/* * Copyright 2019 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef RTC_BASE_NUMERICS_EVENT_BASED_EXPONENTIAL_MOVING_AVERAGE_H_ #define RTC_BASE_NUMERICS_EVENT_BASED_EXPONENTIAL_MOVING_AVERAGE_H_ #include #include #include #include "absl/types/optional.h" namespace rtc { /** * This class implements exponential moving average for time series * estimating both value, variance and variance of estimator based on * https://en.wikipedia.org/w/index.php?title=Moving_average§ion=9#Application_to_measuring_computer_performance * with the additions from nisse@ added to * https://en.wikipedia.org/wiki/Talk:Moving_average. * * A sample gets exponentially less weight so that it's 50% * after |half_time| time units. */ class EventBasedExponentialMovingAverage { public: // |half_time| specifies how much weight will be given to old samples, // see example above. explicit EventBasedExponentialMovingAverage(int half_time); void AddSample(int64_t now, int value); double GetAverage() const { return value_; } double GetVariance() const { return sample_variance_; } // Compute 95% confidence interval assuming that // - variance of samples are normal distributed. // - variance of estimator is normal distributed. // // The returned values specifies the distance from the average, // i.e if X = GetAverage(), m = GetConfidenceInterval() // then a there is 95% likelihood that the observed variables is inside // [ X +/- m ]. double GetConfidenceInterval() const; // Reset void Reset(); // Update the half_time. // NOTE: resets estimate too. void SetHalfTime(int half_time); private: double tau_; double value_ = std::nan("uninit"); double sample_variance_ = std::numeric_limits::infinity(); // This is the ratio between variance of the estimate and variance of samples. double estimator_variance_ = 1; absl::optional last_observation_timestamp_; }; } // namespace rtc #endif // RTC_BASE_NUMERICS_EVENT_BASED_EXPONENTIAL_MOVING_AVERAGE_H_