# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for generating random numbers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_random_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import stateless_random_ops # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.python.ops.gen_random_ops import * # pylint: enable=wildcard-import from tensorflow.python.util import deprecation from tensorflow.python.util import dispatch from tensorflow.python.util.tf_export import tf_export @tf_export("random.normal", v1=["random.normal", "random_normal"]) @dispatch.add_dispatch_support @deprecation.deprecated_endpoints("random_normal") def random_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None, name=None): """Outputs random values from a normal distribution. Example that generates a new set of random values every time: >>> tf.random.set_seed(5); >>> tf.random.normal([4], 0, 1, tf.float32) Example that outputs a reproducible result: >>> tf.random.set_seed(5); >>> tf.random.normal([2,2], 0, 1, tf.float32, seed=1) In this case, we are setting both the global and operation-level seed to ensure this result is reproducible. See `tf.random.set_seed` for more information. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A Tensor or Python value of type `dtype`, broadcastable with `stddev`. The mean of the normal distribution. stddev: A Tensor or Python value of type `dtype`, broadcastable with `mean`. The standard deviation of the normal distribution. dtype: The type of the output. seed: A Python integer. Used to create a random seed for the distribution. See `tf.random.set_seed` for behavior. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random normal values. """ with ops.name_scope(name, "random_normal", [shape, mean, stddev]) as name: shape_tensor = tensor_util.shape_tensor(shape) mean_tensor = ops.convert_to_tensor(mean, dtype=dtype, name="mean") stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev") seed1, seed2 = random_seed.get_seed(seed) rnd = gen_random_ops.random_standard_normal( shape_tensor, dtype, seed=seed1, seed2=seed2) mul = rnd * stddev_tensor value = math_ops.add(mul, mean_tensor, name=name) tensor_util.maybe_set_static_shape(value, shape) return value ops.NotDifferentiable("RandomStandardNormal") def parameterized_truncated_normal(shape, means=0.0, stddevs=1.0, minvals=-2.0, maxvals=2.0, dtype=dtypes.float32, seed=None, name=None): """Outputs random values from a truncated normal distribution. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than 2 standard deviations from the mean are dropped and re-picked. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. means: A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution. stddevs: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the truncated normal distribution. minvals: A 0-D Tensor or Python value of type `dtype`. The minimum value of the truncated normal distribution. maxvals: A 0-D Tensor or Python value of type `dtype`. The maximum value of the truncated normal distribution. dtype: The type of the output. seed: A Python integer. Used to create a random seed for the distribution. See `tf.random.set_seed` for behavior. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random truncated normal values. """ with ops.name_scope(name, "parameterized_truncated_normal", [shape, means, stddevs, minvals, maxvals]) as name: shape_tensor = tensor_util.shape_tensor(shape) means_tensor = ops.convert_to_tensor(means, dtype=dtype, name="means") stddevs_tensor = ops.convert_to_tensor(stddevs, dtype=dtype, name="stddevs") minvals_tensor = ops.convert_to_tensor(minvals, dtype=dtype, name="minvals") maxvals_tensor = ops.convert_to_tensor(maxvals, dtype=dtype, name="maxvals") seed1, seed2 = random_seed.get_seed(seed) rnd = gen_random_ops.parameterized_truncated_normal( shape_tensor, means_tensor, stddevs_tensor, minvals_tensor, maxvals_tensor, seed=seed1, seed2=seed2) tensor_util.maybe_set_static_shape(rnd, shape) return rnd @tf_export("random.truncated_normal", v1=["random.truncated_normal", "truncated_normal"]) @dispatch.add_dispatch_support @deprecation.deprecated_endpoints("truncated_normal") def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None, name=None): """Outputs random values from a truncated normal distribution. The values are drawn from a normal distribution with specified mean and standard deviation, discarding and re-drawing any samples that are more than two standard deviations from the mean. Examples: >>> tf.random.truncated_normal(shape=[2]) >>> tf.random.truncated_normal(shape=[2], mean=3, stddev=1, dtype=tf.float32) Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution. stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation. dtype: The type of the output. Restricted to floating-point types: `tf.half`, `tf.float`, `tf.double`, etc. seed: A Python integer. Used to create a random seed for the distribution. See `tf.random.set_seed` for more information. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random truncated normal values. """ with ops.name_scope(name, "truncated_normal", [shape, mean, stddev]) as name: shape_tensor = tensor_util.shape_tensor(shape) mean_tensor = ops.convert_to_tensor(mean, dtype=dtype, name="mean") stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev") seed1, seed2 = random_seed.get_seed(seed) rnd = gen_random_ops.truncated_normal( shape_tensor, dtype, seed=seed1, seed2=seed2) mul = rnd * stddev_tensor value = math_ops.add(mul, mean_tensor, name=name) tensor_util.maybe_set_static_shape(value, shape) return value ops.NotDifferentiable("ParameterizedTruncatedNormal") ops.NotDifferentiable("TruncatedNormal") @tf_export("random.uniform", v1=["random.uniform", "random_uniform"]) @dispatch.add_dispatch_support @deprecation.deprecated_endpoints("random_uniform") def random_uniform(shape, minval=0, maxval=None, dtype=dtypes.float32, seed=None, name=None): """Outputs random values from a uniform distribution. The generated values follow a uniform distribution in the range `[minval, maxval)`. The lower bound `minval` is included in the range, while the upper bound `maxval` is excluded. For floats, the default range is `[0, 1)`. For ints, at least `maxval` must be specified explicitly. In the integer case, the random integers are slightly biased unless `maxval - minval` is an exact power of two. The bias is small for values of `maxval - minval` significantly smaller than the range of the output (either `2**32` or `2**64`). Examples: >>> tf.random.uniform(shape=[2]) >>> tf.random.uniform(shape=[], minval=-1., maxval=0.) >>> tf.random.uniform(shape=[], minval=5, maxval=10, dtype=tf.int64) The `seed` argument produces a deterministic sequence of tensors across multiple calls. To repeat that sequence, use `tf.random.set_seed`: >>> tf.random.set_seed(5) >>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10) >>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10) >>> tf.random.set_seed(5) >>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10) >>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10) Without `tf.random.set_seed` but with a `seed` argument is specified, small changes to function graphs or previously executed operations will change the returned value. See `tf.random.set_seed` for details. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. minval: A Tensor or Python value of type `dtype`, broadcastable with `shape` (for integer types, broadcasting is not supported, so it needs to be a scalar). The lower bound on the range of random values to generate (inclusive). Defaults to 0. maxval: A Tensor or Python value of type `dtype`, broadcastable with `shape` (for integer types, broadcasting is not supported, so it needs to be a scalar). The upper bound on the range of random values to generate (exclusive). Defaults to 1 if `dtype` is floating point. dtype: The type of the output: `float16`, `float32`, `float64`, `int32`, or `int64`. seed: A Python integer. Used in combination with `tf.random.set_seed` to create a reproducible sequence of tensors across multiple calls. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random uniform values. Raises: ValueError: If `dtype` is integral and `maxval` is not specified. """ dtype = dtypes.as_dtype(dtype) if dtype not in (dtypes.float16, dtypes.bfloat16, dtypes.float32, dtypes.float64, dtypes.int32, dtypes.int64): raise ValueError("Invalid dtype %r" % dtype) if maxval is None: if dtype.is_integer: raise ValueError("Must specify maxval for integer dtype %r" % dtype) maxval = 1 with ops.name_scope(name, "random_uniform", [shape, minval, maxval]) as name: shape = tensor_util.shape_tensor(shape) # In case of [0,1) floating results, minval and maxval is unused. We do an # `is` comparison here since this is cheaper than isinstance or __eq__. minval_is_zero = isinstance(minval, int) and minval == 0 maxval_is_one = isinstance(maxval, int) and maxval == 1 if not minval_is_zero or not maxval_is_one or dtype.is_integer: minval = ops.convert_to_tensor(minval, dtype=dtype, name="min") maxval = ops.convert_to_tensor(maxval, dtype=dtype, name="max") seed1, seed2 = random_seed.get_seed(seed) if dtype.is_integer: result = gen_random_ops.random_uniform_int( shape, minval, maxval, seed=seed1, seed2=seed2, name=name) else: result = gen_random_ops.random_uniform( shape, dtype, seed=seed1, seed2=seed2) if minval_is_zero: if not maxval_is_one: result = math_ops.multiply(result, maxval) else: result = math_ops.add(result * (maxval - minval), minval, name=name) # TODO(b/132092188): C++ shape inference inside functional ops does not # cross FuncGraph boundaries since that information is only available in # python. So we manually get the static shape using # `constant_value_as_shape` which *does* cross function boundaries. tensor_util.maybe_set_static_shape(result, shape) return result ops.NotDifferentiable("RandomUniform") @tf_export("random.shuffle", v1=["random.shuffle", "random_shuffle"]) @dispatch.add_dispatch_support @deprecation.deprecated_endpoints("random_shuffle") def random_shuffle(value, seed=None, name=None): """Randomly shuffles a tensor along its first dimension. The tensor is shuffled along dimension 0, such that each `value[j]` is mapped to one and only one `output[i]`. For example, a mapping that might occur for a 3x2 tensor is: ```python [[1, 2], [[5, 6], [3, 4], ==> [1, 2], [5, 6]] [3, 4]] ``` Args: value: A Tensor to be shuffled. seed: A Python integer. Used to create a random seed for the distribution. See `tf.random.set_seed` for behavior. name: A name for the operation (optional). Returns: A tensor of same shape and type as `value`, shuffled along its first dimension. """ seed1, seed2 = random_seed.get_seed(seed) return gen_random_ops.random_shuffle( value, seed=seed1, seed2=seed2, name=name) @tf_export("image.random_crop", v1=["image.random_crop", "random_crop"]) @dispatch.add_dispatch_support @deprecation.deprecated_endpoints("random_crop") def random_crop(value, size, seed=None, name=None): """Randomly crops a tensor to a given size. Slices a shape `size` portion out of `value` at a uniformly chosen offset. Requires `value.shape >= size`. If a dimension should not be cropped, pass the full size of that dimension. For example, RGB images can be cropped with `size = [crop_height, crop_width, 3]`. Example usage: >>> image = [[1, 2, 3], [4, 5, 6]] >>> result = tf.image.random_crop(value=image, size=(1, 3)) >>> result.shape.as_list() [1, 3] For producing deterministic results given a `seed` value, use `tf.image.stateless_random_crop`. Unlike using the `seed` param with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the same results given the same seed independent of how many times the function is called, and independent of global seed settings (e.g. tf.random.set_seed). Args: value: Input tensor to crop. size: 1-D tensor with size the rank of `value`. seed: Python integer. Used to create a random seed. See `tf.random.set_seed` for behavior. name: A name for this operation (optional). Returns: A cropped tensor of the same rank as `value` and shape `size`. """ with ops.name_scope(name, "random_crop", [value, size]) as name: value = ops.convert_to_tensor(value, name="value") size = ops.convert_to_tensor(size, dtype=dtypes.int32, name="size") shape = array_ops.shape(value) check = control_flow_ops.Assert( math_ops.reduce_all(shape >= size), ["Need value.shape >= size, got ", shape, size], summarize=1000) shape = control_flow_ops.with_dependencies([check], shape) limit = shape - size + 1 offset = random_uniform( array_ops.shape(shape), dtype=size.dtype, maxval=size.dtype.max, seed=seed) % limit return array_ops.slice(value, offset, size, name=name) @tf_export("image.stateless_random_crop", v1=[]) @dispatch.add_dispatch_support def stateless_random_crop(value, size, seed, name=None): """Randomly crops a tensor to a given size in a deterministic manner. Slices a shape `size` portion out of `value` at a uniformly chosen offset. Requires `value.shape >= size`. If a dimension should not be cropped, pass the full size of that dimension. For example, RGB images can be cropped with `size = [crop_height, crop_width, 3]`. Guarantees the same results given the same `seed` independent of how many times the function is called, and independent of global seed settings (e.g. `tf.random.set_seed`). Usage Example: >>> image = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] >>> seed = (1, 2) >>> tf.image.stateless_random_crop(value=image, size=(1, 2, 3), seed=seed) Args: value: Input tensor to crop. size: 1-D tensor with size the rank of `value`. seed: A shape [2] Tensor, the seed to the random number generator. Must have dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.) name: A name for this operation (optional). Returns: A cropped tensor of the same rank as `value` and shape `size`. """ with ops.name_scope(name, "random_crop", [value, size]) as name: value = ops.convert_to_tensor(value, name="value") size = ops.convert_to_tensor(size, dtype=dtypes.int32, name="size") shape = array_ops.shape(value) check = control_flow_ops.Assert( math_ops.reduce_all(shape >= size), ["Need value.shape >= size, got ", shape, size], summarize=1000) shape = control_flow_ops.with_dependencies([check], shape) limit = shape - size + 1 offset = stateless_random_ops.stateless_random_uniform( array_ops.shape(shape), dtype=size.dtype, maxval=size.dtype.max, seed=seed) % limit return array_ops.slice(value, offset, size, name=name) @tf_export(v1=["random.multinomial", "multinomial"]) @dispatch.add_dispatch_support @deprecation.deprecated( date=None, instructions="Use `tf.random.categorical` instead.") def multinomial(logits, num_samples, seed=None, name=None, output_dtype=None): """Draws samples from a multinomial distribution. Example: ```python # samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5) ``` Args: logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes. num_samples: 0-D. Number of independent samples to draw for each row slice. seed: A Python integer. Used to create a random seed for the distribution. See `tf.random.set_seed` for behavior. name: Optional name for the operation. output_dtype: integer type to use for the output. Defaults to int64. Returns: The drawn samples of shape `[batch_size, num_samples]`. """ with ops.name_scope(name, "multinomial", [logits]): return multinomial_categorical_impl(logits, num_samples, output_dtype, seed) @tf_export("random.categorical") @dispatch.add_dispatch_support def categorical(logits, num_samples, dtype=None, seed=None, name=None): """Draws samples from a categorical distribution. Example: ```python # samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5) ``` Args: logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes. num_samples: 0-D. Number of independent samples to draw for each row slice. dtype: integer type to use for the output. Defaults to int64. seed: A Python integer. Used to create a random seed for the distribution. See `tf.random.set_seed` for behavior. name: Optional name for the operation. Returns: The drawn samples of shape `[batch_size, num_samples]`. """ with ops.name_scope(name, "categorical", [logits]): return multinomial_categorical_impl(logits, num_samples, dtype, seed) def multinomial_categorical_impl(logits, num_samples, dtype, seed): """Implementation for random.categorical (v1) and random.categorical (v2).""" logits = ops.convert_to_tensor(logits, name="logits") seed1, seed2 = random_seed.get_seed(seed) return gen_random_ops.multinomial( logits, num_samples, seed=seed1, seed2=seed2, output_dtype=dtype) ops.NotDifferentiable("Multinomial") def _maybe_set_static_shape_helper(tensor, shape, postfix_tensor): if (not context.executing_eagerly() and ops.get_default_graph().building_function and not tensor.shape.is_fully_defined()): shape = tensor_util.shape_tensor(shape) const_shape = tensor_util.constant_value_as_shape(shape) postfix_tensor = ops.convert_to_tensor(postfix_tensor) tensor.set_shape(const_shape.concatenate(postfix_tensor.shape)) @tf_export("random.gamma", v1=["random.gamma", "random_gamma"]) @dispatch.add_dispatch_support @deprecation.deprecated_endpoints("random_gamma") def random_gamma(shape, alpha, beta=None, dtype=dtypes.float32, seed=None, name=None): """Draws `shape` samples from each of the given Gamma distribution(s). `alpha` is the shape parameter describing the distribution(s), and `beta` is the inverse scale parameter(s). Note: Because internal calculations are done using `float64` and casting has `floor` semantics, we must manually map zero outcomes to the smallest possible positive floating-point value, i.e., `np.finfo(dtype).tiny`. This means that `np.finfo(dtype).tiny` occurs more frequently than it otherwise should. This bias can only happen for small values of `alpha`, i.e., `alpha << 1` or large values of `beta`, i.e., `beta >> 1`. The samples are differentiable w.r.t. alpha and beta. The derivatives are computed using the approach described in (Figurnov et al., 2018). Example: ```python samples = tf.random.gamma([10], [0.5, 1.5]) # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents # the samples drawn from each distribution samples = tf.random.gamma([7, 5], [0.5, 1.5]) # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1] # represents the 7x5 samples drawn from each of the two distributions alpha = tf.constant([[1.],[3.],[5.]]) beta = tf.constant([[3., 4.]]) samples = tf.random.gamma([30], alpha=alpha, beta=beta) # samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions. loss = tf.reduce_mean(tf.square(samples)) dloss_dalpha, dloss_dbeta = tf.gradients(loss, [alpha, beta]) # unbiased stochastic derivatives of the loss function alpha.shape == dloss_dalpha.shape # True beta.shape == dloss_dbeta.shape # True ``` Args: shape: A 1-D integer Tensor or Python array. The shape of the output samples to be drawn per alpha/beta-parameterized distribution. alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha` provides the shape parameter(s) describing the gamma distribution(s) to sample. Must be broadcastable with `beta`. beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1. `beta` provides the inverse scale parameter(s) of the gamma distribution(s) to sample. Must be broadcastable with `alpha`. dtype: The type of alpha, beta, and the output: `float16`, `float32`, or `float64`. seed: A Python integer. Used to create a random seed for the distributions. See `tf.random.set_seed` for behavior. name: Optional name for the operation. Returns: samples: a `Tensor` of shape `tf.concat([shape, tf.shape(alpha + beta)], axis=0)` with values of type `dtype`. References: Implicit Reparameterization Gradients: [Figurnov et al., 2018] (http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients) ([pdf] (http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients.pdf)) """ with ops.name_scope(name, "random_gamma", [shape, alpha, beta]): shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32) alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype) beta = ops.convert_to_tensor( beta if beta is not None else 1, name="beta", dtype=dtype) broadcast_shape = array_ops.broadcast_dynamic_shape( array_ops.shape(alpha), array_ops.shape(beta)) alpha_broadcast = array_ops.broadcast_to(alpha, broadcast_shape) seed1, seed2 = random_seed.get_seed(seed) result = math_ops.maximum( np.finfo(alpha.dtype.as_numpy_dtype).tiny, gen_random_ops.random_gamma( shape, alpha_broadcast, seed=seed1, seed2=seed2) / beta) _maybe_set_static_shape_helper(result, shape, alpha_broadcast) return result @tf_export(v1=["random.poisson", "random_poisson"]) @dispatch.add_dispatch_support @deprecation.deprecated_endpoints("random_poisson") def random_poisson(lam, shape, dtype=dtypes.float32, seed=None, name=None): """Draws `shape` samples from each of the given Poisson distribution(s). `lam` is the rate parameter describing the distribution(s). Example: ```python samples = tf.random.poisson([0.5, 1.5], [10]) # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents # the samples drawn from each distribution samples = tf.random.poisson([12.2, 3.3], [7, 5]) # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1] # represents the 7x5 samples drawn from each of the two distributions ``` Args: lam: A Tensor or Python value or N-D array of type `dtype`. `lam` provides the rate parameter(s) describing the poisson distribution(s) to sample. shape: A 1-D integer Tensor or Python array. The shape of the output samples to be drawn per "rate"-parameterized distribution. dtype: The type of the output: `float16`, `float32`, `float64`, `int32` or `int64`. seed: A Python integer. Used to create a random seed for the distributions. See `tf.random.set_seed` for behavior. name: Optional name for the operation. Returns: samples: a `Tensor` of shape `tf.concat([shape, tf.shape(lam)], axis=0)` with values of type `dtype`. """ return random_poisson_v2(shape, lam, dtype, seed, name) @tf_export("random.poisson", v1=[]) @dispatch.add_dispatch_support def random_poisson_v2(shape, lam, dtype=dtypes.float32, seed=None, name=None): """Draws `shape` samples from each of the given Poisson distribution(s). `lam` is the rate parameter describing the distribution(s). Example: ```python samples = tf.random.poisson([10], [0.5, 1.5]) # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents # the samples drawn from each distribution samples = tf.random.poisson([7, 5], [12.2, 3.3]) # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1] # represents the 7x5 samples drawn from each of the two distributions ``` Args: shape: A 1-D integer Tensor or Python array. The shape of the output samples to be drawn per "rate"-parameterized distribution. lam: A Tensor or Python value or N-D array of type `dtype`. `lam` provides the rate parameter(s) describing the poisson distribution(s) to sample. dtype: The type of the output: `float16`, `float32`, `float64`, `int32` or `int64`. seed: A Python integer. Used to create a random seed for the distributions. See `tf.random.set_seed` for behavior. name: Optional name for the operation. Returns: samples: a `Tensor` of shape `tf.concat([shape, tf.shape(lam)], axis=0)` with values of type `dtype`. """ with ops.name_scope(name, "random_poisson", [lam, shape]): shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32) seed1, seed2 = random_seed.get_seed(seed) result = gen_random_ops.random_poisson_v2( shape, lam, dtype=dtype, seed=seed1, seed2=seed2) _maybe_set_static_shape_helper(result, shape, lam) return result