/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/rtp_rtcp_impl.h" #include #include #include #include #include #include #include #include "api/transport/field_trial_based_config.h" #include "modules/rtp_rtcp/source/rtcp_packet/dlrr.h" #include "modules/rtp_rtcp/source/rtp_rtcp_config.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #ifdef _WIN32 // Disable warning C4355: 'this' : used in base member initializer list. #pragma warning(disable : 4355) #endif namespace webrtc { namespace { const int64_t kRtpRtcpMaxIdleTimeProcessMs = 5; const int64_t kRtpRtcpRttProcessTimeMs = 1000; const int64_t kRtpRtcpBitrateProcessTimeMs = 10; const int64_t kDefaultExpectedRetransmissionTimeMs = 125; } // namespace ModuleRtpRtcpImpl::RtpSenderContext::RtpSenderContext( const RtpRtcpInterface::Configuration& config) : packet_history(config.clock, config.enable_rtx_padding_prioritization), packet_sender(config, &packet_history), non_paced_sender(&packet_sender), packet_generator( config, &packet_history, config.paced_sender ? config.paced_sender : &non_paced_sender) {} std::unique_ptr RtpRtcp::DEPRECATED_Create( const Configuration& configuration) { RTC_DCHECK(configuration.clock); RTC_LOG(LS_ERROR) << "*********** USING WebRTC INTERNAL IMPLEMENTATION DETAILS ***********"; return std::make_unique(configuration); } ModuleRtpRtcpImpl::ModuleRtpRtcpImpl(const Configuration& configuration) : rtcp_sender_(configuration), rtcp_receiver_(configuration, this), clock_(configuration.clock), last_bitrate_process_time_(clock_->TimeInMilliseconds()), last_rtt_process_time_(clock_->TimeInMilliseconds()), next_process_time_(clock_->TimeInMilliseconds() + kRtpRtcpMaxIdleTimeProcessMs), packet_overhead_(28), // IPV4 UDP. nack_last_time_sent_full_ms_(0), nack_last_seq_number_sent_(0), remote_bitrate_(configuration.remote_bitrate_estimator), rtt_stats_(configuration.rtt_stats), rtt_ms_(0) { if (!configuration.receiver_only) { rtp_sender_ = std::make_unique(configuration); // Make sure rtcp sender use same timestamp offset as rtp sender. rtcp_sender_.SetTimestampOffset( rtp_sender_->packet_generator.TimestampOffset()); } // Set default packet size limit. // TODO(nisse): Kind-of duplicates // webrtc::VideoSendStream::Config::Rtp::kDefaultMaxPacketSize. const size_t kTcpOverIpv4HeaderSize = 40; SetMaxRtpPacketSize(IP_PACKET_SIZE - kTcpOverIpv4HeaderSize); } ModuleRtpRtcpImpl::~ModuleRtpRtcpImpl() = default; // Returns the number of milliseconds until the module want a worker thread // to call Process. int64_t ModuleRtpRtcpImpl::TimeUntilNextProcess() { return std::max(0, next_process_time_ - clock_->TimeInMilliseconds()); } // Process any pending tasks such as timeouts (non time critical events). void ModuleRtpRtcpImpl::Process() { const int64_t now = clock_->TimeInMilliseconds(); // TODO(bugs.webrtc.org/11581): Figure out why we need to call Process() 200 // times a second. next_process_time_ = now + kRtpRtcpMaxIdleTimeProcessMs; if (rtp_sender_) { if (now >= last_bitrate_process_time_ + kRtpRtcpBitrateProcessTimeMs) { rtp_sender_->packet_sender.ProcessBitrateAndNotifyObservers(); last_bitrate_process_time_ = now; // TODO(bugs.webrtc.org/11581): Is this a bug? At the top of the function, // next_process_time_ is incremented by 5ms, here we effectively do a // std::min() of (now + 5ms, now + 10ms). Seems like this is a no-op? next_process_time_ = std::min(next_process_time_, now + kRtpRtcpBitrateProcessTimeMs); } } // TODO(bugs.webrtc.org/11581): We update the RTT once a second, whereas other // things that run in this method are updated much more frequently. Move the // RTT checking over to the worker thread, which matches better with where the // stats are maintained. bool process_rtt = now >= last_rtt_process_time_ + kRtpRtcpRttProcessTimeMs; if (rtcp_sender_.Sending()) { // Process RTT if we have received a report block and we haven't // processed RTT for at least |kRtpRtcpRttProcessTimeMs| milliseconds. // Note that LastReceivedReportBlockMs() grabs a lock, so check // |process_rtt| first. if (process_rtt && rtcp_receiver_.LastReceivedReportBlockMs() > last_rtt_process_time_) { std::vector receive_blocks; rtcp_receiver_.StatisticsReceived(&receive_blocks); int64_t max_rtt = 0; for (std::vector::iterator it = receive_blocks.begin(); it != receive_blocks.end(); ++it) { int64_t rtt = 0; rtcp_receiver_.RTT(it->sender_ssrc, &rtt, NULL, NULL, NULL); max_rtt = (rtt > max_rtt) ? rtt : max_rtt; } // Report the rtt. if (rtt_stats_ && max_rtt != 0) rtt_stats_->OnRttUpdate(max_rtt); } // Verify receiver reports are delivered and the reported sequence number // is increasing. // TODO(bugs.webrtc.org/11581): The timeout value needs to be checked every // few seconds (see internals of RtcpRrTimeout). Here, we may be polling it // a couple of hundred times a second, which isn't great since it grabs a // lock. Note also that LastReceivedReportBlockMs() (called above) and // RtcpRrTimeout() both grab the same lock and check the same timer, so // it should be possible to consolidate that work somehow. if (rtcp_receiver_.RtcpRrTimeout()) { RTC_LOG_F(LS_WARNING) << "Timeout: No RTCP RR received."; } else if (rtcp_receiver_.RtcpRrSequenceNumberTimeout()) { RTC_LOG_F(LS_WARNING) << "Timeout: No increase in RTCP RR extended " "highest sequence number."; } if (remote_bitrate_ && rtcp_sender_.TMMBR()) { unsigned int target_bitrate = 0; std::vector ssrcs; if (remote_bitrate_->LatestEstimate(&ssrcs, &target_bitrate)) { if (!ssrcs.empty()) { target_bitrate = target_bitrate / ssrcs.size(); } rtcp_sender_.SetTargetBitrate(target_bitrate); } } } else { // Report rtt from receiver. if (process_rtt) { int64_t rtt_ms; if (rtt_stats_ && rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)) { rtt_stats_->OnRttUpdate(rtt_ms); } } } // Get processed rtt. if (process_rtt) { last_rtt_process_time_ = now; // TODO(bugs.webrtc.org/11581): Is this a bug? At the top of the function, // next_process_time_ is incremented by 5ms, here we effectively do a // std::min() of (now + 5ms, now + 1000ms). Seems like this is a no-op? next_process_time_ = std::min( next_process_time_, last_rtt_process_time_ + kRtpRtcpRttProcessTimeMs); if (rtt_stats_) { // Make sure we have a valid RTT before setting. int64_t last_rtt = rtt_stats_->LastProcessedRtt(); if (last_rtt >= 0) set_rtt_ms(last_rtt); } } if (rtcp_sender_.TimeToSendRTCPReport()) rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpReport); if (TMMBR() && rtcp_receiver_.UpdateTmmbrTimers()) { rtcp_receiver_.NotifyTmmbrUpdated(); } } void ModuleRtpRtcpImpl::SetRtxSendStatus(int mode) { rtp_sender_->packet_generator.SetRtxStatus(mode); } int ModuleRtpRtcpImpl::RtxSendStatus() const { return rtp_sender_ ? rtp_sender_->packet_generator.RtxStatus() : kRtxOff; } void ModuleRtpRtcpImpl::SetRtxSendPayloadType(int payload_type, int associated_payload_type) { rtp_sender_->packet_generator.SetRtxPayloadType(payload_type, associated_payload_type); } absl::optional ModuleRtpRtcpImpl::RtxSsrc() const { return rtp_sender_ ? rtp_sender_->packet_generator.RtxSsrc() : absl::nullopt; } absl::optional ModuleRtpRtcpImpl::FlexfecSsrc() const { if (rtp_sender_) { return rtp_sender_->packet_generator.FlexfecSsrc(); } return absl::nullopt; } void ModuleRtpRtcpImpl::IncomingRtcpPacket(const uint8_t* rtcp_packet, const size_t length) { rtcp_receiver_.IncomingPacket(rtcp_packet, length); } void ModuleRtpRtcpImpl::RegisterSendPayloadFrequency(int payload_type, int payload_frequency) { rtcp_sender_.SetRtpClockRate(payload_type, payload_frequency); } int32_t ModuleRtpRtcpImpl::DeRegisterSendPayload(const int8_t payload_type) { return 0; } uint32_t ModuleRtpRtcpImpl::StartTimestamp() const { return rtp_sender_->packet_generator.TimestampOffset(); } // Configure start timestamp, default is a random number. void ModuleRtpRtcpImpl::SetStartTimestamp(const uint32_t timestamp) { rtcp_sender_.SetTimestampOffset(timestamp); rtp_sender_->packet_generator.SetTimestampOffset(timestamp); rtp_sender_->packet_sender.SetTimestampOffset(timestamp); } uint16_t ModuleRtpRtcpImpl::SequenceNumber() const { return rtp_sender_->packet_generator.SequenceNumber(); } // Set SequenceNumber, default is a random number. void ModuleRtpRtcpImpl::SetSequenceNumber(const uint16_t seq_num) { rtp_sender_->packet_generator.SetSequenceNumber(seq_num); } void ModuleRtpRtcpImpl::SetRtpState(const RtpState& rtp_state) { rtp_sender_->packet_generator.SetRtpState(rtp_state); rtcp_sender_.SetTimestampOffset(rtp_state.start_timestamp); } void ModuleRtpRtcpImpl::SetRtxState(const RtpState& rtp_state) { rtp_sender_->packet_generator.SetRtxRtpState(rtp_state); } RtpState ModuleRtpRtcpImpl::GetRtpState() const { RtpState state = rtp_sender_->packet_generator.GetRtpState(); return state; } RtpState ModuleRtpRtcpImpl::GetRtxState() const { return rtp_sender_->packet_generator.GetRtxRtpState(); } void ModuleRtpRtcpImpl::SetRid(const std::string& rid) { if (rtp_sender_) { rtp_sender_->packet_generator.SetRid(rid); } } void ModuleRtpRtcpImpl::SetMid(const std::string& mid) { if (rtp_sender_) { rtp_sender_->packet_generator.SetMid(mid); } // TODO(bugs.webrtc.org/4050): If we end up supporting the MID SDES item for // RTCP, this will need to be passed down to the RTCPSender also. } void ModuleRtpRtcpImpl::SetCsrcs(const std::vector& csrcs) { rtcp_sender_.SetCsrcs(csrcs); rtp_sender_->packet_generator.SetCsrcs(csrcs); } // TODO(pbos): Handle media and RTX streams separately (separate RTCP // feedbacks). RTCPSender::FeedbackState ModuleRtpRtcpImpl::GetFeedbackState() { RTCPSender::FeedbackState state; // This is called also when receiver_only is true. Hence below // checks that rtp_sender_ exists. if (rtp_sender_) { StreamDataCounters rtp_stats; StreamDataCounters rtx_stats; rtp_sender_->packet_sender.GetDataCounters(&rtp_stats, &rtx_stats); state.packets_sent = rtp_stats.transmitted.packets + rtx_stats.transmitted.packets; state.media_bytes_sent = rtp_stats.transmitted.payload_bytes + rtx_stats.transmitted.payload_bytes; state.send_bitrate = rtp_sender_->packet_sender.GetSendRates().Sum().bps(); } state.receiver = &rtcp_receiver_; LastReceivedNTP(&state.last_rr_ntp_secs, &state.last_rr_ntp_frac, &state.remote_sr); state.last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); return state; } // TODO(nisse): This method shouldn't be called for a receive-only // stream. Delete rtp_sender_ check as soon as all applications are // updated. int32_t ModuleRtpRtcpImpl::SetSendingStatus(const bool sending) { if (rtcp_sender_.Sending() != sending) { // Sends RTCP BYE when going from true to false if (rtcp_sender_.SetSendingStatus(GetFeedbackState(), sending) != 0) { RTC_LOG(LS_WARNING) << "Failed to send RTCP BYE"; } } return 0; } bool ModuleRtpRtcpImpl::Sending() const { return rtcp_sender_.Sending(); } // TODO(nisse): This method shouldn't be called for a receive-only // stream. Delete rtp_sender_ check as soon as all applications are // updated. void ModuleRtpRtcpImpl::SetSendingMediaStatus(const bool sending) { if (rtp_sender_) { rtp_sender_->packet_generator.SetSendingMediaStatus(sending); } else { RTC_DCHECK(!sending); } } bool ModuleRtpRtcpImpl::SendingMedia() const { return rtp_sender_ ? rtp_sender_->packet_generator.SendingMedia() : false; } bool ModuleRtpRtcpImpl::IsAudioConfigured() const { return rtp_sender_ ? rtp_sender_->packet_generator.IsAudioConfigured() : false; } void ModuleRtpRtcpImpl::SetAsPartOfAllocation(bool part_of_allocation) { RTC_CHECK(rtp_sender_); rtp_sender_->packet_sender.ForceIncludeSendPacketsInAllocation( part_of_allocation); } bool ModuleRtpRtcpImpl::OnSendingRtpFrame(uint32_t timestamp, int64_t capture_time_ms, int payload_type, bool force_sender_report) { if (!Sending()) return false; rtcp_sender_.SetLastRtpTime(timestamp, capture_time_ms, payload_type); // Make sure an RTCP report isn't queued behind a key frame. if (rtcp_sender_.TimeToSendRTCPReport(force_sender_report)) rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpReport); return true; } bool ModuleRtpRtcpImpl::TrySendPacket(RtpPacketToSend* packet, const PacedPacketInfo& pacing_info) { RTC_DCHECK(rtp_sender_); // TODO(sprang): Consider if we can remove this check. if (!rtp_sender_->packet_generator.SendingMedia()) { return false; } rtp_sender_->packet_sender.SendPacket(packet, pacing_info); return true; } void ModuleRtpRtcpImpl::SetFecProtectionParams(const FecProtectionParams&, const FecProtectionParams&) { // Deferred FEC not supported in deprecated RTP module. } std::vector> ModuleRtpRtcpImpl::FetchFecPackets() { // Deferred FEC not supported in deprecated RTP module. return {}; } void ModuleRtpRtcpImpl::OnPacketsAcknowledged( rtc::ArrayView sequence_numbers) { RTC_DCHECK(rtp_sender_); rtp_sender_->packet_history.CullAcknowledgedPackets(sequence_numbers); } bool ModuleRtpRtcpImpl::SupportsPadding() const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_generator.SupportsPadding(); } bool ModuleRtpRtcpImpl::SupportsRtxPayloadPadding() const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_generator.SupportsRtxPayloadPadding(); } std::vector> ModuleRtpRtcpImpl::GeneratePadding(size_t target_size_bytes) { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_generator.GeneratePadding( target_size_bytes, rtp_sender_->packet_sender.MediaHasBeenSent()); } std::vector ModuleRtpRtcpImpl::GetSentRtpPacketInfos( rtc::ArrayView sequence_numbers) const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_sender.GetSentRtpPacketInfos(sequence_numbers); } size_t ModuleRtpRtcpImpl::ExpectedPerPacketOverhead() const { if (!rtp_sender_) { return 0; } return rtp_sender_->packet_generator.ExpectedPerPacketOverhead(); } size_t ModuleRtpRtcpImpl::MaxRtpPacketSize() const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_generator.MaxRtpPacketSize(); } void ModuleRtpRtcpImpl::SetMaxRtpPacketSize(size_t rtp_packet_size) { RTC_DCHECK_LE(rtp_packet_size, IP_PACKET_SIZE) << "rtp packet size too large: " << rtp_packet_size; RTC_DCHECK_GT(rtp_packet_size, packet_overhead_) << "rtp packet size too small: " << rtp_packet_size; rtcp_sender_.SetMaxRtpPacketSize(rtp_packet_size); if (rtp_sender_) { rtp_sender_->packet_generator.SetMaxRtpPacketSize(rtp_packet_size); } } RtcpMode ModuleRtpRtcpImpl::RTCP() const { return rtcp_sender_.Status(); } // Configure RTCP status i.e on/off. void ModuleRtpRtcpImpl::SetRTCPStatus(const RtcpMode method) { rtcp_sender_.SetRTCPStatus(method); } int32_t ModuleRtpRtcpImpl::SetCNAME(const char* c_name) { return rtcp_sender_.SetCNAME(c_name); } int32_t ModuleRtpRtcpImpl::AddMixedCNAME(uint32_t ssrc, const char* c_name) { return rtcp_sender_.AddMixedCNAME(ssrc, c_name); } int32_t ModuleRtpRtcpImpl::RemoveMixedCNAME(const uint32_t ssrc) { return rtcp_sender_.RemoveMixedCNAME(ssrc); } int32_t ModuleRtpRtcpImpl::RemoteCNAME(const uint32_t remote_ssrc, char c_name[RTCP_CNAME_SIZE]) const { return rtcp_receiver_.CNAME(remote_ssrc, c_name); } int32_t ModuleRtpRtcpImpl::RemoteNTP(uint32_t* received_ntpsecs, uint32_t* received_ntpfrac, uint32_t* rtcp_arrival_time_secs, uint32_t* rtcp_arrival_time_frac, uint32_t* rtcp_timestamp) const { return rtcp_receiver_.NTP(received_ntpsecs, received_ntpfrac, rtcp_arrival_time_secs, rtcp_arrival_time_frac, rtcp_timestamp) ? 0 : -1; } // Get RoundTripTime. int32_t ModuleRtpRtcpImpl::RTT(const uint32_t remote_ssrc, int64_t* rtt, int64_t* avg_rtt, int64_t* min_rtt, int64_t* max_rtt) const { int32_t ret = rtcp_receiver_.RTT(remote_ssrc, rtt, avg_rtt, min_rtt, max_rtt); if (rtt && *rtt == 0) { // Try to get RTT from RtcpRttStats class. *rtt = rtt_ms(); } return ret; } int64_t ModuleRtpRtcpImpl::ExpectedRetransmissionTimeMs() const { int64_t expected_retransmission_time_ms = rtt_ms(); if (expected_retransmission_time_ms > 0) { return expected_retransmission_time_ms; } // No rtt available (|kRtpRtcpRttProcessTimeMs| not yet passed?), so try to // poll avg_rtt_ms directly from rtcp receiver. if (rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), nullptr, &expected_retransmission_time_ms, nullptr, nullptr) == 0) { return expected_retransmission_time_ms; } return kDefaultExpectedRetransmissionTimeMs; } // Force a send of an RTCP packet. // Normal SR and RR are triggered via the process function. int32_t ModuleRtpRtcpImpl::SendRTCP(RTCPPacketType packet_type) { return rtcp_sender_.SendRTCP(GetFeedbackState(), packet_type); } int32_t ModuleRtpRtcpImpl::SetRTCPApplicationSpecificData( const uint8_t sub_type, const uint32_t name, const uint8_t* data, const uint16_t length) { RTC_NOTREACHED() << "Not implemented"; return -1; } void ModuleRtpRtcpImpl::SetRtcpXrRrtrStatus(bool enable) { rtcp_receiver_.SetRtcpXrRrtrStatus(enable); rtcp_sender_.SendRtcpXrReceiverReferenceTime(enable); } bool ModuleRtpRtcpImpl::RtcpXrRrtrStatus() const { return rtcp_sender_.RtcpXrReceiverReferenceTime(); } // TODO(asapersson): Replace this method with the one below. int32_t ModuleRtpRtcpImpl::DataCountersRTP(size_t* bytes_sent, uint32_t* packets_sent) const { StreamDataCounters rtp_stats; StreamDataCounters rtx_stats; rtp_sender_->packet_sender.GetDataCounters(&rtp_stats, &rtx_stats); if (bytes_sent) { // TODO(http://crbug.com/webrtc/10525): Bytes sent should only include // payload bytes, not header and padding bytes. *bytes_sent = rtp_stats.transmitted.payload_bytes + rtp_stats.transmitted.padding_bytes + rtp_stats.transmitted.header_bytes + rtx_stats.transmitted.payload_bytes + rtx_stats.transmitted.padding_bytes + rtx_stats.transmitted.header_bytes; } if (packets_sent) { *packets_sent = rtp_stats.transmitted.packets + rtx_stats.transmitted.packets; } return 0; } void ModuleRtpRtcpImpl::GetSendStreamDataCounters( StreamDataCounters* rtp_counters, StreamDataCounters* rtx_counters) const { rtp_sender_->packet_sender.GetDataCounters(rtp_counters, rtx_counters); } // Received RTCP report. int32_t ModuleRtpRtcpImpl::RemoteRTCPStat( std::vector* receive_blocks) const { return rtcp_receiver_.StatisticsReceived(receive_blocks); } std::vector ModuleRtpRtcpImpl::GetLatestReportBlockData() const { return rtcp_receiver_.GetLatestReportBlockData(); } // (REMB) Receiver Estimated Max Bitrate. void ModuleRtpRtcpImpl::SetRemb(int64_t bitrate_bps, std::vector ssrcs) { rtcp_sender_.SetRemb(bitrate_bps, std::move(ssrcs)); } void ModuleRtpRtcpImpl::UnsetRemb() { rtcp_sender_.UnsetRemb(); } void ModuleRtpRtcpImpl::SetExtmapAllowMixed(bool extmap_allow_mixed) { rtp_sender_->packet_generator.SetExtmapAllowMixed(extmap_allow_mixed); } int32_t ModuleRtpRtcpImpl::RegisterSendRtpHeaderExtension( const RTPExtensionType type, const uint8_t id) { return rtp_sender_->packet_generator.RegisterRtpHeaderExtension(type, id); } void ModuleRtpRtcpImpl::RegisterRtpHeaderExtension(absl::string_view uri, int id) { bool registered = rtp_sender_->packet_generator.RegisterRtpHeaderExtension(uri, id); RTC_CHECK(registered); } int32_t ModuleRtpRtcpImpl::DeregisterSendRtpHeaderExtension( const RTPExtensionType type) { return rtp_sender_->packet_generator.DeregisterRtpHeaderExtension(type); } void ModuleRtpRtcpImpl::DeregisterSendRtpHeaderExtension( absl::string_view uri) { rtp_sender_->packet_generator.DeregisterRtpHeaderExtension(uri); } // (TMMBR) Temporary Max Media Bit Rate. bool ModuleRtpRtcpImpl::TMMBR() const { return rtcp_sender_.TMMBR(); } void ModuleRtpRtcpImpl::SetTMMBRStatus(const bool enable) { rtcp_sender_.SetTMMBRStatus(enable); } void ModuleRtpRtcpImpl::SetTmmbn(std::vector bounding_set) { rtcp_sender_.SetTmmbn(std::move(bounding_set)); } // Send a Negative acknowledgment packet. int32_t ModuleRtpRtcpImpl::SendNACK(const uint16_t* nack_list, const uint16_t size) { uint16_t nack_length = size; uint16_t start_id = 0; int64_t now_ms = clock_->TimeInMilliseconds(); if (TimeToSendFullNackList(now_ms)) { nack_last_time_sent_full_ms_ = now_ms; } else { // Only send extended list. if (nack_last_seq_number_sent_ == nack_list[size - 1]) { // Last sequence number is the same, do not send list. return 0; } // Send new sequence numbers. for (int i = 0; i < size; ++i) { if (nack_last_seq_number_sent_ == nack_list[i]) { start_id = i + 1; break; } } nack_length = size - start_id; } // Our RTCP NACK implementation is limited to kRtcpMaxNackFields sequence // numbers per RTCP packet. if (nack_length > kRtcpMaxNackFields) { nack_length = kRtcpMaxNackFields; } nack_last_seq_number_sent_ = nack_list[start_id + nack_length - 1]; return rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpNack, nack_length, &nack_list[start_id]); } void ModuleRtpRtcpImpl::SendNack( const std::vector& sequence_numbers) { rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpNack, sequence_numbers.size(), sequence_numbers.data()); } bool ModuleRtpRtcpImpl::TimeToSendFullNackList(int64_t now) const { // Use RTT from RtcpRttStats class if provided. int64_t rtt = rtt_ms(); if (rtt == 0) { rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), NULL, &rtt, NULL, NULL); } const int64_t kStartUpRttMs = 100; int64_t wait_time = 5 + ((rtt * 3) >> 1); // 5 + RTT * 1.5. if (rtt == 0) { wait_time = kStartUpRttMs; } // Send a full NACK list once within every |wait_time|. return now - nack_last_time_sent_full_ms_ > wait_time; } // Store the sent packets, needed to answer to Negative acknowledgment requests. void ModuleRtpRtcpImpl::SetStorePacketsStatus(const bool enable, const uint16_t number_to_store) { rtp_sender_->packet_history.SetStorePacketsStatus( enable ? RtpPacketHistory::StorageMode::kStoreAndCull : RtpPacketHistory::StorageMode::kDisabled, number_to_store); } bool ModuleRtpRtcpImpl::StorePackets() const { return rtp_sender_->packet_history.GetStorageMode() != RtpPacketHistory::StorageMode::kDisabled; } void ModuleRtpRtcpImpl::SendCombinedRtcpPacket( std::vector> rtcp_packets) { rtcp_sender_.SendCombinedRtcpPacket(std::move(rtcp_packets)); } int32_t ModuleRtpRtcpImpl::SendLossNotification(uint16_t last_decoded_seq_num, uint16_t last_received_seq_num, bool decodability_flag, bool buffering_allowed) { return rtcp_sender_.SendLossNotification( GetFeedbackState(), last_decoded_seq_num, last_received_seq_num, decodability_flag, buffering_allowed); } void ModuleRtpRtcpImpl::SetRemoteSSRC(const uint32_t ssrc) { // Inform about the incoming SSRC. rtcp_sender_.SetRemoteSSRC(ssrc); rtcp_receiver_.SetRemoteSSRC(ssrc); } void ModuleRtpRtcpImpl::BitrateSent(uint32_t* total_rate, uint32_t* video_rate, uint32_t* fec_rate, uint32_t* nack_rate) const { RtpSendRates send_rates = rtp_sender_->packet_sender.GetSendRates(); *total_rate = send_rates.Sum().bps(); if (video_rate) *video_rate = 0; if (fec_rate) *fec_rate = 0; *nack_rate = send_rates[RtpPacketMediaType::kRetransmission].bps(); } RtpSendRates ModuleRtpRtcpImpl::GetSendRates() const { return rtp_sender_->packet_sender.GetSendRates(); } void ModuleRtpRtcpImpl::OnRequestSendReport() { SendRTCP(kRtcpSr); } void ModuleRtpRtcpImpl::OnReceivedNack( const std::vector& nack_sequence_numbers) { if (!rtp_sender_) return; if (!StorePackets() || nack_sequence_numbers.empty()) { return; } // Use RTT from RtcpRttStats class if provided. int64_t rtt = rtt_ms(); if (rtt == 0) { rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), NULL, &rtt, NULL, NULL); } rtp_sender_->packet_generator.OnReceivedNack(nack_sequence_numbers, rtt); } void ModuleRtpRtcpImpl::OnReceivedRtcpReportBlocks( const ReportBlockList& report_blocks) { if (rtp_sender_) { uint32_t ssrc = SSRC(); absl::optional rtx_ssrc; if (rtp_sender_->packet_generator.RtxStatus() != kRtxOff) { rtx_ssrc = rtp_sender_->packet_generator.RtxSsrc(); } for (const RTCPReportBlock& report_block : report_blocks) { if (ssrc == report_block.source_ssrc) { rtp_sender_->packet_generator.OnReceivedAckOnSsrc( report_block.extended_highest_sequence_number); } else if (rtx_ssrc && *rtx_ssrc == report_block.source_ssrc) { rtp_sender_->packet_generator.OnReceivedAckOnRtxSsrc( report_block.extended_highest_sequence_number); } } } } bool ModuleRtpRtcpImpl::LastReceivedNTP( uint32_t* rtcp_arrival_time_secs, // When we got the last report. uint32_t* rtcp_arrival_time_frac, uint32_t* remote_sr) const { // Remote SR: NTP inside the last received (mid 16 bits from sec and frac). uint32_t ntp_secs = 0; uint32_t ntp_frac = 0; if (!rtcp_receiver_.NTP(&ntp_secs, &ntp_frac, rtcp_arrival_time_secs, rtcp_arrival_time_frac, NULL)) { return false; } *remote_sr = ((ntp_secs & 0x0000ffff) << 16) + ((ntp_frac & 0xffff0000) >> 16); return true; } void ModuleRtpRtcpImpl::set_rtt_ms(int64_t rtt_ms) { { MutexLock lock(&mutex_rtt_); rtt_ms_ = rtt_ms; } if (rtp_sender_) { rtp_sender_->packet_history.SetRtt(rtt_ms); } } int64_t ModuleRtpRtcpImpl::rtt_ms() const { MutexLock lock(&mutex_rtt_); return rtt_ms_; } void ModuleRtpRtcpImpl::SetVideoBitrateAllocation( const VideoBitrateAllocation& bitrate) { rtcp_sender_.SetVideoBitrateAllocation(bitrate); } RTPSender* ModuleRtpRtcpImpl::RtpSender() { return rtp_sender_ ? &rtp_sender_->packet_generator : nullptr; } const RTPSender* ModuleRtpRtcpImpl::RtpSender() const { return rtp_sender_ ? &rtp_sender_->packet_generator : nullptr; } DataRate ModuleRtpRtcpImpl::SendRate() const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_sender.GetSendRates().Sum(); } DataRate ModuleRtpRtcpImpl::NackOverheadRate() const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_sender .GetSendRates()[RtpPacketMediaType::kRetransmission]; } } // namespace webrtc