/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/compiler/tf2xla/xla_expression.h" #include "tensorflow/compiler/tf2xla/literal_util.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { XlaExpression::XlaExpression() = default; XlaExpression XlaExpression::Invalid() { XlaExpression e; e.kind_ = Kind::kInvalid; return e; } XlaExpression XlaExpression::Constant(Tensor value) { XlaExpression e; e.kind_ = Kind::kConstant; e.dtype_ = value.dtype(); e.constant_value_ = value; return e; } XlaExpression XlaExpression::ConstantResource(Tensor value, XlaResource* resource) { XlaExpression e; e.kind_ = Kind::kResource; e.dtype_ = DT_RESOURCE; e.resource_ = resource; e.constant_value_ = value; return e; } XlaExpression XlaExpression::XlaOp(xla::XlaOp value, DataType dtype) { XlaExpression e; e.kind_ = Kind::kXlaOp; e.dtype_ = dtype; e.handle_ = value; return e; } XlaExpression XlaExpression::TensorList(xla::XlaOp tensor_list) { XlaExpression e; e.kind_ = Kind::kTensorList; e.dtype_ = DT_VARIANT; e.handle_ = tensor_list; return e; } XlaExpression XlaExpression::Resource(XlaResource* resource) { XlaExpression e; e.kind_ = Kind::kResource; e.dtype_ = DT_RESOURCE; e.resource_ = resource; return e; } string XlaExpression::HumanString() const { switch (kind_) { case Kind::kInvalid: return "invalid"; case Kind::kConstant: return "constant"; case Kind::kXlaOp: return "xla_op"; case Kind::kResource: return "resource"; case Kind::kTensorList: return "tensor_list"; } } xla::XlaOp XlaExpression::AsXlaOp(xla::XlaBuilder* builder) const { return builder->ReportErrorOrReturn([&]() -> xla::StatusOr { switch (kind_) { case Kind::kConstant: { xla::BorrowingLiteral literal; TF_RETURN_IF_ERROR( HostTensorToBorrowingLiteral(*constant_value_, &literal)); return xla::ConstantLiteral(builder, literal); } case Kind::kTensorList: TF_FALLTHROUGH_INTENDED; case Kind::kXlaOp: if (builder != handle_.builder()) { return errors::InvalidArgument( "Mismatched builders in XlaExpression::AsXlaOp"); } return handle_; default: return errors::InvalidArgument("AsXlaOp called on XlaExpression: ", HumanString()); } }); } xla::StatusOr XlaExpression::ResolveDynamism( xla::Client* client) const { switch (kind()) { case Kind::kConstant: { // Constant values are considered static. Tensor constant_false(DT_BOOL, constant_value()->shape()); auto flat = constant_false.flat(); for (int64 i = 0; i < flat.size(); ++i) flat(i) = false; return constant_false; } case Kind::kXlaOp: break; case Kind::kTensorList: TF_FALLTHROUGH_INTENDED; case Kind::kResource: TF_FALLTHROUGH_INTENDED; case Kind::kInvalid: return errors::InvalidArgument( "ResolveDynamism called on unsupported XlaExpression: ", HumanString()); } if (!client) return errors::InvalidArgument("client is required to resolve constant"); TF_ASSIGN_OR_RETURN(xla::XlaComputation constant_graph, handle().builder()->BuildDynamicInferenceGraph(handle())); TF_ASSIGN_OR_RETURN(TensorShape shape, GetShape()); // The XLA layout is specified minor to major, and TensorFlow uses a major to // minor order. std::vector layout_indices(shape.dims()); std::iota(layout_indices.rbegin(), layout_indices.rend(), 0); xla::Layout layout = xla::LayoutUtil::MakeLayout(layout_indices); TF_ASSIGN_OR_RETURN(xla::Literal literal, client->ComputeConstant(constant_graph, &layout)); Tensor tensor(DT_BOOL); TF_RETURN_IF_ERROR(LiteralToHostTensor(literal, DT_BOOL, &tensor)); return tensor; } xla::StatusOr> XlaExpression::ResolveConstant( xla::Client* client, bool dynamic_dimension_is_minus_one) const { switch (kind()) { case Kind::kConstant: case Kind::kResource: return constant_value(); case Kind::kXlaOp: break; case Kind::kTensorList: TF_FALLTHROUGH_INTENDED; case Kind::kInvalid: return errors::InvalidArgument( "ResolveConstant called on XlaExpression: ", HumanString()); } TF_ASSIGN_OR_RETURN(bool is_constant, handle().builder()->IsConstant(handle())); if (!is_constant) { return {absl::nullopt}; } if (!client) return errors::InvalidArgument("client is required to resolve constant"); TF_ASSIGN_OR_RETURN(xla::XlaComputation constant_graph, handle().builder()->BuildConstantSubGraph( handle(), dynamic_dimension_is_minus_one)); TF_ASSIGN_OR_RETURN(TensorShape shape, GetShape()); // The XLA layout is specified minor to major, and TensorFlow uses a major to // minor order. std::vector layout_indices(shape.dims()); std::iota(layout_indices.rbegin(), layout_indices.rend(), 0); xla::Layout layout = xla::LayoutUtil::MakeLayout(layout_indices); TF_ASSIGN_OR_RETURN(xla::Literal literal, client->ComputeConstant(constant_graph, &layout)); Tensor tensor; TF_RETURN_IF_ERROR(LiteralToHostTensor(literal, dtype(), &tensor)); return {tensor}; } xla::StatusOr XlaExpression::GetShape() const { switch (kind_) { case Kind::kConstant: return constant_value()->shape(); case Kind::kResource: if (constant_value()) { return constant_value()->shape(); } return TensorShape({}); case Kind::kXlaOp: { TF_ASSIGN_OR_RETURN(xla::Shape xla_shape, handle().builder()->GetShape(handle())); TensorShape shape; TF_RETURN_IF_ERROR(XLAShapeToTensorShape(xla_shape, &shape)); return shape; } case Kind::kTensorList: return TensorShape({}); case Kind::kInvalid: return errors::InvalidArgument( "GetShape() called on invalid XlaExpression"); } } const XlaExpression* XlaExpression::CastExpressionFromTensor( const Tensor& tensor) { const XlaExpression* expression = reinterpret_cast(tensor.tensor_data().data()); CHECK(expression->kind() != XlaExpression::Kind::kInvalid) << expression->HumanString(); return expression; } // Assigns an XlaExpression to a tensor on an XLA compilation device. void XlaExpression::AssignExpressionToTensor(const XlaExpression& value, Tensor* tensor) { const XlaExpression* expression = reinterpret_cast(tensor->tensor_data().data()); CHECK(expression->kind() == XlaExpression::Kind::kInvalid) << expression->HumanString(); *const_cast(expression) = value; } } // namespace tensorflow