/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_GPU_THUNK_SCHEDULE_H_ #define TENSORFLOW_COMPILER_XLA_SERVICE_GPU_THUNK_SCHEDULE_H_ #include #include #include #include #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/compiler/xla/service/gpu/stream_assignment.h" #include "tensorflow/compiler/xla/service/gpu/thunk.h" #include "tensorflow/compiler/xla/service/hlo_instruction.h" #include "tensorflow/compiler/xla/types.h" namespace xla { namespace gpu { // Encapsulates in which order and on which streams the thunks are executed. A // schedule contains // // 1. A stream assignment indicating which stream each thunk is executed on. // // 2. A total order of all thunks. If A is ordered before B and they are // assigned to the same stream, then A completes before B starts. If A is // ordered before B and they are on different streams, their actual execution // order is not determined. // // 3. A set of dependency edges. If A and B are scheduled on different streams // and A has to complete before B starts (e.g. A produces an input of B), then B // "depends" on A. class ThunkSchedule { public: // `thunk_to_hlo` is an one-to-one map. Every thunk in this container maps to // an HLO, but not every HLO ever exists produces a Thunk. // // thunk_to_hlo.keys() == set(thunks). ThunkSchedule( std::unique_ptr thunks, std::unique_ptr stream_assignment, absl::flat_hash_map thunk_to_hlo); // Single stream, trivial schedule in the ThunkSequence order. explicit ThunkSchedule(std::unique_ptr thunks); // Returns the total order of executing all the thunks. const std::vector& TotalOrder() const { return thunk_total_order_; } // Thunks that `thunk` depends on. const std::list& DependsOn(const Thunk* thunk) const; // Whether `thunk` is depended by another thunk. bool Depended(const Thunk* thunk) const { return depended_by_.contains(thunk); } // Delegates to StreamAssignment. int StreamCount() const { if (stream_assignment_) { return stream_assignment_->StreamCount(); } return 1; } int StreamNumberForThunk(const Thunk* thunk) const { if (stream_assignment_) { return stream_assignment_->StreamNumberForHlo(*thunk_to_hlo_.at(thunk)); } return 0; } string ToString() const; private: void RemoveRedundantDependencyEdges(); // Adds `operand` and its transitive operands to the dependency list of // `thunk`. // // Precondition: `operand` is a non-trivial (i.e. excluding // thunk.hlo_instruction_ itself) transitive operand of // thunk.hlo_instruction_. void AddDependenciesOnTransitiveOperands( const Thunk& thunk, const HloInstruction& operand, const absl::flat_hash_map& hlo_to_thunk); std::unique_ptr thunks_; std::vector thunk_total_order_; absl::flat_hash_map> depends_on_; absl::flat_hash_set depended_by_; std::list empty_thunk_list_; std::unique_ptr stream_assignment_; absl::flat_hash_map thunk_to_hlo_; }; } // namespace gpu } // namespace xla #endif // TENSORFLOW_COMPILER_XLA_SERVICE_GPU_THUNK_SCHEDULE_H_