/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/goog_cc/trendline_estimator.h" #include #include #include #include "absl/strings/match.h" #include "absl/types/optional.h" #include "modules/remote_bitrate_estimator/include/bwe_defines.h" #include "modules/remote_bitrate_estimator/test/bwe_test_logging.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/struct_parameters_parser.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_minmax.h" namespace webrtc { namespace { // Parameters for linear least squares fit of regression line to noisy data. constexpr double kDefaultTrendlineSmoothingCoeff = 0.9; constexpr double kDefaultTrendlineThresholdGain = 4.0; const char kBweWindowSizeInPacketsExperiment[] = "WebRTC-BweWindowSizeInPackets"; size_t ReadTrendlineFilterWindowSize( const WebRtcKeyValueConfig* key_value_config) { std::string experiment_string = key_value_config->Lookup(kBweWindowSizeInPacketsExperiment); size_t window_size; int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%zu", &window_size); if (parsed_values == 1) { if (window_size > 1) return window_size; RTC_LOG(WARNING) << "Window size must be greater than 1."; } RTC_LOG(LS_WARNING) << "Failed to parse parameters for BweWindowSizeInPackets" " experiment from field trial string. Using default."; return TrendlineEstimatorSettings::kDefaultTrendlineWindowSize; } absl::optional LinearFitSlope( const std::deque& packets) { RTC_DCHECK(packets.size() >= 2); // Compute the "center of mass". double sum_x = 0; double sum_y = 0; for (const auto& packet : packets) { sum_x += packet.arrival_time_ms; sum_y += packet.smoothed_delay_ms; } double x_avg = sum_x / packets.size(); double y_avg = sum_y / packets.size(); // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 double numerator = 0; double denominator = 0; for (const auto& packet : packets) { double x = packet.arrival_time_ms; double y = packet.smoothed_delay_ms; numerator += (x - x_avg) * (y - y_avg); denominator += (x - x_avg) * (x - x_avg); } if (denominator == 0) return absl::nullopt; return numerator / denominator; } absl::optional ComputeSlopeCap( const std::deque& packets, const TrendlineEstimatorSettings& settings) { RTC_DCHECK(1 <= settings.beginning_packets && settings.beginning_packets < packets.size()); RTC_DCHECK(1 <= settings.end_packets && settings.end_packets < packets.size()); RTC_DCHECK(settings.beginning_packets + settings.end_packets <= packets.size()); TrendlineEstimator::PacketTiming early = packets[0]; for (size_t i = 1; i < settings.beginning_packets; ++i) { if (packets[i].raw_delay_ms < early.raw_delay_ms) early = packets[i]; } size_t late_start = packets.size() - settings.end_packets; TrendlineEstimator::PacketTiming late = packets[late_start]; for (size_t i = late_start + 1; i < packets.size(); ++i) { if (packets[i].raw_delay_ms < late.raw_delay_ms) late = packets[i]; } if (late.arrival_time_ms - early.arrival_time_ms < 1) { return absl::nullopt; } return (late.raw_delay_ms - early.raw_delay_ms) / (late.arrival_time_ms - early.arrival_time_ms) + settings.cap_uncertainty; } constexpr double kMaxAdaptOffsetMs = 15.0; constexpr double kOverUsingTimeThreshold = 10; constexpr int kMinNumDeltas = 60; constexpr int kDeltaCounterMax = 1000; } // namespace constexpr char TrendlineEstimatorSettings::kKey[]; TrendlineEstimatorSettings::TrendlineEstimatorSettings( const WebRtcKeyValueConfig* key_value_config) { if (absl::StartsWith( key_value_config->Lookup(kBweWindowSizeInPacketsExperiment), "Enabled")) { window_size = ReadTrendlineFilterWindowSize(key_value_config); } Parser()->Parse(key_value_config->Lookup(TrendlineEstimatorSettings::kKey)); if (window_size < 10 || 200 < window_size) { RTC_LOG(LS_WARNING) << "Window size must be between 10 and 200 packets"; window_size = kDefaultTrendlineWindowSize; } if (enable_cap) { if (beginning_packets < 1 || end_packets < 1 || beginning_packets > window_size || end_packets > window_size) { RTC_LOG(LS_WARNING) << "Size of beginning and end must be between 1 and " << window_size; enable_cap = false; beginning_packets = end_packets = 0; cap_uncertainty = 0.0; } if (beginning_packets + end_packets > window_size) { RTC_LOG(LS_WARNING) << "Size of beginning plus end can't exceed the window size"; enable_cap = false; beginning_packets = end_packets = 0; cap_uncertainty = 0.0; } if (cap_uncertainty < 0.0 || 0.025 < cap_uncertainty) { RTC_LOG(LS_WARNING) << "Cap uncertainty must be between 0 and 0.025"; cap_uncertainty = 0.0; } } } std::unique_ptr TrendlineEstimatorSettings::Parser() { return StructParametersParser::Create("sort", &enable_sort, // "cap", &enable_cap, // "beginning_packets", &beginning_packets, // "end_packets", &end_packets, // "cap_uncertainty", &cap_uncertainty, // "window_size", &window_size); } TrendlineEstimator::TrendlineEstimator( const WebRtcKeyValueConfig* key_value_config, NetworkStatePredictor* network_state_predictor) : settings_(key_value_config), smoothing_coef_(kDefaultTrendlineSmoothingCoeff), threshold_gain_(kDefaultTrendlineThresholdGain), num_of_deltas_(0), first_arrival_time_ms_(-1), accumulated_delay_(0), smoothed_delay_(0), delay_hist_(), k_up_(0.0087), k_down_(0.039), overusing_time_threshold_(kOverUsingTimeThreshold), threshold_(12.5), prev_modified_trend_(NAN), last_update_ms_(-1), prev_trend_(0.0), time_over_using_(-1), overuse_counter_(0), hypothesis_(BandwidthUsage::kBwNormal), hypothesis_predicted_(BandwidthUsage::kBwNormal), network_state_predictor_(network_state_predictor) { RTC_LOG(LS_INFO) << "Using Trendline filter for delay change estimation with settings " << settings_.Parser()->Encode() << " and " << (network_state_predictor_ ? "injected" : "no") << " network state predictor"; } TrendlineEstimator::~TrendlineEstimator() {} void TrendlineEstimator::UpdateTrendline(double recv_delta_ms, double send_delta_ms, int64_t send_time_ms, int64_t arrival_time_ms, size_t packet_size) { const double delta_ms = recv_delta_ms - send_delta_ms; ++num_of_deltas_; num_of_deltas_ = std::min(num_of_deltas_, kDeltaCounterMax); if (first_arrival_time_ms_ == -1) first_arrival_time_ms_ = arrival_time_ms; // Exponential backoff filter. accumulated_delay_ += delta_ms; BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms, accumulated_delay_); smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + (1 - smoothing_coef_) * accumulated_delay_; BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms, smoothed_delay_); // Maintain packet window delay_hist_.emplace_back( static_cast(arrival_time_ms - first_arrival_time_ms_), smoothed_delay_, accumulated_delay_); if (settings_.enable_sort) { for (size_t i = delay_hist_.size() - 1; i > 0 && delay_hist_[i].arrival_time_ms < delay_hist_[i - 1].arrival_time_ms; --i) { std::swap(delay_hist_[i], delay_hist_[i - 1]); } } if (delay_hist_.size() > settings_.window_size) delay_hist_.pop_front(); // Simple linear regression. double trend = prev_trend_; if (delay_hist_.size() == settings_.window_size) { // Update trend_ if it is possible to fit a line to the data. The delay // trend can be seen as an estimate of (send_rate - capacity)/capacity. // 0 < trend < 1 -> the delay increases, queues are filling up // trend == 0 -> the delay does not change // trend < 0 -> the delay decreases, queues are being emptied trend = LinearFitSlope(delay_hist_).value_or(trend); if (settings_.enable_cap) { absl::optional cap = ComputeSlopeCap(delay_hist_, settings_); // We only use the cap to filter out overuse detections, not // to detect additional underuses. if (trend >= 0 && cap.has_value() && trend > cap.value()) { trend = cap.value(); } } } BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trend); Detect(trend, send_delta_ms, arrival_time_ms); } void TrendlineEstimator::Update(double recv_delta_ms, double send_delta_ms, int64_t send_time_ms, int64_t arrival_time_ms, size_t packet_size, bool calculated_deltas) { if (calculated_deltas) { UpdateTrendline(recv_delta_ms, send_delta_ms, send_time_ms, arrival_time_ms, packet_size); } if (network_state_predictor_) { hypothesis_predicted_ = network_state_predictor_->Update( send_time_ms, arrival_time_ms, hypothesis_); } } BandwidthUsage TrendlineEstimator::State() const { return network_state_predictor_ ? hypothesis_predicted_ : hypothesis_; } void TrendlineEstimator::Detect(double trend, double ts_delta, int64_t now_ms) { if (num_of_deltas_ < 2) { hypothesis_ = BandwidthUsage::kBwNormal; return; } const double modified_trend = std::min(num_of_deltas_, kMinNumDeltas) * trend * threshold_gain_; prev_modified_trend_ = modified_trend; BWE_TEST_LOGGING_PLOT(1, "T", now_ms, modified_trend); BWE_TEST_LOGGING_PLOT(1, "threshold", now_ms, threshold_); if (modified_trend > threshold_) { if (time_over_using_ == -1) { // Initialize the timer. Assume that we've been // over-using half of the time since the previous // sample. time_over_using_ = ts_delta / 2; } else { // Increment timer time_over_using_ += ts_delta; } overuse_counter_++; if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) { if (trend >= prev_trend_) { time_over_using_ = 0; overuse_counter_ = 0; hypothesis_ = BandwidthUsage::kBwOverusing; } } } else if (modified_trend < -threshold_) { time_over_using_ = -1; overuse_counter_ = 0; hypothesis_ = BandwidthUsage::kBwUnderusing; } else { time_over_using_ = -1; overuse_counter_ = 0; hypothesis_ = BandwidthUsage::kBwNormal; } prev_trend_ = trend; UpdateThreshold(modified_trend, now_ms); } void TrendlineEstimator::UpdateThreshold(double modified_trend, int64_t now_ms) { if (last_update_ms_ == -1) last_update_ms_ = now_ms; if (fabs(modified_trend) > threshold_ + kMaxAdaptOffsetMs) { // Avoid adapting the threshold to big latency spikes, caused e.g., // by a sudden capacity drop. last_update_ms_ = now_ms; return; } const double k = fabs(modified_trend) < threshold_ ? k_down_ : k_up_; const int64_t kMaxTimeDeltaMs = 100; int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs); threshold_ += k * (fabs(modified_trend) - threshold_) * time_delta_ms; threshold_ = rtc::SafeClamp(threshold_, 6.f, 600.f); last_update_ms_ = now_ms; } } // namespace webrtc