/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc2/rnn_vad/lp_residual.h" #include #include #include #include #include "rtc_base/checks.h" namespace webrtc { namespace rnn_vad { namespace { // Computes cross-correlation coefficients between |x| and |y| and writes them // in |x_corr|. The lag values are in {0, ..., max_lag - 1}, where max_lag // equals the size of |x_corr|. // The |x| and |y| sub-arrays used to compute a cross-correlation coefficients // for a lag l have both size "size of |x| - l" - i.e., the longest sub-array is // used. |x| and |y| must have the same size. void ComputeCrossCorrelation( rtc::ArrayView x, rtc::ArrayView y, rtc::ArrayView x_corr) { constexpr size_t max_lag = x_corr.size(); RTC_DCHECK_EQ(x.size(), y.size()); RTC_DCHECK_LT(max_lag, x.size()); for (size_t lag = 0; lag < max_lag; ++lag) { x_corr[lag] = std::inner_product(x.begin(), x.end() - lag, y.begin() + lag, 0.f); } } // Applies denoising to the auto-correlation coefficients. void DenoiseAutoCorrelation( rtc::ArrayView auto_corr) { // Assume -40 dB white noise floor. auto_corr[0] *= 1.0001f; for (size_t i = 1; i < kNumLpcCoefficients; ++i) { auto_corr[i] -= auto_corr[i] * (0.008f * i) * (0.008f * i); } } // Computes the initial inverse filter coefficients given the auto-correlation // coefficients of an input frame. void ComputeInitialInverseFilterCoefficients( rtc::ArrayView auto_corr, rtc::ArrayView lpc_coeffs) { float error = auto_corr[0]; for (size_t i = 0; i < kNumLpcCoefficients - 1; ++i) { float reflection_coeff = 0.f; for (size_t j = 0; j < i; ++j) { reflection_coeff += lpc_coeffs[j] * auto_corr[i - j]; } reflection_coeff += auto_corr[i + 1]; // Avoid division by numbers close to zero. constexpr float kMinErrorMagnitude = 1e-6f; if (std::fabs(error) < kMinErrorMagnitude) { error = std::copysign(kMinErrorMagnitude, error); } reflection_coeff /= -error; // Update LPC coefficients and total error. lpc_coeffs[i] = reflection_coeff; for (size_t j = 0; j<(i + 1)>> 1; ++j) { const float tmp1 = lpc_coeffs[j]; const float tmp2 = lpc_coeffs[i - 1 - j]; lpc_coeffs[j] = tmp1 + reflection_coeff * tmp2; lpc_coeffs[i - 1 - j] = tmp2 + reflection_coeff * tmp1; } error -= reflection_coeff * reflection_coeff * error; if (error < 0.001f * auto_corr[0]) { break; } } } } // namespace void ComputeAndPostProcessLpcCoefficients( rtc::ArrayView x, rtc::ArrayView lpc_coeffs) { std::array auto_corr; ComputeCrossCorrelation(x, x, {auto_corr.data(), auto_corr.size()}); if (auto_corr[0] == 0.f) { // Empty frame. std::fill(lpc_coeffs.begin(), lpc_coeffs.end(), 0); return; } DenoiseAutoCorrelation({auto_corr.data(), auto_corr.size()}); std::array lpc_coeffs_pre{}; ComputeInitialInverseFilterCoefficients(auto_corr, lpc_coeffs_pre); // LPC coefficients post-processing. // TODO(bugs.webrtc.org/9076): Consider removing these steps. float c1 = 1.f; for (size_t i = 0; i < kNumLpcCoefficients - 1; ++i) { c1 *= 0.9f; lpc_coeffs_pre[i] *= c1; } const float c2 = 0.8f; lpc_coeffs[0] = lpc_coeffs_pre[0] + c2; lpc_coeffs[1] = lpc_coeffs_pre[1] + c2 * lpc_coeffs_pre[0]; lpc_coeffs[2] = lpc_coeffs_pre[2] + c2 * lpc_coeffs_pre[1]; lpc_coeffs[3] = lpc_coeffs_pre[3] + c2 * lpc_coeffs_pre[2]; lpc_coeffs[4] = c2 * lpc_coeffs_pre[3]; } void ComputeLpResidual( rtc::ArrayView lpc_coeffs, rtc::ArrayView x, rtc::ArrayView y) { RTC_DCHECK_LT(kNumLpcCoefficients, x.size()); RTC_DCHECK_EQ(x.size(), y.size()); std::array input_chunk; input_chunk.fill(0.f); for (size_t i = 0; i < y.size(); ++i) { const float sum = std::inner_product(input_chunk.begin(), input_chunk.end(), lpc_coeffs.begin(), x[i]); // Circular shift and add a new sample. for (size_t j = kNumLpcCoefficients - 1; j > 0; --j) input_chunk[j] = input_chunk[j - 1]; input_chunk[0] = x[i]; // Copy result. y[i] = sum; } } } // namespace rnn_vad } // namespace webrtc