } def TFL_NumericVerifyOp : Op { let summary = "Verifies the numericals of the two operands"; let description = [{ The NumericVerify op is a debugging op to verify the numericals of the two activations. It is a custom op in TFLite. If log_if_failed is true, the NumericVerify op calculates statistics on differences between float and quantized activations, output logs, set differences to the output tensors, and throws an error if errors above tolerance exist. If log_if_failed = false, then it doesn't care about errors. }]; let arguments = (ins TFL_TensorOf<[QI8, QUI8, QI16, F16, TFL_Quint8]>:$input, TFL_TensorOf<[F32]>:$ref, // Attributes DefaultValuedAttr:$tolerance, DefaultValuedAttr:$log_if_failed ); let results = (outs TFL_FpTensor:$output); } // SVDF op. def TFL_SVDFOp : TFL_Op<"svdf", [ PredOpTrait<"the input and result tensor elemental types must be same", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_StatefulOp, AccumulatorUniformScale<3, 2, 4>]> { let summary = "Single value decomposition filter operator"; let description = [{ The SVDF op is a decomposition of a densely connected op into low rank filters. For details: https://research.google.com/pubs/pub43813.html https://arxiv.org/abs/1812.02802 }]; let arguments = ( ins TFL_TensorOf<[F32, QI8]>:$input, // Feature Weights. TFL_TensorOf<[F32, QI8, QUI8]>:$feature_weights, // Time weights TFL_TensorOf<[F32, QI16]>:$time_weights, // Bias TFL_TensorOfOrNone<[F32, QI32]>:$input_gate_bias, // Activation state. TFL_StatefulTensor:$activation_state, // Attributes Confined:$rank, TFL_AFAttr:$fused_activation_function ); let results = (outs TFL_TensorOf<[F32, QI8]>:$output); let hasOptions = 1; let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ // StatefulOpInterface: std::vector GetStatefulOperands() { return {4}; } }]; } def TFL_SegmentSumOp: TFL_Op<"segment_sum", [ NoSideEffect, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, NoQuantizableResult]> { let summary = "SegmentSum operator"; let description = [{ Computes the sum along segments of a tensor. }]; let arguments = (ins TFL_TensorOf<[F32, I32]>:$input, TFL_I32Tensor:$segment_ids ); let results = (outs TFL_TensorOf<[F32, I32]>:$output); } def TFL_YieldOp : Op { let summary = "Yield operation"; let description = [{ The "yield" operation represents a return operation within the conditional and body of structured control flow (e.g., while). The operation takes variable number of operands and produces no results. The operand number and types must match the signature of the region that contains the operation. }]; let arguments = (ins Variadic:$operands); } def TFL_WhileOp : Op, SingleBlockImplicitTerminator<"YieldOp">]> { let summary = [{While loop}]; let description = [{ output = input; while (cond(output)) { output = body(output) } While loop where all values are passes through arguments with implicit capture. input: A list of input tensors whose types are T. output: A list of output tensors whose types are T. cond: A region that takes 'input' and returns a boolean scalar tensor. body: A region that takes a list of tensors and returns another list of tensors. Both lists have the same types. }]; let arguments = (ins Variadic:$input, // Used to map StatelessWhile and While op defined in TensorFlow to a common // op. DefaultValuedAttr:$is_stateless ); let results = (outs Variadic:$output); let regions = (region SizedRegion<1>:$cond, SizedRegion<1>:$body); let verifier = [{ return Verify(*this); }]; let hasCanonicalizer = 1; } def TFL_CallOnceOp : TFL_Op<"call_once", []> { let summary = "Invokes an initialization function"; let description = [{ This operation invokes the given initialization function for the session initializer in tf saved model dialect. }]; let arguments = (ins StrAttr:$session_init_function ); let results = (outs); } def TFL_CustomOp : Op { let summary = "Custom op"; let description = [{ A generic op for any TFLite custom operation. input: A list of inputs in the original op. custom_code: A string used to identify which exactly this op is, which corresponds to operator_codes.custom_code in the flatbuffer. custom_option: a holder to save the op attributes in bytes fashion. output: A list of outputs in the original op. }]; let arguments = (ins Variadic>:$input, StrAttr:$custom_code, OpaqueBytesAttr:$custom_option ); let results = (outs Variadic:$output); let verifier = [{ return Verify(*this); }]; } def TFL_CustomTfOp : Op]> { let summary = "Wrapper Op for TF custom ops."; let description = [{ A wrapper op around any Custom TF op. These includes ops defined using custom_opdefs or linked which are not defined in TF dialect. This Op just wraps the custom op inside a region. Note #1, this Op will not include TF Lite custom ops defined using CustomOp. Note #2, this op is just internal representation inside the converter and are not exposed/exported when the model is exported to Flatbuffer. }]; let arguments = (ins Variadic>:$input ); let results = (outs Variadic:$output); let regions = (region SizedRegion<1>:$body); } def TFL_BroadcastToOp : TFL_Op<"broadcast_to", [ PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, TFL_OperandHasRankAtMost<0, 8>, TFL_OperandHasRank<1, 1>, PredOpTrait<"output dimension count must be at most 8", Or<[TFL_OperandIsUnrankedPred<1>, TFL_OperandDimIsAtMost<1, 0, 8>]>>, NoSideEffect]> { let summary = "Broadcast an array for a compatible shape."; let description = [{ Broadcasting is the process of making arrays to have compatible shapes for arithmetic operations. Two shapes are compatible if for each dimension pair they are either equal or one of them is one. When trying to broadcast a Tensor to a shape, it starts with the trailing dimensions, and works its way forward. For example, >>> x = tf.constant([1, 2, 3]) >>> y = tf.broadcast_to(x, [3, 3]) >>> print(y) tf.Tensor( [[1 2 3] [1 2 3] [1 2 3]], shape=(3, 3), dtype=int32) In the above example, the input Tensor with the shape of `[1, 3]` is broadcasted to output Tensor with shape of `[3, 3]`. When doing broadcasted operations such as multiplying a tensor by a scalar, broadcasting (usually) confers some time or space benefit, as the broadcasted tensor is never materialized. However, `broadcast_to` does not carry with it any such benefits. The newly-created tensor takes the full memory of the broadcasted shape. (In a graph context, `broadcast_to` might be fused to subsequent operation and then be optimized away, however.) }]; let arguments = (ins TFL_TensorOf<[F32, I32, I1, I8, QI8, UI8, QUI8, I16, QI16, I64, Complex>]>:$input, TFL_I32OrI64Tensor:$shape ); let results = (outs TFL_TensorOf<[F32, I32, I1, I8, QI8, UI8, QUI8, I16, QI16, I64, Complex>]>:$output ); } def TFL_RFFT2dOp : TFL_Op<"RFFT2D", [NoSideEffect, NoQuantizableResult]> { let summary = "2D real-valued fast Fourier transform."; let description = [{ Computes the 2-dimensional discrete Fourier transform of a real-valued signal over the inner-most 2 dimensions of `input`. Since the DFT of a real signal is Hermitian-symmetric, `RFFT2D` only returns the `fft_length / 2 + 1` unique components of the FFT for the inner-most dimension of `output`: the zero-frequency term, followed by the `fft_length / 2` positive-frequency terms. Along each axis `RFFT2D` is computed on, if `fft_length` is smaller than the corresponding dimension of `input`, the dimension is cropped. If it is larger, the dimension is padded with zeros. }]; let arguments = (ins TFL_FpTensor:$input, TFL_I32Tensor:$fft_length ); let results = (outs TFL_Complex64Tensor:$output ); } def TFL_AssignVariableOp : TFL_Op<"assign_variable", []> { let summary = "Assigns a new value to a variable."; let description = [{ Any ReadVariableOp with a control dependency on this op is guaranteed to return this value or a subsequent newer value of the variable. }]; let arguments = (ins // TODO(b/149099381): Remove integer IDs after adding the new variable // handle type. TFL_TensorOf<[I32]>:$resource_id, // TODO(b/149099381): Support other types too. TFL_TensorOf<[F32]>:$value ); let results = (outs); } def TFL_ReadVariableOp : TFL_Op<"read_variable", []> { let summary = "Reads variable value."; let description = [{ Read variable data identified by 'resource_id'. }]; let arguments = (ins // TODO(b/149099381): Remove integer IDs after adding the new variable // handle type. TFL_TensorOf<[I32]>:$resource_id ); // TODO(b/149099381): Support other types too. let results = (outs TFL_TensorOf<[F32]>:$result); } def TFL_Conv3DOp : TFL_Op<"conv_3d", [ NoSideEffect, AccumulatorUniformScale<2, 0, 1>, TFL_OperandHasRank<0, 5>, TFL_OperandHasRank<1, 5>, // Channel dimension in input and filter should match. TFL_OperandsHaveSameDimsTrait<0, 1, 4, 3>, PredOpTrait<"input and output must have same element type", TFL_TCresVTEtIsSameAsOp<0, 0>>, PredOpTrait<"bias and output must have same element type", Or<[ TFL_OperandIsNoneType<2>, TFL_TCresVTEtIsSameAsOp<0, 2>]>>, PredOpTrait<"bias must has num of elements equals to 4th dim of filter", Or<[ TFL_OperandIsNoneType<2>, TFL_NumElementsEqualsDim<2, 1, 4>]>>]> { let summary = "Convolution 3D operator"; let description = [{ Performs convolution operation on 3D inputs. Inputs: `inputs[0]`: required: the input activation tensor `inputs[1]`: required: the filter weight tensor `inputs[2]`: optional: the bias tensor }]; let arguments = (ins TFL_TensorOf<[F32]>:$input, TFL_TensorOf<[F32]>:$filter, TFL_TensorOfOrNone<[F32]>:$bias, I32Attr:$dilation_d_factor, I32Attr:$dilation_h_factor, I32Attr:$dilation_w_factor, TFL_AFAttr:$fused_activation_function, TFL_PaddingAttr:$padding, I32Attr:$stride_d, I32Attr:$stride_h, I32Attr:$stride_w ); let results = (outs TFL_TensorOf<[F32]>:$output); let hasOptions = 1; let customOption = "Conv3DOptions"; } def TFL_ComplexAbsOp : TFL_Op<"complex_abs", [ NoSideEffect, SameOperandsAndResultShape]> { let summary = "Computes the complex absolute value of a tensor."; let description = [{ Given a tensor `x` of complex numbers, this operation returns a tensor of type `float` or `double` that is the absolute value of each element in `x`. All elements in `x` must be complex numbers of the form \\(a + bj\\). The absolute value is computed as \\( \sqrt{a^2 + b^2}\\). }]; let arguments = (ins TFL_TensorOf<[Complex>, Complex>]>:$input ); let results = (outs TFL_TensorOf<[F32, F64]>:$output ); } def TFL_RealOp : TFL_Op<"real", [ NoSideEffect, SameOperandsAndResultShape]> { let summary = "Returns the real part of a complex number."; let description = [{ Given a tensor `input` of complex numbers, this operation returns a tensor of type `float` that is the real part of each element in `input`. All elements in `input` must be complex numbers of the form \\(a + bj\\), where *a* is the real part returned by this operation and *b* is the imaginary part. }]; let arguments = (ins TFL_TensorOf<[Complex>, Complex>]>:$input ); let results = (outs TFL_TensorOf<[F32, F64]>:$output ); } def TFL_ImagOp : TFL_Op<"imag", [ NoSideEffect, SameOperandsAndResultShape]> { let summary = "Returns the imaginary part of a complex number."; let description = [{ Given a tensor `input` of complex numbers, this operation returns a tensor of type `float` that is the imaginary part of each element in `input`. All elements in `input` must be complex numbers of the form \\(a + bj\\), where *a* is the real part and *b* is the imaginary part returned by this operation. }]; let arguments = (ins TFL_TensorOf<[Complex>, Complex>]>:$input ); let results = (outs TFL_TensorOf<[F32, F64]>:$output ); } #endif // TFL_OPS