syntax = "proto3"; package tensorflow; import "tensorflow/core/framework/tensor.proto"; import "tensorflow/core/framework/tensor_shape.proto"; import "tensorflow/core/framework/types.proto"; option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf/for_core_protos_go_proto"; // `StructuredValue` represents a dynamically typed value representing various // data structures that are inspired by Python data structures typically used in // TensorFlow functions as inputs and outputs. // // For example when saving a Layer there may be a `training` argument. If the // user passes a boolean True/False, that switches between two concrete // TensorFlow functions. In order to switch between them in the same way after // loading the SavedModel, we need to represent "True" and "False". // // A more advanced example might be a function which takes a list of // dictionaries mapping from strings to Tensors. In order to map from // user-specified arguments `[{"a": tf.constant(1.)}, {"q": tf.constant(3.)}]` // after load to the right saved TensorFlow function, we need to represent the // nested structure and the strings, recording that we have a trace for anything // matching `[{"a": tf.TensorSpec(None, tf.float32)}, {"q": tf.TensorSpec([], // tf.float64)}]` as an example. // // Likewise functions may return nested structures of Tensors, for example // returning a dictionary mapping from strings to Tensors. In order for the // loaded function to return the same structure we need to serialize it. // // This is an ergonomic aid for working with loaded SavedModels, not a promise // to serialize all possible function signatures. For example we do not expect // to pickle generic Python objects, and ideally we'd stay language-agnostic. message StructuredValue { // The kind of value. oneof kind { // Represents None. NoneValue none_value = 1; // Represents a double-precision floating-point value (a Python `float`). double float64_value = 11; // Represents a signed integer value, limited to 64 bits. // Larger values from Python's arbitrary-precision integers are unsupported. sint64 int64_value = 12; // Represents a string of Unicode characters stored in a Python `str`. // In Python 3, this is exactly what type `str` is. // In Python 2, this is the UTF-8 encoding of the characters. // For strings with ASCII characters only (as often used in TensorFlow code) // there is effectively no difference between the language versions. // The obsolescent `unicode` type of Python 2 is not supported here. string string_value = 13; // Represents a boolean value. bool bool_value = 14; // Represents a TensorShape. tensorflow.TensorShapeProto tensor_shape_value = 31; // Represents an enum value for dtype. tensorflow.DataType tensor_dtype_value = 32; // Represents a value for tf.TensorSpec. TensorSpecProto tensor_spec_value = 33; // Represents a value for tf.TypeSpec. TypeSpecProto type_spec_value = 34; // Represents a value for tf.BoundedTensorSpec. BoundedTensorSpecProto bounded_tensor_spec_value = 35; // Represents a list of `Value`. ListValue list_value = 51; // Represents a tuple of `Value`. TupleValue tuple_value = 52; // Represents a dict `Value`. DictValue dict_value = 53; // Represents Python's namedtuple. NamedTupleValue named_tuple_value = 54; } } // Represents None. message NoneValue {} // Represents a Python list. message ListValue { repeated StructuredValue values = 1; } // Represents a Python tuple. message TupleValue { repeated StructuredValue values = 1; } // Represents a Python dict keyed by `str`. // The comment on Unicode from Value.string_value applies analogously. message DictValue { map fields = 1; } // Represents a (key, value) pair. message PairValue { string key = 1; StructuredValue value = 2; } // Represents Python's namedtuple. message NamedTupleValue { string name = 1; repeated PairValue values = 2; } // A protobuf to represent tf.TensorSpec. message TensorSpecProto { string name = 1; tensorflow.TensorShapeProto shape = 2; tensorflow.DataType dtype = 3; } // A protobuf to represent tf.BoundedTensorSpec. message BoundedTensorSpecProto { string name = 1; tensorflow.TensorShapeProto shape = 2; tensorflow.DataType dtype = 3; tensorflow.TensorProto minimum = 4; tensorflow.TensorProto maximum = 5; } // Represents a tf.TypeSpec message TypeSpecProto { enum TypeSpecClass { UNKNOWN = 0; SPARSE_TENSOR_SPEC = 1; // tf.SparseTensorSpec INDEXED_SLICES_SPEC = 2; // tf.IndexedSlicesSpec RAGGED_TENSOR_SPEC = 3; // tf.RaggedTensorSpec TENSOR_ARRAY_SPEC = 4; // tf.TensorArraySpec DATA_DATASET_SPEC = 5; // tf.data.DatasetSpec DATA_ITERATOR_SPEC = 6; // IteratorSpec from data/ops/iterator_ops.py OPTIONAL_SPEC = 7; // tf.OptionalSpec PER_REPLICA_SPEC = 8; // PerReplicaSpec from distribute/values.py VARIABLE_SPEC = 9; // tf.VariableSpec ROW_PARTITION_SPEC = 10; // RowPartitionSpec from ragged/row_partition.py reserved 11; } TypeSpecClass type_spec_class = 1; // The value returned by TypeSpec._serialize(). StructuredValue type_state = 2; // This is currently redundant with the type_spec_class enum, and is only // used for error reporting. In particular, if you use an older binary to // load a newer model, and the model uses a TypeSpecClass that the older // binary doesn't support, then this lets us display a useful error message. string type_spec_class_name = 3; }