// Copyright 2018 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use std::fmt; use std::io; use std::io::{ErrorKind, Read, Write}; use std::mem; use std::ops::{Deref, DerefMut}; use std::string::String; use std::vec::Vec; /// A type that can be encoded on the wire using the 9P protocol. pub trait WireFormat: std::marker::Sized { /// Returns the number of bytes necessary to fully encode `self`. fn byte_size(&self) -> u32; /// Encodes `self` into `writer`. fn encode(&self, writer: &mut W) -> io::Result<()>; /// Decodes `Self` from `reader`. fn decode(reader: &mut R) -> io::Result; } // This doesn't really _need_ to be a macro but unfortunately there is no trait bound to // express "can be casted to another type", which means we can't write `T as u8` in a trait // based implementation. So instead we have this macro, which is implemented for all the // stable unsigned types with the added benefit of not being implemented for the signed // types which are not allowed by the protocol. macro_rules! uint_wire_format_impl { ($Ty:ty) => { impl WireFormat for $Ty { fn byte_size(&self) -> u32 { mem::size_of::<$Ty>() as u32 } fn encode(&self, writer: &mut W) -> io::Result<()> { let mut buf = [0u8; mem::size_of::<$Ty>()]; // Encode the bytes into the buffer in little endian order. for idx in 0..mem::size_of::<$Ty>() { buf[idx] = (self >> (8 * idx)) as u8; } writer.write_all(&buf) } fn decode(reader: &mut R) -> io::Result { let mut buf = [0u8; mem::size_of::<$Ty>()]; reader.read_exact(&mut buf)?; // Read bytes from the buffer in little endian order. let mut result = 0; for idx in 0..mem::size_of::<$Ty>() { result |= (buf[idx] as $Ty) << (8 * idx); } Ok(result) } } }; } uint_wire_format_impl!(u8); uint_wire_format_impl!(u16); uint_wire_format_impl!(u32); uint_wire_format_impl!(u64); // The 9P protocol requires that strings are UTF-8 encoded. The wire format is a u16 // count |N|, encoded in little endian, followed by |N| bytes of UTF-8 data. impl WireFormat for String { fn byte_size(&self) -> u32 { (mem::size_of::() + self.len()) as u32 } fn encode(&self, writer: &mut W) -> io::Result<()> { if self.len() > std::u16::MAX as usize { return Err(io::Error::new( ErrorKind::InvalidInput, "string is too long", )); } (self.len() as u16).encode(writer)?; writer.write_all(self.as_bytes()) } fn decode(reader: &mut R) -> io::Result { let len: u16 = WireFormat::decode(reader)?; let mut result = String::with_capacity(len as usize); reader.take(len as u64).read_to_string(&mut result)?; Ok(result) } } // The wire format for repeated types is similar to that of strings: a little endian // encoded u16 |N|, followed by |N| instances of the given type. impl WireFormat for Vec { fn byte_size(&self) -> u32 { mem::size_of::() as u32 + self.iter().map(|elem| elem.byte_size()).sum::() } fn encode(&self, writer: &mut W) -> io::Result<()> { if self.len() > std::u16::MAX as usize { return Err(io::Error::new( ErrorKind::InvalidInput, "too many elements in vector", )); } (self.len() as u16).encode(writer)?; for elem in self { elem.encode(writer)?; } Ok(()) } fn decode(reader: &mut R) -> io::Result { let len: u16 = WireFormat::decode(reader)?; let mut result = Vec::with_capacity(len as usize); for _ in 0..len { result.push(WireFormat::decode(reader)?); } Ok(result) } } /// A type that encodes an arbitrary number of bytes of data. Typically used for Rread /// Twrite messages. This differs from a `Vec` in that it encodes the number of bytes /// using a `u32` instead of a `u16`. #[derive(PartialEq)] pub struct Data(pub Vec); // The maximum length of a data buffer that we support. In practice the server's max message // size should prevent us from reading too much data so this check is mainly to ensure a // malicious client cannot trick us into allocating massive amounts of memory. const MAX_DATA_LENGTH: u32 = 32 * 1024 * 1024; impl fmt::Debug for Data { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // There may be a lot of data and we don't want to spew it all out in a trace. Instead // just print out the number of bytes in the buffer. write!(f, "Data({} bytes)", self.len()) } } // Implement Deref and DerefMut so that we don't have to use self.0 everywhere. impl Deref for Data { type Target = Vec; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for Data { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } // Same as Vec except that it encodes the length as a u32 instead of a u16. impl WireFormat for Data { fn byte_size(&self) -> u32 { mem::size_of::() as u32 + self.iter().map(|elem| elem.byte_size()).sum::() } fn encode(&self, writer: &mut W) -> io::Result<()> { if self.len() > std::u32::MAX as usize { return Err(io::Error::new(ErrorKind::InvalidInput, "data is too large")); } (self.len() as u32).encode(writer)?; writer.write_all(self) } fn decode(reader: &mut R) -> io::Result { let len: u32 = WireFormat::decode(reader)?; if len > MAX_DATA_LENGTH { return Err(io::Error::new( ErrorKind::InvalidData, format!("data length ({} bytes) is too large", len), )); } let mut buf = Vec::with_capacity(len as usize); reader.take(len as u64).read_to_end(&mut buf)?; if buf.len() == len as usize { Ok(Data(buf)) } else { Err(io::Error::new( ErrorKind::UnexpectedEof, format!( "unexpected end of data: want: {} bytes, got: {} bytes", len, buf.len() ), )) } } } #[cfg(test)] mod test { use super::*; use std::io::Cursor; use std::mem; use std::string::String; #[test] fn integer_byte_size() { assert_eq!(1, 0u8.byte_size()); assert_eq!(2, 0u16.byte_size()); assert_eq!(4, 0u32.byte_size()); assert_eq!(8, 0u64.byte_size()); } #[test] fn integer_decode() { let buf: [u8; 8] = [0xef, 0xbe, 0xad, 0xde, 0x0d, 0xf0, 0xad, 0x8b]; assert_eq!( 0xef as u8, WireFormat::decode(&mut Cursor::new(&buf)).unwrap() ); assert_eq!(0xbeef as u16, u16::decode(&mut Cursor::new(&buf)).unwrap()); assert_eq!( 0xdeadbeef as u32, u32::decode(&mut Cursor::new(&buf)).unwrap() ); assert_eq!( 0x8badf00d_deadbeef as u64, u64::decode(&mut Cursor::new(&buf)).unwrap() ); } #[test] fn integer_encode() { let value: u64 = 0x8badf00d_deadbeef; let expected: [u8; 8] = [0xef, 0xbe, 0xad, 0xde, 0x0d, 0xf0, 0xad, 0x8b]; let mut buf = vec![0; 8]; (value as u8).encode(&mut Cursor::new(&mut *buf)).unwrap(); assert_eq!(expected[0..1], buf[0..1]); (value as u16).encode(&mut Cursor::new(&mut *buf)).unwrap(); assert_eq!(expected[0..2], buf[0..2]); (value as u32).encode(&mut Cursor::new(&mut *buf)).unwrap(); assert_eq!(expected[0..4], buf[0..4]); value.encode(&mut Cursor::new(&mut *buf)).unwrap(); assert_eq!(expected[0..8], buf[0..8]); } #[test] fn string_byte_size() { let values = [ String::from("Google Video"), String::from("网页 图片 资讯更多 »"), String::from("Παγκόσμιος Ιστός"), String::from("Поиск страниц на русском"), String::from("전체서비스"), ]; let exp = values .iter() .map(|v| (mem::size_of::() + v.len()) as u32); for (value, expected) in values.iter().zip(exp) { assert_eq!(expected, value.byte_size()); } } #[test] fn zero_length_string() { let s = String::from(""); assert_eq!(s.byte_size(), mem::size_of::() as u32); let mut buf = [0xffu8; 4]; s.encode(&mut Cursor::new(&mut buf[..])) .expect("failed to encode empty string"); assert_eq!(&[0, 0, 0xff, 0xff], &buf); assert_eq!( s, ::decode(&mut Cursor::new(&[0, 0, 0x61, 0x61][..])) .expect("failed to decode empty string") ); } #[test] fn string_encode() { let values = [ String::from("Google Video"), String::from("网页 图片 资讯更多 »"), String::from("Παγκόσμιος Ιστός"), String::from("Поиск страниц на русском"), String::from("전체서비스"), ]; let expected = values.iter().map(|v| { let len = v.as_bytes().len(); let mut buf = Vec::with_capacity(len + mem::size_of::()); buf.push(len as u8); buf.push((len >> 8) as u8); buf.extend_from_slice(v.as_bytes()); buf }); for (val, exp) in values.iter().zip(expected) { let mut buf = vec![0; exp.len()]; WireFormat::encode(val, &mut Cursor::new(&mut *buf)).unwrap(); assert_eq!(exp, buf); } } #[test] fn string_decode() { assert_eq!( String::from("Google Video"), ::decode(&mut Cursor::new( &[ 0x0c, 0x00, 0x47, 0x6F, 0x6F, 0x67, 0x6C, 0x65, 0x20, 0x56, 0x69, 0x64, 0x65, 0x6F, ][..] )) .unwrap() ); assert_eq!( String::from("网页 图片 资讯更多 »"), ::decode(&mut Cursor::new( &[ 0x1d, 0x00, 0xE7, 0xBD, 0x91, 0xE9, 0xA1, 0xB5, 0x20, 0xE5, 0x9B, 0xBE, 0xE7, 0x89, 0x87, 0x20, 0xE8, 0xB5, 0x84, 0xE8, 0xAE, 0xAF, 0xE6, 0x9B, 0xB4, 0xE5, 0xA4, 0x9A, 0x20, 0xC2, 0xBB, ][..] )) .unwrap() ); assert_eq!( String::from("Παγκόσμιος Ιστός"), ::decode(&mut Cursor::new( &[ 0x1f, 0x00, 0xCE, 0xA0, 0xCE, 0xB1, 0xCE, 0xB3, 0xCE, 0xBA, 0xCF, 0x8C, 0xCF, 0x83, 0xCE, 0xBC, 0xCE, 0xB9, 0xCE, 0xBF, 0xCF, 0x82, 0x20, 0xCE, 0x99, 0xCF, 0x83, 0xCF, 0x84, 0xCF, 0x8C, 0xCF, 0x82, ][..] )) .unwrap() ); assert_eq!( String::from("Поиск страниц на русском"), ::decode(&mut Cursor::new( &[ 0x2d, 0x00, 0xD0, 0x9F, 0xD0, 0xBE, 0xD0, 0xB8, 0xD1, 0x81, 0xD0, 0xBA, 0x20, 0xD1, 0x81, 0xD1, 0x82, 0xD1, 0x80, 0xD0, 0xB0, 0xD0, 0xBD, 0xD0, 0xB8, 0xD1, 0x86, 0x20, 0xD0, 0xBD, 0xD0, 0xB0, 0x20, 0xD1, 0x80, 0xD1, 0x83, 0xD1, 0x81, 0xD1, 0x81, 0xD0, 0xBA, 0xD0, 0xBE, 0xD0, 0xBC, ][..] )) .unwrap() ); assert_eq!( String::from("전체서비스"), ::decode(&mut Cursor::new( &[ 0x0f, 0x00, 0xEC, 0xA0, 0x84, 0xEC, 0xB2, 0xB4, 0xEC, 0x84, 0x9C, 0xEB, 0xB9, 0x84, 0xEC, 0x8A, 0xA4, ][..] )) .unwrap() ); } #[test] fn invalid_string_decode() { let _ = ::decode(&mut Cursor::new(&[ 0x06, 0x00, 0xed, 0xa0, 0x80, 0xed, 0xbf, 0xbf, ])) .expect_err("surrogate code point"); let _ = ::decode(&mut Cursor::new(&[ 0x05, 0x00, 0xf8, 0x80, 0x80, 0x80, 0xbf, ])) .expect_err("overlong sequence"); let _ = ::decode(&mut Cursor::new(&[0x04, 0x00, 0xf4, 0x90, 0x80, 0x80])) .expect_err("out of range"); let _ = ::decode(&mut Cursor::new(&[0x04, 0x00, 0x63, 0x61, 0x66, 0xe9])) .expect_err("ISO-8859-1"); let _ = ::decode(&mut Cursor::new(&[0x04, 0x00, 0xb0, 0xa1, 0xb0, 0xa2])) .expect_err("EUC-KR"); } #[test] fn vector_encode() { let values: Vec = vec![291, 18_916, 2_497, 22, 797_162, 2_119_732, 3_213_929_716]; let mut expected: Vec = Vec::with_capacity(values.len() * mem::size_of::() + mem::size_of::()); expected.push(values.len() as u8); expected.push((values.len() >> 8) as u8); const MASK: u32 = 0xff; for val in &values { expected.push((val & MASK) as u8); expected.push(((val >> 8) & MASK) as u8); expected.push(((val >> 16) & MASK) as u8); expected.push(((val >> 24) & MASK) as u8); } let mut actual: Vec = vec![0; expected.len()]; WireFormat::encode(&values, &mut Cursor::new(&mut *actual)) .expect("failed to encode vector"); assert_eq!(expected, actual); } #[test] fn vector_decode() { let expected: Vec = vec![ 2_498, 24, 897, 4_097_789_579, 8_498_119, 684_279, 961_189_198, 7, ]; let mut input: Vec = Vec::with_capacity(expected.len() * mem::size_of::() + mem::size_of::()); input.push(expected.len() as u8); input.push((expected.len() >> 8) as u8); const MASK: u32 = 0xff; for val in &expected { input.push((val & MASK) as u8); input.push(((val >> 8) & MASK) as u8); input.push(((val >> 16) & MASK) as u8); input.push(((val >> 24) & MASK) as u8); } assert_eq!( expected, as WireFormat>::decode(&mut Cursor::new(&*input)) .expect("failed to decode vector") ); } #[test] fn data_encode() { let values = Data(vec![169, 155, 79, 67, 182, 199, 25, 73, 129, 200]); let mut expected: Vec = Vec::with_capacity(values.len() * mem::size_of::() + mem::size_of::()); expected.push(values.len() as u8); expected.push((values.len() >> 8) as u8); expected.push((values.len() >> 16) as u8); expected.push((values.len() >> 24) as u8); expected.extend_from_slice(&values); let mut actual: Vec = vec![0; expected.len()]; WireFormat::encode(&values, &mut Cursor::new(&mut *actual)) .expect("failed to encode datar"); assert_eq!(expected, actual); } #[test] fn data_decode() { let expected = Data(vec![219, 15, 8, 155, 194, 129, 79, 91, 46, 53, 173]); let mut input: Vec = Vec::with_capacity(expected.len() * mem::size_of::() + mem::size_of::()); input.push(expected.len() as u8); input.push((expected.len() >> 8) as u8); input.push((expected.len() >> 16) as u8); input.push((expected.len() >> 24) as u8); input.extend_from_slice(&expected); assert_eq!( expected, ::decode(&mut Cursor::new(&mut *input)) .expect("failed to decode data") ); } #[test] fn error_cases() { // string is too long. let mut long_str = String::with_capacity(std::u16::MAX as usize); while long_str.len() < std::u16::MAX as usize { long_str.push_str("long"); } long_str.push_str("!"); let count = long_str.len() + mem::size_of::(); let mut buf = vec![0; count]; long_str .encode(&mut Cursor::new(&mut *buf)) .expect_err("long string"); // vector is too long. let mut long_vec: Vec = Vec::with_capacity(std::u16::MAX as usize); while long_vec.len() < std::u16::MAX as usize { long_vec.push(0x8bad_f00d); } long_vec.push(0x00ba_b10c); let count = long_vec.len() * mem::size_of::(); let mut buf = vec![0; count]; WireFormat::encode(&long_vec, &mut Cursor::new(&mut *buf)).expect_err("long vector"); } #[derive(Debug, PartialEq, P9WireFormat)] struct Item { a: u64, b: String, c: Vec, buf: Data, } #[test] fn struct_encode() { let item = Item { a: 0xdead10cc_00bab10c, b: String::from("冻住,不许走!"), c: vec![359, 492, 8891], buf: Data(vec![254, 129, 0, 62, 49, 172]), }; let mut expected: Vec = vec![0x0c, 0xb1, 0xba, 0x00, 0xcc, 0x10, 0xad, 0xde]; let strlen = item.b.len() as u16; expected.push(strlen as u8); expected.push((strlen >> 8) as u8); expected.extend_from_slice(item.b.as_bytes()); let veclen = item.c.len() as u16; expected.push(veclen as u8); expected.push((veclen >> 8) as u8); for val in &item.c { expected.push(*val as u8); expected.push((val >> 8) as u8); } let buflen = item.buf.len() as u32; expected.push(buflen as u8); expected.push((buflen >> 8) as u8); expected.push((buflen >> 16) as u8); expected.push((buflen >> 24) as u8); expected.extend_from_slice(&item.buf); let mut actual = vec![0; expected.len()]; WireFormat::encode(&item, &mut Cursor::new(&mut *actual)).expect("failed to encode item"); assert_eq!(expected, actual); } #[test] fn struct_decode() { let expected = Item { a: 0xface_b00c_0404_4b1d, b: String::from("Огонь по готовности!"), c: vec![20067, 32449, 549, 4972, 77, 1987], buf: Data(vec![126, 236, 79, 59, 6, 159]), }; let mut input: Vec = vec![0x1d, 0x4b, 0x04, 0x04, 0x0c, 0xb0, 0xce, 0xfa]; let strlen = expected.b.len() as u16; input.push(strlen as u8); input.push((strlen >> 8) as u8); input.extend_from_slice(expected.b.as_bytes()); let veclen = expected.c.len() as u16; input.push(veclen as u8); input.push((veclen >> 8) as u8); for val in &expected.c { input.push(*val as u8); input.push((val >> 8) as u8); } let buflen = expected.buf.len() as u32; input.push(buflen as u8); input.push((buflen >> 8) as u8); input.push((buflen >> 16) as u8); input.push((buflen >> 24) as u8); input.extend_from_slice(&expected.buf); let actual: Item = WireFormat::decode(&mut Cursor::new(input)).expect("failed to decode item"); assert_eq!(expected, actual); } #[derive(Debug, PartialEq, P9WireFormat)] struct Nested { item: Item, val: Vec, } fn build_encoded_buffer(value: &Nested) -> Vec { let mut result: Vec = Vec::new(); // encode a result.push(value.item.a as u8); result.push((value.item.a >> 8) as u8); result.push((value.item.a >> 16) as u8); result.push((value.item.a >> 24) as u8); result.push((value.item.a >> 32) as u8); result.push((value.item.a >> 40) as u8); result.push((value.item.a >> 48) as u8); result.push((value.item.a >> 56) as u8); // encode b result.push(value.item.b.len() as u8); result.push((value.item.b.len() >> 8) as u8); result.extend_from_slice(value.item.b.as_bytes()); // encode c result.push(value.item.c.len() as u8); result.push((value.item.c.len() >> 8) as u8); for val in &value.item.c { result.push((val & 0xffu16) as u8); result.push(((val >> 8) & 0xffu16) as u8); } // encode buf result.push(value.item.buf.len() as u8); result.push((value.item.buf.len() >> 8) as u8); result.push((value.item.buf.len() >> 16) as u8); result.push((value.item.buf.len() >> 24) as u8); result.extend_from_slice(&value.item.buf); // encode val result.push(value.val.len() as u8); result.push((value.val.len() >> 8) as u8); for val in &value.val { result.push(*val as u8); result.push((val >> 8) as u8); result.push((val >> 16) as u8); result.push((val >> 24) as u8); result.push((val >> 32) as u8); result.push((val >> 40) as u8); result.push((val >> 48) as u8); result.push((val >> 56) as u8); } result } #[test] fn nested_encode() { let value = Nested { item: Item { a: 0xcafe_d00d_8bad_f00d, b: String::from("龍が我が敵を喰らう!"), c: vec![2679, 55_919, 44, 38_819, 792], buf: Data(vec![129, 55, 200, 93, 7, 68]), }, val: vec![1954978, 59, 4519, 15679], }; let expected = build_encoded_buffer(&value); let mut actual = vec![0; expected.len()]; WireFormat::encode(&value, &mut Cursor::new(&mut *actual)).expect("failed to encode value"); assert_eq!(expected, actual); } #[test] fn nested_decode() { let expected = Nested { item: Item { a: 0x0ff1ce, b: String::from("龍神の剣を喰らえ!"), c: vec![21687, 159, 55, 9217, 192], buf: Data(vec![189, 22, 7, 59, 235]), }, val: vec![15679, 8619196, 319746, 123957, 77, 0, 492], }; let input = build_encoded_buffer(&expected); assert_eq!( expected, ::decode(&mut Cursor::new(&*input)) .expect("failed to decode value") ); } }