/* ****************************************************************** * Huffman encoder, part of New Generation Entropy library * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc. * * You can contact the author at : * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy * - Public forum : https://groups.google.com/forum/#!forum/lz4c * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. ****************************************************************** */ /* ************************************************************** * Compiler specifics ****************************************************************/ #ifdef _MSC_VER /* Visual Studio */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ #endif /* ************************************************************** * Includes ****************************************************************/ #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ #include "../common/compiler.h" #include "../common/bitstream.h" #include "hist.h" #define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */ #include "../common/fse.h" /* header compression */ #define HUF_STATIC_LINKING_ONLY #include "../common/huf.h" #include "../common/error_private.h" /* ************************************************************** * Error Management ****************************************************************/ #define HUF_isError ERR_isError #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */ /* ************************************************************** * Utils ****************************************************************/ unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) { return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); } /* ******************************************************* * HUF : Huffman block compression *********************************************************/ /* HUF_compressWeights() : * Same as FSE_compress(), but dedicated to huff0's weights compression. * The use case needs much less stack memory. * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX. */ #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6 static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize) { BYTE* const ostart = (BYTE*) dst; BYTE* op = ostart; BYTE* const oend = ostart + dstSize; unsigned maxSymbolValue = HUF_TABLELOG_MAX; U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)]; BYTE scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)]; unsigned count[HUF_TABLELOG_MAX+1]; S16 norm[HUF_TABLELOG_MAX+1]; /* init conditions */ if (wtSize <= 1) return 0; /* Not compressible */ /* Scan input and build symbol stats */ { unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize); /* never fails */ if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */ if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */ } tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue); CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) ); /* Write table description header */ { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), norm, maxSymbolValue, tableLog) ); op += hSize; } /* Compress */ CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) ); { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, CTable) ); if (cSize == 0) return 0; /* not enough space for compressed data */ op += cSize; } return (size_t)(op-ostart); } /*! HUF_writeCTable() : `CTable` : Huffman tree to save, using huf representation. @return : size of saved CTable */ size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog) { BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */ BYTE huffWeight[HUF_SYMBOLVALUE_MAX]; BYTE* op = (BYTE*)dst; U32 n; /* check conditions */ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); /* convert to weight */ bitsToWeight[0] = 0; for (n=1; n1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */ op[0] = (BYTE)hSize; return hSize+1; } } /* write raw values as 4-bits (max : 15) */ if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */ if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */ op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1)); huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */ for (n=0; n 0); /* check result */ if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall); /* Prepare base value per rank */ { U32 n, nextRankStart = 0; for (n=1; n<=tableLog; n++) { U32 curr = nextRankStart; nextRankStart += (rankVal[n] << (n-1)); rankVal[n] = curr; } } /* fill nbBits */ { U32 n; for (n=0; nn=tableLog+1 */ U16 valPerRank[HUF_TABLELOG_MAX+2] = {0}; { U32 n; for (n=0; n0; n--) { /* start at n=tablelog <-> w=1 */ valPerRank[n] = min; /* get starting value within each rank */ min += nbPerRank[n]; min >>= 1; } } /* assign value within rank, symbol order */ { U32 n; for (n=0; n maxNbBits to be maxNbBits. Then it adjusts * the tree to so that it is a valid canonical Huffman tree. * * @pre The sum of the ranks of each symbol == 2^largestBits, * where largestBits == huffNode[lastNonNull].nbBits. * @post The sum of the ranks of each symbol == 2^largestBits, * where largestBits is the return value <= maxNbBits. * * @param huffNode The Huffman tree modified in place to enforce maxNbBits. * @param lastNonNull The symbol with the lowest count in the Huffman tree. * @param maxNbBits The maximum allowed number of bits, which the Huffman tree * may not respect. After this function the Huffman tree will * respect maxNbBits. * @return The maximum number of bits of the Huffman tree after adjustment, * necessarily no more than maxNbBits. */ static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits) { const U32 largestBits = huffNode[lastNonNull].nbBits; /* early exit : no elt > maxNbBits, so the tree is already valid. */ if (largestBits <= maxNbBits) return largestBits; /* there are several too large elements (at least >= 2) */ { int totalCost = 0; const U32 baseCost = 1 << (largestBits - maxNbBits); int n = (int)lastNonNull; /* Adjust any ranks > maxNbBits to maxNbBits. * Compute totalCost, which is how far the sum of the ranks is * we are over 2^largestBits after adjust the offending ranks. */ while (huffNode[n].nbBits > maxNbBits) { totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); huffNode[n].nbBits = (BYTE)maxNbBits; n--; } /* n stops at huffNode[n].nbBits <= maxNbBits */ assert(huffNode[n].nbBits <= maxNbBits); /* n end at index of smallest symbol using < maxNbBits */ while (huffNode[n].nbBits == maxNbBits) --n; /* renorm totalCost from 2^largestBits to 2^maxNbBits * note : totalCost is necessarily a multiple of baseCost */ assert((totalCost & (baseCost - 1)) == 0); totalCost >>= (largestBits - maxNbBits); assert(totalCost > 0); /* repay normalized cost */ { U32 const noSymbol = 0xF0F0F0F0; U32 rankLast[HUF_TABLELOG_MAX+2]; /* Get pos of last (smallest = lowest cum. count) symbol per rank */ ZSTD_memset(rankLast, 0xF0, sizeof(rankLast)); { U32 currentNbBits = maxNbBits; int pos; for (pos=n ; pos >= 0; pos--) { if (huffNode[pos].nbBits >= currentNbBits) continue; currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */ rankLast[maxNbBits-currentNbBits] = (U32)pos; } } while (totalCost > 0) { /* Try to reduce the next power of 2 above totalCost because we * gain back half the rank. */ U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1; for ( ; nBitsToDecrease > 1; nBitsToDecrease--) { U32 const highPos = rankLast[nBitsToDecrease]; U32 const lowPos = rankLast[nBitsToDecrease-1]; if (highPos == noSymbol) continue; /* Decrease highPos if no symbols of lowPos or if it is * not cheaper to remove 2 lowPos than highPos. */ if (lowPos == noSymbol) break; { U32 const highTotal = huffNode[highPos].count; U32 const lowTotal = 2 * huffNode[lowPos].count; if (highTotal <= lowTotal) break; } } /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1); /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */ while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) nBitsToDecrease++; assert(rankLast[nBitsToDecrease] != noSymbol); /* Increase the number of bits to gain back half the rank cost. */ totalCost -= 1 << (nBitsToDecrease-1); huffNode[rankLast[nBitsToDecrease]].nbBits++; /* Fix up the new rank. * If the new rank was empty, this symbol is now its smallest. * Otherwise, this symbol will be the largest in the new rank so no adjustment. */ if (rankLast[nBitsToDecrease-1] == noSymbol) rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* Fix up the old rank. * If the symbol was at position 0, meaning it was the highest weight symbol in the tree, * it must be the only symbol in its rank, so the old rank now has no symbols. * Otherwise, since the Huffman nodes are sorted by count, the previous position is now * the smallest node in the rank. If the previous position belongs to a different rank, * then the rank is now empty. */ if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */ rankLast[nBitsToDecrease] = noSymbol; else { rankLast[nBitsToDecrease]--; if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease) rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */ } } /* while (totalCost > 0) */ /* If we've removed too much weight, then we have to add it back. * To avoid overshooting again, we only adjust the smallest rank. * We take the largest nodes from the lowest rank 0 and move them * to rank 1. There's guaranteed to be enough rank 0 symbols because * TODO. */ while (totalCost < 0) { /* Sometimes, cost correction overshoot */ /* special case : no rank 1 symbol (using maxNbBits-1); * let's create one from largest rank 0 (using maxNbBits). */ if (rankLast[1] == noSymbol) { while (huffNode[n].nbBits == maxNbBits) n--; huffNode[n+1].nbBits--; assert(n >= 0); rankLast[1] = (U32)(n+1); totalCost++; continue; } huffNode[ rankLast[1] + 1 ].nbBits--; rankLast[1]++; totalCost ++; } } /* repay normalized cost */ } /* there are several too large elements (at least >= 2) */ return maxNbBits; } typedef struct { U32 base; U32 curr; } rankPos; typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32]; #define RANK_POSITION_TABLE_SIZE 32 typedef struct { huffNodeTable huffNodeTbl; rankPos rankPosition[RANK_POSITION_TABLE_SIZE]; } HUF_buildCTable_wksp_tables; /** * HUF_sort(): * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order. * * @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled. * Must have (maxSymbolValue + 1) entries. * @param[in] count Histogram of the symbols. * @param[in] maxSymbolValue Maximum symbol value. * @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries. */ static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition) { int n; int const maxSymbolValue1 = (int)maxSymbolValue + 1; /* Compute base and set curr to base. * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1. * Then 2^lowerRank <= count[n]+1 <= 2^rank. * We attribute each symbol to lowerRank's base value, because we want to know where * each rank begins in the output, so for rank R we want to count ranks R+1 and above. */ ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE); for (n = 0; n < maxSymbolValue1; ++n) { U32 lowerRank = BIT_highbit32(count[n] + 1); rankPosition[lowerRank].base++; } assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0); for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) { rankPosition[n-1].base += rankPosition[n].base; rankPosition[n-1].curr = rankPosition[n-1].base; } /* Sort */ for (n = 0; n < maxSymbolValue1; ++n) { U32 const c = count[n]; U32 const r = BIT_highbit32(c+1) + 1; U32 pos = rankPosition[r].curr++; /* Insert into the correct position in the rank. * We have at most 256 symbols, so this insertion should be fine. */ while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) { huffNode[pos] = huffNode[pos-1]; pos--; } huffNode[pos].count = c; huffNode[pos].byte = (BYTE)n; } } /** HUF_buildCTable_wksp() : * Same as HUF_buildCTable(), but using externally allocated scratch buffer. * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables). */ #define STARTNODE (HUF_SYMBOLVALUE_MAX+1) /* HUF_buildTree(): * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree. * * @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array. * @param maxSymbolValue The maximum symbol value. * @return The smallest node in the Huffman tree (by count). */ static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue) { nodeElt* const huffNode0 = huffNode - 1; int nonNullRank; int lowS, lowN; int nodeNb = STARTNODE; int n, nodeRoot; /* init for parents */ nonNullRank = (int)maxSymbolValue; while(huffNode[nonNullRank].count == 0) nonNullRank--; lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb; huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count; huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb; nodeNb++; lowS-=2; for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30); huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */ /* create parents */ while (nodeNb <= nodeRoot) { int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb; nodeNb++; } /* distribute weights (unlimited tree height) */ huffNode[nodeRoot].nbBits = 0; for (n=nodeRoot-1; n>=STARTNODE; n--) huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; for (n=0; n<=nonNullRank; n++) huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; return nonNullRank; } /** * HUF_buildCTableFromTree(): * Build the CTable given the Huffman tree in huffNode. * * @param[out] CTable The output Huffman CTable. * @param huffNode The Huffman tree. * @param nonNullRank The last and smallest node in the Huffman tree. * @param maxSymbolValue The maximum symbol value. * @param maxNbBits The exact maximum number of bits used in the Huffman tree. */ static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits) { /* fill result into ctable (val, nbBits) */ int n; U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0}; U16 valPerRank[HUF_TABLELOG_MAX+1] = {0}; int const alphabetSize = (int)(maxSymbolValue + 1); for (n=0; n<=nonNullRank; n++) nbPerRank[huffNode[n].nbBits]++; /* determine starting value per rank */ { U16 min = 0; for (n=(int)maxNbBits; n>0; n--) { valPerRank[n] = min; /* get starting value within each rank */ min += nbPerRank[n]; min >>= 1; } } for (n=0; nhuffNodeTbl; nodeElt* const huffNode = huffNode0+1; int nonNullRank; /* safety checks */ if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ if (wkspSize < sizeof(HUF_buildCTable_wksp_tables)) return ERROR(workSpace_tooSmall); if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT; if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable)); /* sort, decreasing order */ HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition); /* build tree */ nonNullRank = HUF_buildTree(huffNode, maxSymbolValue); /* enforce maxTableLog */ maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits); if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */ HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits); return maxNbBits; } size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { size_t nbBits = 0; int s; for (s = 0; s <= (int)maxSymbolValue; ++s) { nbBits += CTable[s].nbBits * count[s]; } return nbBits >> 3; } int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { int bad = 0; int s; for (s = 0; s <= (int)maxSymbolValue; ++s) { bad |= (count[s] != 0) & (CTable[s].nbBits == 0); } return !bad; } size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } FORCE_INLINE_TEMPLATE void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable) { BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits); } #define HUF_FLUSHBITS(s) BIT_flushBits(s) #define HUF_FLUSHBITS_1(stream) \ if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream) #define HUF_FLUSHBITS_2(stream) \ if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream) FORCE_INLINE_TEMPLATE size_t HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { const BYTE* ip = (const BYTE*) src; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + dstSize; BYTE* op = ostart; size_t n; BIT_CStream_t bitC; /* init */ if (dstSize < 8) return 0; /* not enough space to compress */ { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op)); if (HUF_isError(initErr)) return 0; } n = srcSize & ~3; /* join to mod 4 */ switch (srcSize & 3) { case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable); HUF_FLUSHBITS_2(&bitC); /* fall-through */ case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable); HUF_FLUSHBITS_1(&bitC); /* fall-through */ case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable); HUF_FLUSHBITS(&bitC); /* fall-through */ case 0 : /* fall-through */ default: break; } for (; n>0; n-=4) { /* note : n&3==0 at this stage */ HUF_encodeSymbol(&bitC, ip[n- 1], CTable); HUF_FLUSHBITS_1(&bitC); HUF_encodeSymbol(&bitC, ip[n- 2], CTable); HUF_FLUSHBITS_2(&bitC); HUF_encodeSymbol(&bitC, ip[n- 3], CTable); HUF_FLUSHBITS_1(&bitC); HUF_encodeSymbol(&bitC, ip[n- 4], CTable); HUF_FLUSHBITS(&bitC); } return BIT_closeCStream(&bitC); } #if DYNAMIC_BMI2 static TARGET_ATTRIBUTE("bmi2") size_t HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); } static size_t HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); } static size_t HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, const int bmi2) { if (bmi2) { return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable); } return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable); } #else static size_t HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, const int bmi2) { (void)bmi2; return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); } #endif size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); } static size_t HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2) { size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */ const BYTE* ip = (const BYTE*) src; const BYTE* const iend = ip + srcSize; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; BYTE* op = ostart; if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */ if (srcSize < 12) return 0; /* no saving possible : too small input */ op += 6; /* jumpTable */ assert(op <= oend); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); if (cSize==0) return 0; assert(cSize <= 65535); MEM_writeLE16(ostart, (U16)cSize); op += cSize; } ip += segmentSize; assert(op <= oend); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); if (cSize==0) return 0; assert(cSize <= 65535); MEM_writeLE16(ostart+2, (U16)cSize); op += cSize; } ip += segmentSize; assert(op <= oend); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); if (cSize==0) return 0; assert(cSize <= 65535); MEM_writeLE16(ostart+4, (U16)cSize); op += cSize; } ip += segmentSize; assert(op <= oend); assert(ip <= iend); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) ); if (cSize==0) return 0; op += cSize; } return (size_t)(op-ostart); } size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); } typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e; static size_t HUF_compressCTable_internal( BYTE* const ostart, BYTE* op, BYTE* const oend, const void* src, size_t srcSize, HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2) { size_t const cSize = (nbStreams==HUF_singleStream) ? HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) : HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2); if (HUF_isError(cSize)) { return cSize; } if (cSize==0) { return 0; } /* uncompressible */ op += cSize; /* check compressibility */ assert(op >= ostart); if ((size_t)(op-ostart) >= srcSize-1) { return 0; } return (size_t)(op-ostart); } typedef struct { unsigned count[HUF_SYMBOLVALUE_MAX + 1]; HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1]; HUF_buildCTable_wksp_tables buildCTable_wksp; } HUF_compress_tables_t; /* HUF_compress_internal() : * `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */ static size_t HUF_compress_internal (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, HUF_nbStreams_e nbStreams, void* workSpace, size_t wkspSize, HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat, const int bmi2) { HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + dstSize; BYTE* op = ostart; HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE); /* checks & inits */ if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall); if (!srcSize) return 0; /* Uncompressed */ if (!dstSize) return 0; /* cannot fit anything within dst budget */ if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */ if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX; if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT; /* Heuristic : If old table is valid, use it for small inputs */ if (preferRepeat && repeat && *repeat == HUF_repeat_valid) { return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, nbStreams, oldHufTable, bmi2); } /* Scan input and build symbol stats */ { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace, wkspSize) ); if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */ if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */ } /* Check validity of previous table */ if ( repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) { *repeat = HUF_repeat_none; } /* Heuristic : use existing table for small inputs */ if (preferRepeat && repeat && *repeat != HUF_repeat_none) { return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, nbStreams, oldHufTable, bmi2); } /* Build Huffman Tree */ huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue); { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count, maxSymbolValue, huffLog, &table->buildCTable_wksp, sizeof(table->buildCTable_wksp)); CHECK_F(maxBits); huffLog = (U32)maxBits; /* Zero unused symbols in CTable, so we can check it for validity */ ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0, sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt))); } /* Write table description header */ { CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) ); /* Check if using previous huffman table is beneficial */ if (repeat && *repeat != HUF_repeat_none) { size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue); size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue); if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) { return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, nbStreams, oldHufTable, bmi2); } } /* Use the new huffman table */ if (hSize + 12ul >= srcSize) { return 0; } op += hSize; if (repeat) { *repeat = HUF_repeat_none; } if (oldHufTable) ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */ } return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, nbStreams, table->CTable, bmi2); } size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void* workSpace, size_t wkspSize) { return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, HUF_singleStream, workSpace, wkspSize, NULL, NULL, 0, 0 /*bmi2*/); } size_t HUF_compress1X_repeat (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2) { return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, HUF_singleStream, workSpace, wkspSize, hufTable, repeat, preferRepeat, bmi2); } /* HUF_compress4X_repeat(): * compress input using 4 streams. * provide workspace to generate compression tables */ size_t HUF_compress4X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void* workSpace, size_t wkspSize) { return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, HUF_fourStreams, workSpace, wkspSize, NULL, NULL, 0, 0 /*bmi2*/); } /* HUF_compress4X_repeat(): * compress input using 4 streams. * re-use an existing huffman compression table */ size_t HUF_compress4X_repeat (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2) { return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, HUF_fourStreams, workSpace, wkspSize, hufTable, repeat, preferRepeat, bmi2); } #ifndef ZSTD_NO_UNUSED_FUNCTIONS /** HUF_buildCTable() : * @return : maxNbBits * Note : count is used before tree is written, so they can safely overlap */ size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits) { HUF_buildCTable_wksp_tables workspace; return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace)); } size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog) { unsigned workSpace[HUF_WORKSPACE_SIZE_U32]; return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace)); } size_t HUF_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog) { unsigned workSpace[HUF_WORKSPACE_SIZE_U32]; return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace)); } size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize) { return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT); } #endif