# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class to represent a device.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.util.tf_export import tf_export # EPU represents for TPU embedding for now. Subject to change in future. _VALID_DEVICE_TYPES = frozenset({"CPU", "GPU", "TPU", "CUSTOM", "EPU"}) # ============================================================================== # == Global Implementation Details ============================================= # ============================================================================== _STRING_TO_COMPONENTS_CACHE = {} _COMPONENTS_TO_STRING_CACHE = {} def _as_str_or_none(inp): return None if inp is None else str(inp) def _as_int_or_none(inp): return None if inp is None else int(inp) def _as_device_str_or_none(device_type): # For backwards compatibility only, we support lowercase variants of # cpu and gpu but turn them into uppercase here. if device_type in ("cpu", "gpu"): return device_type.upper() return _as_str_or_none(device_type) @tf_export("DeviceSpec", v1=[]) class DeviceSpecV2(object): """Represents a (possibly partial) specification for a TensorFlow device. `DeviceSpec`s are used throughout TensorFlow to describe where state is stored and computations occur. Using `DeviceSpec` allows you to parse device spec strings to verify their validity, merge them or compose them programmatically. Example: ```python # Place the operations on device "GPU:0" in the "ps" job. device_spec = DeviceSpec(job="ps", device_type="GPU", device_index=0) with tf.device(device_spec.to_string()): # Both my_var and squared_var will be placed on /job:ps/device:GPU:0. my_var = tf.Variable(..., name="my_variable") squared_var = tf.square(my_var) ``` With eager execution disabled (by default in TensorFlow 1.x and by calling disable_eager_execution() in TensorFlow 2.x), the following syntax can be used: ```python tf.compat.v1.disable_eager_execution() # Same as previous device_spec = DeviceSpec(job="ps", device_type="GPU", device_index=0) # No need of .to_string() method. with tf.device(device_spec): my_var = tf.Variable(..., name="my_variable") squared_var = tf.square(my_var) ``` If a `DeviceSpec` is partially specified, it will be merged with other `DeviceSpec`s according to the scope in which it is defined. `DeviceSpec` components defined in inner scopes take precedence over those defined in outer scopes. ```python gpu0_spec = DeviceSpec(job="ps", device_type="GPU", device_index=0) with tf.device(DeviceSpec(job="train").to_string()): with tf.device(gpu0_spec.to_string()): # Nodes created here will be assigned to /job:ps/device:GPU:0. with tf.device(DeviceSpec(device_type="GPU", device_index=1).to_string()): # Nodes created here will be assigned to /job:train/device:GPU:1. ``` A `DeviceSpec` consists of 5 components -- each of which is optionally specified: * Job: The job name. * Replica: The replica index. * Task: The task index. * Device type: The device type string (e.g. "CPU" or "GPU"). * Device index: The device index. """ __slots__ = ("_job", "_replica", "_task", "_device_type", "_device_index", "_as_string", "_hash") def __init__(self, job=None, replica=None, task=None, device_type=None, device_index=None): """Create a new `DeviceSpec` object. Args: job: string. Optional job name. replica: int. Optional replica index. task: int. Optional task index. device_type: Optional device type string (e.g. "CPU" or "GPU") device_index: int. Optional device index. If left unspecified, device represents 'any' device_index. """ self._job = _as_str_or_none(job) self._replica = _as_int_or_none(replica) self._task = _as_int_or_none(task) self._device_type = _as_device_str_or_none(device_type) self._device_index = _as_int_or_none(device_index) self._as_string = self._components_to_string( job=self._job, replica=self._replica, task=self._task, device_type=self._device_type, device_index=self._device_index) self._hash = hash(self.to_string()) def to_string(self): """Return a string representation of this `DeviceSpec`. Returns: a string of the form /job:/replica:/task:/device::. """ return self._as_string @classmethod def from_string(cls, spec): """Construct a `DeviceSpec` from a string. Args: spec: a string of the form /job:/replica:/task:/device:CPU: or /job:/replica:/task:/device:GPU: as cpu and gpu are mutually exclusive. All entries are optional. Returns: A DeviceSpec. """ return cls(*cls._string_to_components(spec)) def parse_from_string(self, spec): """Parse a `DeviceSpec` name into its components. **2.x behavior change**: In TensorFlow 1.x, this function mutates its own state and returns itself. In 2.x, DeviceSpecs are immutable, and this function will return a DeviceSpec which contains the spec. * Recommended: ``` # my_spec and my_updated_spec are unrelated. my_spec = tf.DeviceSpec.from_string("/CPU:0") my_updated_spec = tf.DeviceSpec.from_string("/GPU:0") with tf.device(my_updated_spec): ... ``` * Will work in 1.x and 2.x (though deprecated in 2.x): ``` my_spec = tf.DeviceSpec.from_string("/CPU:0") my_updated_spec = my_spec.parse_from_string("/GPU:0") with tf.device(my_updated_spec): ... ``` * Will NOT work in 2.x: ``` my_spec = tf.DeviceSpec.from_string("/CPU:0") my_spec.parse_from_string("/GPU:0") # <== Will not update my_spec with tf.device(my_spec): ... ``` In general, `DeviceSpec.from_string` should completely replace `DeviceSpec.parse_from_string`, and `DeviceSpec.replace` should completely replace setting attributes directly. Args: spec: an optional string of the form /job:/replica:/task:/device:CPU: or /job:/replica:/task:/device:GPU: as cpu and gpu are mutually exclusive. All entries are optional. Returns: The `DeviceSpec`. Raises: ValueError: if the spec was not valid. """ return self.from_string(spec) def make_merged_spec(self, dev): """Returns a new DeviceSpec which incorporates `dev`. When combining specs, `dev` will take precedence over the current spec. So for instance: ``` first_spec = tf.DeviceSpec(job=0, device_type="CPU") second_spec = tf.DeviceSpec(device_type="GPU") combined_spec = first_spec.make_merged_spec(second_spec) ``` is equivalent to: ``` combined_spec = tf.DeviceSpec(job=0, device_type="GPU") ``` Args: dev: a `DeviceSpec` Returns: A new `DeviceSpec` which combines `self` and `dev` """ return self.__class__(*self._get_combined_properties(dev)) def replace(self, **kwargs): """Convenience method for making a new DeviceSpec by overriding fields. For instance: ``` my_spec = DeviceSpec=(job="my_job", device="CPU") my_updated_spec = my_spec.replace(device="GPU") my_other_spec = my_spec.replace(device=None) ``` Args: **kwargs: This method takes the same args as the DeviceSpec constructor Returns: A DeviceSpec with the fields specified in kwargs overridden. """ init_kwargs = dict( job=self.job, replica=self.replica, task=self.task, device_type=self.device_type, device_index=self.device_index) # Explicitly provided kwargs take precedence. init_kwargs.update(kwargs) return self.__class__(**init_kwargs) @property def job(self): return self._job @property def replica(self): return self._replica @property def task(self): return self._task @property def device_type(self): return self._device_type @property def device_index(self): return self._device_index def _get_combined_properties(self, dev): """Combine the current DeviceSpec with another DeviceSpec. The combination of DeviceSpecs is will give priority to dev. Args: dev: a `DeviceSpec` Returns: A tuple of (job, replica, task, device_type, device_index) which represents the combination of self and dev. """ return ( dev.job if dev.job is not None else self.job, dev.replica if dev.replica is not None else self.replica, dev.task if dev.task is not None else self.task, dev.device_type if dev.device_type is not None else self.device_type, dev.device_index if dev.device_index is not None else self.device_index, ) @staticmethod def _string_to_components(spec=None): """Stateless portion of device spec string parsing. Args: spec: An optional string specifying a device specification. Returns: The parsed components of `spec`. Note that the result of this function must go through attribute setters of DeviceSpec, and should therefore NOT be used directly. """ cached_result = _STRING_TO_COMPONENTS_CACHE.get(spec) if cached_result is not None: return cached_result raw_spec = spec # keep a copy of the original to update the cache job, replica, task, device_type, device_index = None, None, None, None, None spec = spec or "" splits = [x.split(":") for x in spec.split("/")] for y in splits: ly = len(y) if y: # NOTE(taylorrobie): these will go through setters later. if ly == 2 and y[0] == "job": job = y[1] elif ly == 2 and y[0] == "replica": replica = y[1] elif ly == 2 and y[0] == "task": task = y[1] elif ((ly == 1 or ly == 2) and (y[0].upper() in _VALID_DEVICE_TYPES)): if device_type is not None: raise ValueError("Cannot specify multiple device types: %s" % spec) device_type = y[0].upper() if ly == 2 and y[1] != "*": device_index = int(y[1]) elif ly == 3 and y[0] == "device": if device_type is not None: raise ValueError("Cannot specify multiple device types: %s" % spec) device_type = y[1] if y[2] != "*": device_index = int(y[2]) elif ly and y[0] != "": # pylint: disable=g-explicit-bool-comparison raise ValueError("Unknown attribute: '%s' in '%s'" % (y[0], spec)) output = (job, replica, task, device_type, device_index) _STRING_TO_COMPONENTS_CACHE[raw_spec] = output return output @staticmethod def _components_to_string(job, replica, task, device_type, device_index): """Stateless portion of `to_string` (separated to allow caching).""" key = (job, replica, task, device_type, device_index) cached_result = _COMPONENTS_TO_STRING_CACHE.get(key) if cached_result is not None: return cached_result output = [] if job is not None: output.append("/job:" + job) if replica is not None: output.append("/replica:" + str(replica)) if task is not None: output.append("/task:" + str(task)) if device_type is not None: device_index_string = "*" if device_index is not None: # Unlike the others, device_index is stored as an int. device_index_string = str(device_index) output.append("/device:%s:%s" % (device_type, device_index_string)) output = "".join(output) _COMPONENTS_TO_STRING_CACHE[key] = output return output def __eq__(self, other): """Checks if the `other` DeviceSpec is same as the current instance, eg have same value for all the internal fields. Args: other: Another DeviceSpec Returns: Return `True` if `other` is also a DeviceSpec instance and has same value as the current instance. Return `False` otherwise. """ return (isinstance(other, self.__class__) and self.to_string() == other.to_string()) def __hash__(self): return self._hash @tf_export(v1=["DeviceSpec"]) # pylint: disable=missing-docstring class DeviceSpecV1(DeviceSpecV2): __doc__ = DeviceSpecV2.__doc__ __slots__ = DeviceSpecV2.__slots__ @DeviceSpecV2.job.setter def job(self, job): self._job = _as_str_or_none(job) self._as_string, self._hash = None, None @DeviceSpecV2.replica.setter def replica(self, replica): self._replica = _as_int_or_none(replica) self._as_string, self._hash = None, None @DeviceSpecV2.task.setter def task(self, task): self._task = _as_int_or_none(task) self._as_string, self._hash = None, None @DeviceSpecV2.device_type.setter def device_type(self, device_type): self._device_type = _as_device_str_or_none(device_type) self._as_string, self._hash = None, None @DeviceSpecV2.device_index.setter def device_index(self, device_index): self._device_index = _as_int_or_none(device_index) self._as_string, self._hash = None, None def __hash__(self): if self._hash is None: self._hash = hash(self.to_string()) return self._hash def to_string(self): if self._as_string is None: self._as_string = self._components_to_string( job=self.job, replica=self.replica, task=self.task, device_type=self.device_type, device_index=self.device_index) return self._as_string def parse_from_string(self, spec): (self.job, self.replica, self.task, self.device_type, self.device_index ) = self._string_to_components(spec) return self def merge_from(self, dev): """Merge the properties of "dev" into this `DeviceSpec`. Note: Will be removed in TensorFlow 2.x since DeviceSpecs will become immutable. Args: dev: a `DeviceSpec`. """ (self.job, self.replica, self.task, self.device_type, self.device_index ) = self._get_combined_properties(dev) # Use parent class docstrings for public methods. to_string.__doc__ = DeviceSpecV2.to_string.__doc__ parse_from_string.__doc__ = DeviceSpecV2.parse_from_string.__doc__