/* * Copyright (C) 2018 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fastboot_driver.h" #include "usb.h" #include "extensions.h" #include "fixtures.h" #include "test_utils.h" #include "transport_sniffer.h" namespace fastboot { extension::Configuration config; // The parsed XML config std::string SEARCH_PATH; std::string OUTPUT_PATH; // gtest's INSTANTIATE_TEST_CASE_P() must be at global scope, // so our autogenerated tests must be as well std::vector> GETVAR_XML_TESTS; std::vector> OEM_XML_TESTS; std::vector> PARTITION_XML_TESTS; std::vector> PARTITION_XML_WRITEABLE; std::vector> PARTITION_XML_WRITE_HASHABLE; std::vector> PARTITION_XML_WRITE_PARSED; std::vector> PARTITION_XML_WRITE_HASH_NONPARSED; std::vector> PARTITION_XML_USERDATA_CHECKSUM_WRITEABLE; std::vector> PACKED_XML_SUCCESS_TESTS; std::vector> PACKED_XML_FAIL_TESTS; // This only has 1 or zero elements so it will disappear from gtest when empty std::vector> SINGLE_PARTITION_XML_WRITE_HASHABLE; const std::string DEFAULT_OUPUT_NAME = "out.img"; // const char scratch_partition[] = "userdata"; const std::vector CMDS{"boot", "continue", "download:", "erase:", "flash:", "getvar:", "reboot", "set_active:", "upload"}; // For pretty printing we need all these overloads ::std::ostream& operator<<(::std::ostream& os, const RetCode& ret) { return os << FastBootDriver::RCString(ret); } bool PartitionHash(FastBootDriver* fb, const std::string& part, std::string* hash, int* retcode, std::string* err_msg) { if (config.checksum.empty()) { return -1; } std::string resp; std::vector info; const std::string cmd = config.checksum + ' ' + part; RetCode ret; if ((ret = fb->RawCommand(cmd, &resp, &info)) != SUCCESS) { *err_msg = android::base::StringPrintf("Hashing partition with command '%s' failed with: %s", cmd.c_str(), fb->RCString(ret).c_str()); return false; } std::stringstream imploded; std::copy(info.begin(), info.end(), std::ostream_iterator(imploded, "\n")); // If payload, we validate that as well const std::vector args = SplitBySpace(config.checksum_parser); std::vector prog_args(args.begin() + 1, args.end()); prog_args.push_back(resp); // Pass in the full command prog_args.push_back(SEARCH_PATH + imploded.str()); // Pass in the save location int pipe; pid_t pid = StartProgram(args[0], prog_args, &pipe); if (pid <= 0) { *err_msg = android::base::StringPrintf("Launching hash parser '%s' failed with: %s", config.checksum_parser.c_str(), strerror(errno)); return false; } *retcode = WaitProgram(pid, pipe, hash); if (*retcode) { // In this case the stderr pipe is a log message *err_msg = android::base::StringPrintf("Hash parser '%s' failed with: %s", config.checksum_parser.c_str(), hash->c_str()); return false; } return true; } bool SparseToBuf(sparse_file* sf, std::vector* out, bool with_crc = false) { int64_t len = sparse_file_len(sf, true, with_crc); if (len <= 0) { return false; } out->clear(); auto cb = [](void* priv, const void* data, size_t len) { auto vec = static_cast*>(priv); const char* cbuf = static_cast(data); vec->insert(vec->end(), cbuf, cbuf + len); return 0; }; return !sparse_file_callback(sf, true, with_crc, cb, out); } // Only allow alphanumeric, _, -, and . const auto not_allowed = [](char c) -> int { return !(isalnum(c) || c == '_' || c == '-' || c == '.'); }; // Test that USB even works TEST(USBFunctionality, USBConnect) { const auto matcher = [](usb_ifc_info* info) -> int { return FastBootTest::MatchFastboot(info, fastboot::FastBootTest::device_serial); }; Transport* transport = nullptr; for (int i = 0; i < FastBootTest::MAX_USB_TRIES && !transport; i++) { transport = usb_open(matcher); std::this_thread::sleep_for(std::chrono::milliseconds(10)); } ASSERT_NE(transport, nullptr) << "Could not find the fastboot device after: " << 10 * FastBootTest::MAX_USB_TRIES << "ms"; if (transport) { transport->Close(); delete transport; } } // Test commands related to super partition TEST_F(LogicalPartitionCompliance, SuperPartition) { ASSERT_TRUE(UserSpaceFastboot()); std::string partition_type; // getvar partition-type:super must fail for retrofit devices because the // partition does not exist. if (fb->GetVar("partition-type:super", &partition_type) == SUCCESS) { std::string is_logical; EXPECT_EQ(fb->GetVar("is-logical:super", &is_logical), SUCCESS) << "getvar is-logical:super failed"; EXPECT_EQ(is_logical, "no") << "super must not be a logical partition"; std::string super_name; EXPECT_EQ(fb->GetVar("super-partition-name", &super_name), SUCCESS) << "'getvar super-partition-name' failed"; EXPECT_EQ(super_name, "super") << "'getvar super-partition-name' must return 'super' for " "device with a super partition"; } } // Test 'fastboot getvar is-logical' TEST_F(LogicalPartitionCompliance, GetVarIsLogical) { ASSERT_TRUE(UserSpaceFastboot()); std::string has_slot; EXPECT_EQ(fb->GetVar("has-slot:system", &has_slot), SUCCESS) << "getvar has-slot:system failed"; std::string is_logical_cmd_system = "is-logical:system"; std::string is_logical_cmd_vendor = "is-logical:vendor"; std::string is_logical_cmd_boot = "is-logical:boot"; if (has_slot == "yes") { std::string current_slot; ASSERT_EQ(fb->GetVar("current-slot", ¤t_slot), SUCCESS) << "getvar current-slot failed"; std::string slot_suffix = "_" + current_slot; is_logical_cmd_system += slot_suffix; is_logical_cmd_vendor += slot_suffix; is_logical_cmd_boot += slot_suffix; } std::string is_logical; EXPECT_EQ(fb->GetVar(is_logical_cmd_system, &is_logical), SUCCESS) << "system must be a logical partition"; EXPECT_EQ(is_logical, "yes"); EXPECT_EQ(fb->GetVar(is_logical_cmd_vendor, &is_logical), SUCCESS) << "vendor must be a logical partition"; EXPECT_EQ(is_logical, "yes"); EXPECT_EQ(fb->GetVar(is_logical_cmd_boot, &is_logical), SUCCESS) << "boot must not be logical partition"; EXPECT_EQ(is_logical, "no"); } TEST_F(LogicalPartitionCompliance, FastbootRebootTest) { ASSERT_TRUE(UserSpaceFastboot()); GTEST_LOG_(INFO) << "Rebooting back to fastbootd mode"; fb->RebootTo("fastboot"); ReconnectFastbootDevice(); ASSERT_TRUE(UserSpaceFastboot()); } // Testing creation/resize/delete of logical partitions TEST_F(LogicalPartitionCompliance, CreateResizeDeleteLP) { ASSERT_TRUE(UserSpaceFastboot()); std::string test_partition_name = "test_partition"; std::string slot_count; // Add suffix to test_partition_name if device is slotted. EXPECT_EQ(fb->GetVar("slot-count", &slot_count), SUCCESS) << "getvar slot-count failed"; int32_t num_slots = strtol(slot_count.c_str(), nullptr, 10); if (num_slots > 0) { std::string current_slot; EXPECT_EQ(fb->GetVar("current-slot", ¤t_slot), SUCCESS) << "getvar current-slot failed"; std::string slot_suffix = "_" + current_slot; test_partition_name += slot_suffix; } GTEST_LOG_(INFO) << "Testing 'fastboot create-logical-partition' command"; EXPECT_EQ(fb->CreatePartition(test_partition_name, "0"), SUCCESS) << "create-logical-partition failed"; GTEST_LOG_(INFO) << "Testing 'fastboot resize-logical-partition' command"; EXPECT_EQ(fb->ResizePartition(test_partition_name, "4096"), SUCCESS) << "resize-logical-partition failed"; std::vector buf(4096); GTEST_LOG_(INFO) << "Flashing a logical partition.."; EXPECT_EQ(fb->FlashPartition(test_partition_name, buf), SUCCESS) << "flash logical -partition failed"; GTEST_LOG_(INFO) << "Testing 'fastboot delete-logical-partition' command"; EXPECT_EQ(fb->DeletePartition(test_partition_name), SUCCESS) << "delete logical-partition failed"; } // Conformance tests TEST_F(Conformance, GetVar) { std::string product; EXPECT_EQ(fb->GetVar("product", &product), SUCCESS) << "getvar:product failed"; EXPECT_NE(product, "") << "getvar:product response was empty string"; EXPECT_EQ(std::count_if(product.begin(), product.end(), not_allowed), 0) << "getvar:product response contained illegal chars"; EXPECT_LE(product.size(), FB_RESPONSE_SZ - 4) << "getvar:product response was too large"; } TEST_F(Conformance, GetVarVersionBootloader) { std::string var; EXPECT_EQ(fb->GetVar("version-bootloader", &var), SUCCESS) << "getvar:version-bootloader failed"; EXPECT_NE(var, "") << "getvar:version-bootloader response was empty string"; EXPECT_EQ(std::count_if(var.begin(), var.end(), not_allowed), 0) << "getvar:version-bootloader response contained illegal chars"; EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:version-bootloader response was too large"; } TEST_F(Conformance, GetVarVersionBaseband) { std::string var; EXPECT_EQ(fb->GetVar("version-baseband", &var), SUCCESS) << "getvar:version-baseband failed"; EXPECT_NE(var, "") << "getvar:version-baseband response was empty string"; EXPECT_EQ(std::count_if(var.begin(), var.end(), not_allowed), 0) << "getvar:version-baseband response contained illegal chars"; EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:version-baseband response was too large"; } TEST_F(Conformance, GetVarSerialNo) { std::string var; EXPECT_EQ(fb->GetVar("serialno", &var), SUCCESS) << "getvar:serialno failed"; EXPECT_NE(var, "") << "getvar:serialno can not be empty string"; EXPECT_EQ(std::count_if(var.begin(), var.end(), isalnum), var.size()) << "getvar:serialno must be alpha-numeric"; EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:serialno response is too long"; } TEST_F(Conformance, GetVarSecure) { std::string var; EXPECT_EQ(fb->GetVar("secure", &var), SUCCESS); EXPECT_TRUE(var == "yes" || var == "no"); } TEST_F(Conformance, GetVarOffModeCharge) { std::string var; EXPECT_EQ(fb->GetVar("off-mode-charge", &var), SUCCESS) << "getvar:off-mode-charge failed"; EXPECT_TRUE(var == "0" || var == "1") << "getvar:off-mode-charge response must be '0' or '1'"; } TEST_F(Conformance, GetVarVariant) { std::string var; EXPECT_EQ(fb->GetVar("variant", &var), SUCCESS) << "getvar:variant failed"; EXPECT_NE(var, "") << "getvar:variant response can not be empty"; EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:variant response is too large"; } TEST_F(Conformance, GetVarRevision) { std::string var; EXPECT_EQ(fb->GetVar("hw-revision", &var), SUCCESS) << "getvar:hw-revision failed"; EXPECT_NE(var, "") << "getvar:battery-voltage response was empty"; EXPECT_EQ(std::count_if(var.begin(), var.end(), not_allowed), 0) << "getvar:hw-revision contained illegal ASCII chars"; EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:hw-revision response was too large"; } TEST_F(Conformance, GetVarBattVoltage) { std::string var; EXPECT_EQ(fb->GetVar("battery-voltage", &var), SUCCESS) << "getvar:battery-voltage failed"; EXPECT_NE(var, "") << "getvar:battery-voltage response was empty"; EXPECT_EQ(std::count_if(var.begin(), var.end(), not_allowed), 0) << "getvar:battery-voltage response contains illegal ASCII chars"; EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:battery-voltage response is too large: " + var; } TEST_F(Conformance, GetVarBattVoltageOk) { std::string var; EXPECT_EQ(fb->GetVar("battery-soc-ok", &var), SUCCESS) << "getvar:battery-soc-ok failed"; EXPECT_TRUE(var == "yes" || var == "no") << "getvar:battery-soc-ok must be 'yes' or 'no'"; } void AssertHexUint32(const std::string& name, const std::string& var) { ASSERT_NE(var, "") << "getvar:" << name << " responded with empty string"; // This must start with 0x ASSERT_FALSE(isspace(var.front())) << "getvar:" << name << " responded with a string with leading whitespace"; ASSERT_FALSE(var.compare(0, 2, "0x")) << "getvar:" << name << " responded with a string that does not start with 0x..."; int64_t size = strtoll(var.c_str(), nullptr, 16); ASSERT_GT(size, 0) << "'" + var + "' is not a valid response from getvar:" << name; // At most 32-bits ASSERT_LE(size, std::numeric_limits::max()) << "getvar:" << name << " must fit in a uint32_t"; ASSERT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:" << name << " responded with too large of string: " + var; } TEST_F(Conformance, GetVarDownloadSize) { std::string var; EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed"; AssertHexUint32("max-download-size", var); } // If fetch is supported, getvar:max-fetch-size must return a hex string. TEST_F(Conformance, GetVarFetchSize) { std::string var; if (SUCCESS != fb->GetVar("max-fetch-size", &var)) { GTEST_SKIP() << "getvar:max-fetch-size failed"; } AssertHexUint32("max-fetch-size", var); } TEST_F(Conformance, GetVarAll) { std::vector vars; EXPECT_EQ(fb->GetVarAll(&vars), SUCCESS) << "getvar:all failed"; EXPECT_GT(vars.size(), 0) << "getvar:all did not respond with any INFO responses"; for (const auto& s : vars) { EXPECT_LE(s.size(), FB_RESPONSE_SZ - 4) << "getvar:all included an INFO response: 'INFO" + s << "' which is too long"; } } TEST_F(Conformance, UnlockAbility) { std::string resp; std::vector info; // Userspace fastboot implementations do not have a way to get this // information. if (UserSpaceFastboot()) { GTEST_LOG_(INFO) << "This test is skipped for userspace fastboot."; return; } EXPECT_EQ(fb->RawCommand("flashing get_unlock_ability", &resp, &info), SUCCESS) << "'flashing get_unlock_ability' failed"; // There are two ways this can be reported, through info or the actual response char last; if (!resp.empty()) { // must be in the response last = resp.back(); } else { // else must be in info ASSERT_FALSE(info.empty()) << "'flashing get_unlock_ability' returned empty response"; ASSERT_FALSE(info.back().empty()) << "Expected non-empty info response"; last = info.back().back(); } ASSERT_TRUE(last == '1' || last == '0') << "Unlock ability must report '0' or '1' in response"; } TEST_F(Conformance, PartitionInfo) { std::vector> parts; EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed"; EXPECT_GT(parts.size(), 0) << "getvar:all did not report any partition-size: through INFO responses"; std::set allowed{"ext4", "f2fs", "raw"}; for (const auto& p : parts) { EXPECT_GE(std::get<1>(p), 0); std::string part(std::get<0>(p)); std::set allowed{"ext4", "f2fs", "raw"}; std::string resp; EXPECT_EQ(fb->GetVar("partition-type:" + part, &resp), SUCCESS); EXPECT_NE(allowed.find(resp), allowed.end()) << "getvar:partition-type:" + part << " was '" << resp << "' this is not a valid type"; const std::string cmd = "partition-size:" + part; EXPECT_EQ(fb->GetVar(cmd, &resp), SUCCESS); // This must start with 0x EXPECT_FALSE(isspace(resp.front())) << cmd + " responded with a string with leading whitespace"; EXPECT_FALSE(resp.compare(0, 2, "0x")) << cmd + "responded with a string that does not start with 0x..."; uint64_t size; ASSERT_TRUE(android::base::ParseUint(resp, &size)) << "'" + resp + "' is not a valid response from " + cmd; } } TEST_F(Conformance, Slots) { std::string var; ASSERT_EQ(fb->GetVar("slot-count", &var), SUCCESS) << "getvar:slot-count failed"; ASSERT_EQ(std::count_if(var.begin(), var.end(), isdigit), var.size()) << "'" << var << "' is not all digits which it should be for getvar:slot-count"; int32_t num_slots = strtol(var.c_str(), nullptr, 10); // Can't run out of alphabet letters... ASSERT_LE(num_slots, 26) << "What?! You can't have more than 26 slots"; std::vector> parts; EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed"; std::map> part_slots; if (num_slots > 0) { EXPECT_EQ(fb->GetVar("current-slot", &var), SUCCESS) << "getvar:current-slot failed"; for (const auto& p : parts) { std::string part(std::get<0>(p)); std::regex reg("([[:graph:]]*)_([[:lower:]])"); std::smatch sm; if (std::regex_match(part, sm, reg)) { // This partition has slots std::string part_base(sm[1]); std::string slot(sm[2]); EXPECT_EQ(fb->GetVar("has-slot:" + part_base, &var), SUCCESS) << "'getvar:has-slot:" << part_base << "' failed"; EXPECT_EQ(var, "yes") << "'getvar:has-slot:" << part_base << "' was not 'yes'"; EXPECT_TRUE(islower(slot.front())) << "'" << slot.front() << "' is an invalid slot-suffix for " << part_base; std::set tmp{slot.front()}; part_slots.emplace(part_base, tmp); part_slots.at(part_base).insert(slot.front()); } else { EXPECT_EQ(fb->GetVar("has-slot:" + part, &var), SUCCESS) << "'getvar:has-slot:" << part << "' failed"; EXPECT_EQ(var, "no") << "'getvar:has-slot:" << part << "' should be no"; } } // Ensure each partition has the correct slot suffix for (const auto& iter : part_slots) { const std::set& char_set = iter.second; std::string chars; for (char c : char_set) { chars += c; chars += ','; } EXPECT_EQ(char_set.size(), num_slots) << "There should only be slot suffixes from a to " << 'a' + num_slots - 1 << " instead encountered: " << chars; for (const char c : char_set) { EXPECT_GE(c, 'a') << "Encountered invalid slot suffix of '" << c << "'"; EXPECT_LT(c, 'a' + num_slots) << "Encountered invalid slot suffix of '" << c << "'"; } } } } TEST_F(Conformance, SetActive) { std::string var; ASSERT_EQ(fb->GetVar("slot-count", &var), SUCCESS) << "getvar:slot-count failed"; ASSERT_EQ(std::count_if(var.begin(), var.end(), isdigit), var.size()) << "'" << var << "' is not all digits which it should be for getvar:slot-count"; int32_t num_slots = strtol(var.c_str(), nullptr, 10); // Can't run out of alphabet letters... ASSERT_LE(num_slots, 26) << "You can't have more than 26 slots"; for (char c = 'a'; c < 'a' + num_slots; c++) { const std::string slot(&c, &c + 1); ASSERT_EQ(fb->SetActive(slot), SUCCESS) << "Set active for slot '" << c << "' failed"; ASSERT_EQ(fb->GetVar("current-slot", &var), SUCCESS) << "getvar:current-slot failed"; EXPECT_EQ(var, slot) << "getvar:current-slot repots incorrect slot after setting it"; } } TEST_F(Conformance, LockAndUnlockPrompt) { std::string resp; ASSERT_EQ(fb->GetVar("unlocked", &resp), SUCCESS) << "getvar:unlocked failed"; ASSERT_TRUE(resp == "yes" || resp == "no") << "Device did not respond with 'yes' or 'no' for getvar:unlocked"; bool curr = resp == "yes"; if (UserSpaceFastboot()) { GTEST_LOG_(INFO) << "This test is skipped for userspace fastboot."; return; } for (int i = 0; i < 2; i++) { std::string action = !curr ? "unlock" : "lock"; printf("Device should prompt to '%s' bootloader, select 'no'\n", action.c_str()); SetLockState(!curr, false); ASSERT_EQ(fb->GetVar("unlocked", &resp), SUCCESS) << "getvar:unlocked failed"; ASSERT_EQ(resp, curr ? "yes" : "no") << "The locked/unlocked state of the bootloader " "incorrectly changed after selecting no"; printf("Device should prompt to '%s' bootloader, select 'yes'\n", action.c_str()); SetLockState(!curr, true); ASSERT_EQ(fb->GetVar("unlocked", &resp), SUCCESS) << "getvar:unlocked failed"; ASSERT_EQ(resp, !curr ? "yes" : "no") << "The locked/unlocked state of the bootloader " "failed to change after selecting yes"; curr = !curr; } } TEST_F(Conformance, SparseBlockSupport0) { // The sparse block size can be any multiple of 4 std::string var; EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed"; int64_t size = strtoll(var.c_str(), nullptr, 16); // It is reasonable to expect it to handle a single dont care block equal to its DL size for (int64_t bs = 4; bs < size; bs <<= 1) { SparseWrapper sparse(bs, bs); ASSERT_TRUE(*sparse) << "Sparse file creation failed on: " << bs; EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); } } TEST_F(Conformance, SparseBlockSupport1) { // The sparse block size can be any multiple of 4 std::string var; EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed"; int64_t size = strtoll(var.c_str(), nullptr, 16); // handle a packed block to half its max download size block for (int64_t bs = 4; bs < size / 2; bs <<= 1) { SparseWrapper sparse(bs, bs); ASSERT_TRUE(*sparse) << "Sparse file creation failed on: " << bs; std::vector buf = RandomBuf(bs); ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 0), 0) << "Adding data failed to sparse file: " << sparse.Rep(); EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); } } // A single don't care download TEST_F(Conformance, SparseDownload0) { SparseWrapper sparse(4096, 4096); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); } TEST_F(Conformance, SparseDownload1) { SparseWrapper sparse(4096, 10 * 4096); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; std::vector buf = RandomBuf(4096); ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 9), 0) << "Adding data failed to sparse file: " << sparse.Rep(); EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); } TEST_F(Conformance, SparseDownload2) { SparseWrapper sparse(4096, 4097); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; std::vector buf = RandomBuf(4096); ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 0), 0) << "Adding data failed to sparse file: " << sparse.Rep(); std::vector buf2 = RandomBuf(1); ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 1), 0) << "Adding data failed to sparse file: " << sparse.Rep(); EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); } TEST_F(Conformance, SparseDownload3) { std::string var; EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed"; int size = strtoll(var.c_str(), nullptr, 16); SparseWrapper sparse(4096, size); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; // Don't want this to take forever unsigned num_chunks = std::min(1000, size / (2 * 4096)); for (int i = 0; i < num_chunks; i++) { std::vector buf; int r = random_int(0, 2); // Three cases switch (r) { case 0: break; // Dont Care chunnk case 1: // Buffer buf = RandomBuf(4096); ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), i), 0) << "Adding data failed to sparse file: " << sparse.Rep(); break; case 2: // fill ASSERT_EQ(sparse_file_add_fill(*sparse, 0xdeadbeef, 4096, i), 0) << "Adding fill to sparse file failed: " << sparse.Rep(); break; } } EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); } TEST_F(Conformance, SparseVersionCheck) { SparseWrapper sparse(4096, 4096); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; std::vector buf; ASSERT_TRUE(SparseToBuf(*sparse, &buf)) << "Sparse buffer creation failed"; // Invalid, right after magic buf[4] = 0xff; ASSERT_EQ(DownloadCommand(buf.size()), SUCCESS) << "Device rejected download command"; ASSERT_EQ(SendBuffer(buf), SUCCESS) << "Downloading payload failed"; // It can either reject this download or reject it during flash if (HandleResponse() != DEVICE_FAIL) { EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL) << "Flashing an invalid sparse version should fail " << sparse.Rep(); } } TEST_F(UnlockPermissions, Download) { std::vector buf{'a', 'o', 's', 'p'}; EXPECT_EQ(fb->Download(buf), SUCCESS) << "Download 4-byte payload failed"; } TEST_F(UnlockPermissions, DownloadFlash) { std::vector buf{'a', 'o', 's', 'p'}; EXPECT_EQ(fb->Download(buf), SUCCESS) << "Download failed in unlocked mode"; ; std::vector> parts; EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed in unlocked mode"; } // If the implementation supports getvar:max-fetch-size, it must also support fetch:vendor_boot*. TEST_F(UnlockPermissions, FetchVendorBoot) { std::string var; uint64_t fetch_size; if (fb->GetVar("max-fetch-size", &var) != SUCCESS) { GTEST_SKIP() << "This test is skipped because fetch is not supported."; } ASSERT_FALSE(var.empty()); ASSERT_TRUE(android::base::ParseUint(var, &fetch_size)) << var << " is not an integer"; std::vector> parts; EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed"; for (const auto& [partition, partition_size] : parts) { if (!android::base::StartsWith(partition, "vendor_boot")) continue; TemporaryFile fetched; uint64_t offset = 0; while (offset < partition_size) { uint64_t chunk_size = std::min(fetch_size, partition_size - offset); auto ret = fb->FetchToFd(partition, fetched.fd, offset, chunk_size); ASSERT_EQ(fastboot::RetCode::SUCCESS, ret) << "Unable to fetch " << partition << " (offset=" << offset << ", size=" << chunk_size << ")"; offset += chunk_size; } } } TEST_F(LockPermissions, DownloadFlash) { std::vector buf{'a', 'o', 's', 'p'}; EXPECT_EQ(fb->Download(buf), SUCCESS) << "Download failed in locked mode"; std::vector> parts; EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed in locked mode"; std::string resp; for (const auto& tup : parts) { EXPECT_EQ(fb->Flash(std::get<0>(tup), &resp), DEVICE_FAIL) << "Device did not respond with FAIL when trying to flash '" << std::get<0>(tup) << "' in locked mode"; EXPECT_GT(resp.size(), 0) << "Device sent empty error message after FAIL"; // meaningful error message } } TEST_F(LockPermissions, Erase) { std::vector> parts; EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed"; std::string resp; for (const auto& tup : parts) { EXPECT_EQ(fb->Erase(std::get<0>(tup), &resp), DEVICE_FAIL) << "Device did not respond with FAIL when trying to erase '" << std::get<0>(tup) << "' in locked mode"; EXPECT_GT(resp.size(), 0) << "Device sent empty error message after FAIL"; } } TEST_F(LockPermissions, SetActive) { std::vector> parts; EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed"; std::string resp; EXPECT_EQ(fb->GetVar("slot-count", &resp), SUCCESS) << "getvar:slot-count failed"; int32_t num_slots = strtol(resp.c_str(), nullptr, 10); for (const auto& tup : parts) { std::string part(std::get<0>(tup)); std::regex reg("([[:graph:]]*)_([[:lower:]])"); std::smatch sm; if (std::regex_match(part, sm, reg)) { // This partition has slots std::string part_base(sm[1]); for (char c = 'a'; c < 'a' + num_slots; c++) { // We should not be able to SetActive any of these EXPECT_EQ(fb->SetActive(part_base + '_' + c, &resp), DEVICE_FAIL) << "set:active:" << part_base + '_' + c << " did not fail in locked mode"; } } } } TEST_F(LockPermissions, Boot) { std::vector buf; buf.resize(1000); EXPECT_EQ(fb->Download(buf), SUCCESS) << "A 1000 byte download failed"; std::string resp; ASSERT_EQ(fb->Boot(&resp), DEVICE_FAIL) << "The device did not respond with failure for 'boot' when locked"; EXPECT_GT(resp.size(), 0) << "No error message was returned by device after FAIL"; } TEST_F(LockPermissions, FetchVendorBoot) { std::vector> parts; EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed"; for (const auto& [partition, _] : parts) { TemporaryFile fetched; ASSERT_EQ(fb->FetchToFd(partition, fetched.fd, 0, 0), DEVICE_FAIL) << "fetch:" << partition << ":0:0 did not fail in locked mode"; } } TEST_F(Fuzz, DownloadSize) { std::string var; EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed"; int64_t size = strtoll(var.c_str(), nullptr, 0); EXPECT_GT(size, 0) << '\'' << var << "' is not a valid response for getvar:max-download-size"; EXPECT_EQ(DownloadCommand(size + 1), DEVICE_FAIL) << "Device reported max-download-size as '" << size << "' but did not reject a download of " << size + 1; std::vector buf(size); EXPECT_EQ(fb->Download(buf), SUCCESS) << "Device reported max-download-size as '" << size << "' but downloading a payload of this size failed"; ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE; } TEST_F(Fuzz, DownloadPartialBuf) { std::vector buf{'a', 'o', 's', 'p'}; ASSERT_EQ(DownloadCommand(buf.size() + 1), SUCCESS) << "Download command for " << buf.size() + 1 << " bytes failed"; std::string resp; RetCode ret = SendBuffer(buf); EXPECT_EQ(ret, SUCCESS) << "Device did not accept partial payload download"; // Send the partial buffer, then cancel it with a reset EXPECT_EQ(transport->Reset(), 0) << "USB reset failed"; ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE; // The device better still work after all that if we unplug and replug EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS) << "getvar:product failed"; } TEST_F(Fuzz, DownloadOverRun) { std::vector buf(1000, 'F'); ASSERT_EQ(DownloadCommand(10), SUCCESS) << "Device rejected download request for 10 bytes"; // There are two ways to handle this // Accept download, but send error response // Reject the download outright std::string resp; RetCode ret = SendBuffer(buf); if (ret == SUCCESS) { // If it accepts the buffer, it better send back an error response EXPECT_EQ(HandleResponse(&resp), DEVICE_FAIL) << "After sending too large of a payload for a download command, device accepted " "payload and did not respond with FAIL"; } else { EXPECT_EQ(ret, IO_ERROR) << "After sending too large of a payload for a download command, " "device did not return error"; } ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE; // The device better still work after all that if we unplug and replug EXPECT_EQ(transport->Reset(), 0) << "USB reset failed"; EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS) << "Device did not respond with SUCCESS to getvar:product."; } TEST_F(Fuzz, DownloadInvalid1) { EXPECT_EQ(DownloadCommand(0), DEVICE_FAIL) << "Device did not respond with FAIL for malformed download command 'download:0'"; } TEST_F(Fuzz, DownloadInvalid2) { std::string cmd("download:1"); EXPECT_EQ(fb->RawCommand("download:1"), DEVICE_FAIL) << "Device did not respond with FAIL for malformed download command '" << cmd << "'"; } TEST_F(Fuzz, DownloadInvalid3) { std::string cmd("download:-1"); EXPECT_EQ(fb->RawCommand("download:-1"), DEVICE_FAIL) << "Device did not respond with FAIL for malformed download command '" << cmd << "'"; } TEST_F(Fuzz, DownloadInvalid4) { std::string cmd("download:-01000000"); EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL) << "Device did not respond with FAIL for malformed download command '" << cmd << "'"; } TEST_F(Fuzz, DownloadInvalid5) { std::string cmd("download:-0100000"); EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL) << "Device did not respond with FAIL for malformed download command '" << cmd << "'"; } TEST_F(Fuzz, DownloadInvalid6) { std::string cmd("download:"); EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL) << "Device did not respond with FAIL for malformed download command '" << cmd << "'"; } TEST_F(Fuzz, DownloadInvalid7) { std::string cmd("download:01000000\0999", sizeof("download:01000000\0999")); EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL) << "Device did not respond with FAIL for malformed download command '" << cmd << "'"; } TEST_F(Fuzz, DownloadInvalid8) { std::string cmd("download:01000000\0dkjfvijafdaiuybgidabgybr", sizeof("download:01000000\0dkjfvijafdaiuybgidabgybr")); EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL) << "Device did not respond with FAIL for malformed download command '" << cmd << "'"; } TEST_F(Fuzz, GetVarAllSpam) { auto start = std::chrono::high_resolution_clock::now(); std::chrono::duration elapsed; unsigned i = 1; do { std::vector vars; ASSERT_EQ(fb->GetVarAll(&vars), SUCCESS) << "Device did not respond with success after " << i << "getvar:all commands in a row"; ASSERT_GT(vars.size(), 0) << "Device did not send any INFO responses after getvar:all command"; elapsed = std::chrono::high_resolution_clock::now() - start; } while (i++, elapsed.count() < 5); } TEST_F(Fuzz, BadCommandTooLarge) { std::string s = RandomString(FB_COMMAND_SZ + 1, rand_legal); EXPECT_EQ(fb->RawCommand(s), DEVICE_FAIL) << "Device did not respond with failure after sending length " << s.size() << " string of random ASCII chars"; std::string s1 = RandomString(1000, rand_legal); EXPECT_EQ(fb->RawCommand(s1), DEVICE_FAIL) << "Device did not respond with failure after sending length " << s1.size() << " string of random ASCII chars"; std::string s2 = RandomString(1000, rand_illegal); EXPECT_EQ(fb->RawCommand(s2), DEVICE_FAIL) << "Device did not respond with failure after sending length " << s1.size() << " string of random non-ASCII chars"; std::string s3 = RandomString(1000, rand_char); EXPECT_EQ(fb->RawCommand(s3), DEVICE_FAIL) << "Device did not respond with failure after sending length " << s1.size() << " string of random chars"; } TEST_F(Fuzz, CommandTooLarge) { for (const std::string& s : CMDS) { std::string rs = RandomString(1000, rand_char); EXPECT_EQ(fb->RawCommand(s + rs), DEVICE_FAIL) << "Device did not respond with failure after '" << s + rs << "'"; ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE; std::string resp; EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS) << "Device is unresponsive to getvar command"; } } TEST_F(Fuzz, CommandMissingArgs) { for (const std::string& s : CMDS) { if (s.back() == ':') { EXPECT_EQ(fb->RawCommand(s), DEVICE_FAIL) << "Device did not respond with failure after '" << s << "'"; std::string sub(s.begin(), s.end() - 1); EXPECT_EQ(fb->RawCommand(sub), DEVICE_FAIL) << "Device did not respond with failure after '" << sub << "'"; } else { std::string rs = RandomString(10, rand_illegal); EXPECT_EQ(fb->RawCommand(rs + s), DEVICE_FAIL) << "Device did not respond with failure after '" << rs + s << "'"; } std::string resp; EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS) << "Device is unresponsive to getvar command"; } } TEST_F(Fuzz, SparseZeroLength) { SparseWrapper sparse(4096, 0); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; RetCode ret = fb->Download(*sparse); // Two ways to handle it if (ret != DEVICE_FAIL) { // if lazily parsed it better fail on a flash EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL) << "Flashing zero length sparse image did not fail: " << sparse.Rep(); } ret = fb->Download(*sparse, true); if (ret != DEVICE_FAIL) { // if lazily parsed it better fail on a flash EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL) << "Flashing zero length sparse image did not fail " << sparse.Rep(); } } TEST_F(Fuzz, SparseTooManyChunks) { SparseWrapper sparse(4096, 4096); // 1 block, but we send two chunks that will use 2 blocks ASSERT_TRUE(*sparse) << "Sparse image creation failed"; std::vector buf = RandomBuf(4096); ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 0), 0) << "Adding data failed to sparse file: " << sparse.Rep(); // We take advantage of the fact the sparse library does not check this ASSERT_EQ(sparse_file_add_fill(*sparse, 0xdeadbeef, 4096, 1), 0) << "Adding fill to sparse file failed: " << sparse.Rep(); RetCode ret = fb->Download(*sparse); // Two ways to handle it if (ret != DEVICE_FAIL) { // if lazily parsed it better fail on a flash EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL) << "Flashing sparse image with 'total_blks' in header 1 too small did not fail " << sparse.Rep(); } ret = fb->Download(*sparse, true); if (ret != DEVICE_FAIL) { // if lazily parsed it better fail on a flash EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL) << "Flashing sparse image with 'total_blks' in header 1 too small did not fail " << sparse.Rep(); } } TEST_F(Fuzz, USBResetSpam) { auto start = std::chrono::high_resolution_clock::now(); std::chrono::duration elapsed; int i = 0; do { ASSERT_EQ(transport->Reset(), 0) << "USB Reset failed after " << i << " resets in a row"; elapsed = std::chrono::high_resolution_clock::now() - start; } while (i++, elapsed.count() < 5); std::string resp; EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS) << "getvar failed after " << i << " USB reset(s) in a row"; } TEST_F(Fuzz, USBResetCommandSpam) { auto start = std::chrono::high_resolution_clock::now(); std::chrono::duration elapsed; do { std::string resp; std::vector all; ASSERT_EQ(transport->Reset(), 0) << "USB Reset failed"; EXPECT_EQ(fb->GetVarAll(&all), SUCCESS) << "getvar:all failed after USB reset"; EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS) << "getvar:product failed"; elapsed = std::chrono::high_resolution_clock::now() - start; } while (elapsed.count() < 10); } TEST_F(Fuzz, USBResetAfterDownload) { std::vector buf; buf.resize(1000000); EXPECT_EQ(DownloadCommand(buf.size()), SUCCESS) << "Download command failed"; EXPECT_EQ(transport->Reset(), 0) << "USB Reset failed"; std::vector all; EXPECT_EQ(fb->GetVarAll(&all), SUCCESS) << "getvar:all failed after USB reset."; } // Getvar XML tests TEST_P(ExtensionsGetVarConformance, VarExists) { std::string resp; EXPECT_EQ(fb->GetVar(GetParam().first, &resp), SUCCESS); } TEST_P(ExtensionsGetVarConformance, VarMatchesRegex) { std::string resp; ASSERT_EQ(fb->GetVar(GetParam().first, &resp), SUCCESS); std::smatch sm; std::regex_match(resp, sm, GetParam().second.regex); EXPECT_FALSE(sm.empty()) << "The regex did not match"; } INSTANTIATE_TEST_CASE_P(XMLGetVar, ExtensionsGetVarConformance, ::testing::ValuesIn(GETVAR_XML_TESTS)); TEST_P(AnyPartition, ReportedGetVarAll) { // As long as the partition is reported in INFO, it would be tested by generic Conformance std::vector> parts; ASSERT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed"; const std::string name = GetParam().first; if (GetParam().second.slots) { auto matcher = [&](const std::tuple& tup) { return std::get<0>(tup) == name + "_a"; }; EXPECT_NE(std::find_if(parts.begin(), parts.end(), matcher), parts.end()) << "partition '" + name + "_a' not reported in getvar:all"; } else { auto matcher = [&](const std::tuple& tup) { return std::get<0>(tup) == name; }; EXPECT_NE(std::find_if(parts.begin(), parts.end(), matcher), parts.end()) << "partition '" + name + "' not reported in getvar:all"; } } TEST_P(AnyPartition, Hashable) { const std::string name = GetParam().first; if (!config.checksum.empty()) { // We can use hash to validate for (const auto& part_name : real_parts) { // Get hash std::string hash; int retcode; std::string err_msg; if (GetParam().second.hashable) { ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg; EXPECT_EQ(retcode, 0) << err_msg; } else { // Make sure it fails const std::string cmd = config.checksum + ' ' + part_name; EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL) << part_name + " is marked as non-hashable, but hashing did not fail"; } } } } TEST_P(WriteablePartition, FlashCheck) { const std::string name = GetParam().first; auto part_info = GetParam().second; for (const auto& part_name : real_parts) { std::vector buf = RandomBuf(max_flash, rand_char); EXPECT_EQ(fb->FlashPartition(part_name, buf), part_info.parsed ? DEVICE_FAIL : SUCCESS) << "A partition with an image parsed by the bootloader should reject random " "garbage " "otherwise it should succeed"; } } TEST_P(WriteablePartition, EraseCheck) { const std::string name = GetParam().first; for (const auto& part_name : real_parts) { ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed"; } } TEST_P(WriteHashNonParsedPartition, EraseZerosData) { const std::string name = GetParam().first; for (const auto& part_name : real_parts) { std::string err_msg; int retcode; const std::vector buf = RandomBuf(max_flash, rand_char); // Partition is too big to write to entire thing // This can eventually be supported by using sparse images if too large if (max_flash < part_size) { std::string hash_before, hash_after; ASSERT_EQ(fb->FlashPartition(part_name, buf), SUCCESS); ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_NE(hash_before, hash_after) << "The partition hash for " + part_name + " did not change after erasing a known value"; } else { std::string hash_zeros, hash_ones, hash_middle, hash_after; const std::vector buf_zeros(max_flash, 0); const std::vector buf_ones(max_flash, -1); // All bits are set to 1 ASSERT_EQ(fb->FlashPartition(part_name, buf_zeros), SUCCESS); ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_zeros, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; ASSERT_EQ(fb->FlashPartition(part_name, buf_ones), SUCCESS); ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_ones, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; ASSERT_NE(hash_zeros, hash_ones) << "Hashes of partion should not be the same when all bytes are 0xFF or 0x00"; ASSERT_EQ(fb->FlashPartition(part_name, buf), SUCCESS); ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_middle, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; ASSERT_NE(hash_zeros, hash_middle) << "Hashes of partion are the same when all bytes are 0x00 or test payload"; ASSERT_NE(hash_ones, hash_middle) << "Hashes of partion are the same when all bytes are 0xFF or test payload"; ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_TRUE(hash_zeros == hash_after || hash_ones == hash_after) << "Erasing " + part_name + " should set all the bytes to 0xFF or 0x00"; } } } // Only partitions that we can write and hash (name, fixture), TEST_P is (Fixture, test_name) INSTANTIATE_TEST_CASE_P(XMLPartitionsWriteHashNonParsed, WriteHashNonParsedPartition, ::testing::ValuesIn(PARTITION_XML_WRITE_HASH_NONPARSED)); INSTANTIATE_TEST_CASE_P(XMLPartitionsWriteHashable, WriteHashablePartition, ::testing::ValuesIn(PARTITION_XML_WRITE_HASHABLE)); // only partitions writeable INSTANTIATE_TEST_CASE_P(XMLPartitionsWriteable, WriteablePartition, ::testing::ValuesIn(PARTITION_XML_WRITEABLE)); // Every partition INSTANTIATE_TEST_CASE_P(XMLPartitionsAll, AnyPartition, ::testing::ValuesIn(PARTITION_XML_TESTS)); // Partition Fuzz tests TEST_P(FuzzWriteablePartition, BoundsCheck) { const std::string name = GetParam().first; auto part_info = GetParam().second; for (const auto& part_name : real_parts) { // try and flash +1 too large, first erase and get a hash, make sure it does not change std::vector buf = RandomBuf(max_flash + 1); // One too large if (part_info.hashable) { std::string hash_before, hash_after, err_msg; int retcode; ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "Flashing an image 1 byte too large to " + part_name + " did not fail"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(hash_before, hash_after) << "Flashing too large of an image resulted in a changed partition hash for " + part_name; } else { EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "Flashing an image 1 byte too large to " + part_name + " did not fail"; } } } INSTANTIATE_TEST_CASE_P(XMLFuzzPartitionsWriteable, FuzzWriteablePartition, ::testing::ValuesIn(PARTITION_XML_WRITEABLE)); // A parsed partition should have magic and such that is checked by the bootloader // Attempting to flash a random single byte should definately fail TEST_P(FuzzWriteableParsedPartition, FlashGarbageImageSmall) { const std::string name = GetParam().first; auto part_info = GetParam().second; for (const auto& part_name : real_parts) { std::vector buf = RandomBuf(1); if (part_info.hashable) { std::string hash_before, hash_after, err_msg; int retcode; ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "A parsed partition should fail on a single byte"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(hash_before, hash_after) << "Flashing a single byte to parsed partition " + part_name + " should fail and not change the partition hash"; } else { EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "Flashing a 1 byte image to a parsed partition should fail"; } } } TEST_P(FuzzWriteableParsedPartition, FlashGarbageImageLarge) { const std::string name = GetParam().first; auto part_info = GetParam().second; for (const auto& part_name : real_parts) { std::vector buf = RandomBuf(max_flash); if (part_info.hashable) { std::string hash_before, hash_after, err_msg; int retcode; ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "A parsed partition should not accept randomly generated images"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(hash_before, hash_after) << "The hash of the partition has changed after attempting to flash garbage to " "a parsed partition"; } else { EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "A parsed partition should not accept randomly generated images"; } } } TEST_P(FuzzWriteableParsedPartition, FlashGarbageImageLarge2) { const std::string name = GetParam().first; auto part_info = GetParam().second; for (const auto& part_name : real_parts) { std::vector buf(max_flash, -1); // All 1's if (part_info.hashable) { std::string hash_before, hash_after, err_msg; int retcode; ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "A parsed partition should not accept a image of all 0xFF"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(hash_before, hash_after) << "The hash of the partition has changed after attempting to flash garbage to " "a parsed partition"; } else { EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "A parsed partition should not accept a image of all 0xFF"; } } } TEST_P(FuzzWriteableParsedPartition, FlashGarbageImageLarge3) { const std::string name = GetParam().first; auto part_info = GetParam().second; for (const auto& part_name : real_parts) { std::vector buf(max_flash, 0); // All 0's if (part_info.hashable) { std::string hash_before, hash_after, err_msg; int retcode; ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "A parsed partition should not accept a image of all 0x00"; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(hash_before, hash_after) << "The hash of the partition has changed after attempting to flash garbage to " "a parsed partition"; } else { EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "A parsed partition should not accept a image of all 0x00"; } } } INSTANTIATE_TEST_CASE_P(XMLFuzzPartitionsWriteableParsed, FuzzWriteableParsedPartition, ::testing::ValuesIn(PARTITION_XML_WRITE_PARSED)); // Make sure all attempts to flash things are rejected TEST_P(FuzzAnyPartitionLocked, RejectFlash) { std::vector buf = RandomBuf(5); for (const auto& part_name : real_parts) { ASSERT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL) << "Flashing a partition should always fail in locked mode"; } } INSTANTIATE_TEST_CASE_P(XMLFuzzAnyPartitionLocked, FuzzAnyPartitionLocked, ::testing::ValuesIn(PARTITION_XML_TESTS)); // Test flashing unlock erases userdata TEST_P(UserdataPartition, UnlockErases) { // Get hash after an erase int retcode; std::string err_msg, hash_before, hash_buf, hash_after; ASSERT_EQ(fb->Erase("userdata"), SUCCESS) << "Erasing uesrdata failed"; ASSERT_TRUE(PartitionHash(fb.get(), "userdata", &hash_before, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; // Write garbage std::vector buf = RandomBuf(max_flash / 2); ASSERT_EQ(fb->FlashPartition("userdata", buf), SUCCESS); ASSERT_TRUE(PartitionHash(fb.get(), "userdata", &hash_buf, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; // Validity check of hash EXPECT_NE(hash_before, hash_buf) << "Writing a random buffer to 'userdata' had the same hash as after erasing it"; SetLockState(true); // Lock the device SetLockState(false); // Unlock the device (should cause erase) ASSERT_TRUE(PartitionHash(fb.get(), "userdata", &hash_after, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_NE(hash_after, hash_buf) << "Unlocking the device did not cause the hash of userdata to " "change (i.e. it was not erased as required)"; EXPECT_EQ(hash_after, hash_before) << "Unlocking the device did not produce the same hash of " "userdata as after doing an erase to userdata"; } // This is a hack to make this test disapeer if there is not a checsum, userdata is not hashable, // or userdata is not marked to be writeable in testing INSTANTIATE_TEST_CASE_P(XMLUserdataLocked, UserdataPartition, ::testing::ValuesIn(PARTITION_XML_USERDATA_CHECKSUM_WRITEABLE)); // Packed images test TEST_P(ExtensionsPackedValid, TestDeviceUnpack) { const std::string& packed_name = GetParam().first; const std::string& packed_image = GetParam().second.packed_img; const std::string& unpacked = GetParam().second.unpacked_dir; // First we need to check for existence of images const extension::Configuration::PackedInfo& info = config.packed[packed_name]; const auto flash_part = [&](const std::string fname, const std::string part_name) { FILE* to_flash = fopen((SEARCH_PATH + fname).c_str(), "rb"); ASSERT_NE(to_flash, nullptr) << "'" << fname << "'" << " failed to open for flashing"; int fd = fileno(to_flash); size_t fsize = lseek(fd, 0, SEEK_END); ASSERT_GT(fsize, 0) << fname + " appears to be an empty image"; ASSERT_EQ(fb->FlashPartition(part_name, fd, fsize), SUCCESS); fclose(to_flash); }; // We first need to set the slot count std::string var; int num_slots = 1; if (info.slots) { ASSERT_EQ(fb->GetVar("slot-count", &var), SUCCESS) << "Getting slot count failed"; num_slots = strtol(var.c_str(), nullptr, 10); } else { for (const auto& part : info.children) { EXPECT_FALSE(config.partitions[part].slots) << "A partition can not have slots if the packed image does not"; } } for (int i = 0; i < num_slots; i++) { std::unordered_map initial_hashes; const std::string packed_suffix = info.slots ? android::base::StringPrintf("_%c", 'a' + i) : ""; // Flash the paritions manually and get hash for (const auto& part : info.children) { const extension::Configuration::PartitionInfo& part_info = config.partitions[part]; const std::string suffix = part_info.slots ? packed_suffix : ""; const std::string part_name = part + suffix; ASSERT_EQ(fb->Erase(part_name), SUCCESS); const std::string fpath = unpacked + '/' + part + ".img"; ASSERT_NO_FATAL_FAILURE(flash_part(fpath, part_name)) << "Failed to flash '" + fpath + "'"; // If the partition is hashable we store it if (part_info.hashable) { std::string hash, err_msg; int retcode; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; initial_hashes[part] = hash; } } // erase once at the end, to avoid false positives if flashing does nothing for (const auto& part : info.children) { const std::string suffix = config.partitions[part].slots ? packed_suffix : ""; ASSERT_EQ(fb->Erase(part + suffix), SUCCESS); } // Now we flash the packed image and compare our hashes ASSERT_NO_FATAL_FAILURE(flash_part(packed_image, packed_name + packed_suffix)); for (const auto& part : info.children) { const extension::Configuration::PartitionInfo& part_info = config.partitions[part]; // If the partition is hashable we check it if (part_info.hashable) { const std::string suffix = part_info.slots ? packed_suffix : ""; const std::string part_name = part + suffix; std::string hash, err_msg; int retcode; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; std::string msg = "The hashes between flashing the packed image and directly flashing '" + part_name + "' does not match"; EXPECT_EQ(hash, initial_hashes[part]) << msg; } } } } INSTANTIATE_TEST_CASE_P(XMLTestPacked, ExtensionsPackedValid, ::testing::ValuesIn(PACKED_XML_SUCCESS_TESTS)); // Packed images test TEST_P(ExtensionsPackedInvalid, TestDeviceUnpack) { const std::string& packed_name = GetParam().first; const std::string& packed_image = GetParam().second.packed_img; // First we need to check for existence of images const extension::Configuration::PackedInfo& info = config.packed[packed_name]; // We first need to set the slot count std::string var; int num_slots = 1; if (info.slots) { ASSERT_EQ(fb->GetVar("slot-count", &var), SUCCESS) << "Getting slot count failed"; num_slots = strtol(var.c_str(), nullptr, 10); } else { for (const auto& part : info.children) { EXPECT_FALSE(config.partitions[part].slots) << "A partition can not have slots if the packed image does not"; } } for (int i = 0; i < num_slots; i++) { std::unordered_map initial_hashes; const std::string packed_suffix = info.slots ? android::base::StringPrintf("_%c", 'a' + i) : ""; // manually and get hash for (const auto& part : info.children) { const extension::Configuration::PartitionInfo& part_info = config.partitions[part]; const std::string suffix = part_info.slots ? packed_suffix : ""; const std::string part_name = part + suffix; // If the partition is hashable we store it if (part_info.hashable) { std::string hash, err_msg; int retcode; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; initial_hashes[part] = hash; } } // Attempt to flash the invalid file FILE* to_flash = fopen((SEARCH_PATH + packed_image).c_str(), "rb"); ASSERT_NE(to_flash, nullptr) << "'" << packed_image << "'" << " failed to open for flashing"; int fd = fileno(to_flash); size_t fsize = lseek(fd, 0, SEEK_END); ASSERT_GT(fsize, 0) << packed_image + " appears to be an empty image"; ASSERT_EQ(fb->FlashPartition(packed_name + packed_suffix, fd, fsize), DEVICE_FAIL) << "Expected flashing to fail for " + packed_image; fclose(to_flash); for (const auto& part : info.children) { const extension::Configuration::PartitionInfo& part_info = config.partitions[part]; // If the partition is hashable we check it if (part_info.hashable) { const std::string suffix = part_info.slots ? packed_suffix : ""; const std::string part_name = part + suffix; std::string hash, err_msg; int retcode; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; std::string msg = "Flashing an invalid image changed the hash of '" + part_name; EXPECT_EQ(hash, initial_hashes[part]) << msg; } } } } INSTANTIATE_TEST_CASE_P(XMLTestPacked, ExtensionsPackedInvalid, ::testing::ValuesIn(PACKED_XML_FAIL_TESTS)); // OEM xml tests TEST_P(ExtensionsOemConformance, RunOEMTest) { const std::string& cmd = std::get<0>(GetParam()); // bool restricted = std::get<1>(GetParam()); const extension::Configuration::CommandTest& test = std::get<2>(GetParam()); const RetCode expect = (test.expect == extension::FAIL) ? DEVICE_FAIL : SUCCESS; // Does the test require staging something? if (!test.input.empty()) { // Non-empty string FILE* to_stage = fopen((SEARCH_PATH + test.input).c_str(), "rb"); ASSERT_NE(to_stage, nullptr) << "'" << test.input << "'" << " failed to open for staging"; int fd = fileno(to_stage); size_t fsize = lseek(fd, 0, SEEK_END); std::string var; EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS); int64_t size = strtoll(var.c_str(), nullptr, 16); EXPECT_LT(fsize, size) << "'" << test.input << "'" << " is too large for staging"; ASSERT_EQ(fb->Download(fd, fsize), SUCCESS) << "'" << test.input << "'" << " failed to download for staging"; fclose(to_stage); } // Run the command int dsize = -1; std::string resp; const std::string full_cmd = "oem " + cmd + " " + test.arg; ASSERT_EQ(fb->RawCommand(full_cmd, &resp, nullptr, &dsize), expect); // This is how we test if indeed data response if (test.expect == extension::DATA) { EXPECT_GT(dsize, 0); } // Validate response if neccesary if (!test.regex_str.empty()) { std::smatch sm; std::regex_match(resp, sm, test.regex); EXPECT_FALSE(sm.empty()) << "The oem regex did not match"; } // If payload, we validate that as well const std::vector args = SplitBySpace(test.validator); if (args.size()) { // Save output const std::string save_loc = OUTPUT_PATH + (test.output.empty() ? DEFAULT_OUPUT_NAME : test.output); std::string resp; ASSERT_EQ(fb->Upload(save_loc, &resp), SUCCESS) << "Saving output file failed with (" << fb->Error() << ") " << resp; // Build the arguments to the validator std::vector prog_args(args.begin() + 1, args.end()); prog_args.push_back(full_cmd); // Pass in the full command prog_args.push_back(save_loc); // Pass in the save location // Run the validation program int pipe; const pid_t pid = StartProgram(args[0], prog_args, &pipe); ASSERT_GT(pid, 0) << "Failed to launch validation program: " << args[0]; std::string error_msg; int ret = WaitProgram(pid, pipe, &error_msg); EXPECT_EQ(ret, 0) << error_msg; // Program exited correctly } } INSTANTIATE_TEST_CASE_P(XMLOEM, ExtensionsOemConformance, ::testing::ValuesIn(OEM_XML_TESTS)); // Sparse Tests TEST_P(SparseTestPartition, SparseSingleBlock) { const std::string name = GetParam().first; auto part_info = GetParam().second; const std::string part_name = name + (part_info.slots ? "_a" : ""); SparseWrapper sparse(4096, 4096); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; std::vector buf = RandomBuf(4096); ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 0), 0) << "Adding data failed to sparse file: " << sparse.Rep(); EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash(part_name), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); std::string hash, hash_new, err_msg; int retcode; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; // Now flash it the non-sparse way EXPECT_EQ(fb->FlashPartition(part_name, buf), SUCCESS) << "Flashing image failed: "; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_new, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(hash, hash_new) << "Flashing a random buffer of 4096 using sparse and non-sparse " "methods did not result in the same hash"; } TEST_P(SparseTestPartition, SparseFill) { const std::string name = GetParam().first; auto part_info = GetParam().second; const std::string part_name = name + (part_info.slots ? "_a" : ""); int64_t size = (max_dl / 4096) * 4096; SparseWrapper sparse(4096, size); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; ASSERT_EQ(sparse_file_add_fill(*sparse, 0xdeadbeef, size, 0), 0) << "Adding data failed to sparse file: " << sparse.Rep(); EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash(part_name), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); std::string hash, hash_new, err_msg; int retcode; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; // Now flash it the non-sparse way std::vector buf(size); for (auto iter = buf.begin(); iter < buf.end(); iter += 4) { iter[0] = 0xef; iter[1] = 0xbe; iter[2] = 0xad; iter[3] = 0xde; } EXPECT_EQ(fb->FlashPartition(part_name, buf), SUCCESS) << "Flashing image failed: "; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_new, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(hash, hash_new) << "Flashing a random buffer of 4096 using sparse and non-sparse " "methods did not result in the same hash"; } // This tests to make sure it does not overwrite previous flashes TEST_P(SparseTestPartition, SparseMultiple) { const std::string name = GetParam().first; auto part_info = GetParam().second; const std::string part_name = name + (part_info.slots ? "_a" : ""); int64_t size = (max_dl / 4096) * 4096; SparseWrapper sparse(4096, size / 2); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; ASSERT_EQ(sparse_file_add_fill(*sparse, 0xdeadbeef, size / 2, 0), 0) << "Adding data failed to sparse file: " << sparse.Rep(); EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep(); EXPECT_EQ(fb->Flash(part_name), SUCCESS) << "Flashing sparse failed: " << sparse.Rep(); SparseWrapper sparse2(4096, size / 2); ASSERT_TRUE(*sparse) << "Sparse image creation failed"; std::vector buf = RandomBuf(size / 2); ASSERT_EQ(sparse_file_add_data(*sparse2, buf.data(), buf.size(), (size / 2) / 4096), 0) << "Adding data failed to sparse file: " << sparse2.Rep(); EXPECT_EQ(fb->Download(*sparse2), SUCCESS) << "Download sparse failed: " << sparse2.Rep(); EXPECT_EQ(fb->Flash(part_name), SUCCESS) << "Flashing sparse failed: " << sparse2.Rep(); std::string hash, hash_new, err_msg; int retcode; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; // Now flash it the non-sparse way std::vector fbuf(size); for (auto iter = fbuf.begin(); iter < fbuf.begin() + size / 2; iter += 4) { iter[0] = 0xef; iter[1] = 0xbe; iter[2] = 0xad; iter[3] = 0xde; } fbuf.assign(buf.begin(), buf.end()); EXPECT_EQ(fb->FlashPartition(part_name, fbuf), SUCCESS) << "Flashing image failed: "; ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_new, &retcode, &err_msg)) << err_msg; ASSERT_EQ(retcode, 0) << err_msg; EXPECT_EQ(hash, hash_new) << "Flashing a random buffer of 4096 using sparse and non-sparse " "methods did not result in the same hash"; } INSTANTIATE_TEST_CASE_P(XMLSparseTest, SparseTestPartition, ::testing::ValuesIn(SINGLE_PARTITION_XML_WRITE_HASHABLE)); void GenerateXmlTests(const extension::Configuration& config) { // Build the getvar tests for (const auto& it : config.getvars) { GETVAR_XML_TESTS.push_back(std::make_pair(it.first, it.second)); } // Build the partition tests, to interface with gtest we need to do it this way for (const auto& it : config.partitions) { const auto tup = std::make_tuple(it.first, it.second); PARTITION_XML_TESTS.push_back(tup); // All partitions if (it.second.test == it.second.YES) { PARTITION_XML_WRITEABLE.push_back(tup); // All writeable partitions if (it.second.hashable) { PARTITION_XML_WRITE_HASHABLE.push_back(tup); // All write and hashable if (!it.second.parsed) { PARTITION_XML_WRITE_HASH_NONPARSED.push_back( tup); // All write hashed and non-parsed } } if (it.second.parsed) { PARTITION_XML_WRITE_PARSED.push_back(tup); // All write and parsed } } } // Build the packed tests, only useful if we have a hash if (!config.checksum.empty()) { for (const auto& it : config.packed) { for (const auto& test : it.second.tests) { const auto tup = std::make_tuple(it.first, test); if (test.expect == extension::OKAY) { // only testing the success case PACKED_XML_SUCCESS_TESTS.push_back(tup); } else { PACKED_XML_FAIL_TESTS.push_back(tup); } } } } // This is a hack to make this test disapeer if there is not a checksum, userdata is not // hashable, or userdata is not marked to be writeable in testing const auto part_info = config.partitions.find("userdata"); if (!config.checksum.empty() && part_info != config.partitions.end() && part_info->second.hashable && part_info->second.test == extension::Configuration::PartitionInfo::YES) { PARTITION_XML_USERDATA_CHECKSUM_WRITEABLE.push_back( std::make_tuple(part_info->first, part_info->second)); } if (!PARTITION_XML_WRITE_HASHABLE.empty()) { SINGLE_PARTITION_XML_WRITE_HASHABLE.push_back(PARTITION_XML_WRITE_HASHABLE.front()); } // Build oem tests for (const auto& it : config.oem) { auto oem_cmd = it.second; for (const auto& t : oem_cmd.tests) { OEM_XML_TESTS.push_back(std::make_tuple(it.first, oem_cmd.restricted, t)); } } } } // namespace fastboot int main(int argc, char** argv) { std::string err; // Parse the args const std::unordered_map args = fastboot::ParseArgs(argc, argv, &err); if (!err.empty()) { printf("%s\n", err.c_str()); return -1; } if (args.find("config") != args.end()) { auto found = args.find("search_path"); fastboot::SEARCH_PATH = (found != args.end()) ? found->second + "/" : ""; found = args.find("output_path"); fastboot::OUTPUT_PATH = (found != args.end()) ? found->second + "/" : "/tmp/"; if (!fastboot::extension::ParseXml(fastboot::SEARCH_PATH + args.at("config"), &fastboot::config)) { printf("XML config parsing failed\n"); return -1; } // To interface with gtest, must set global scope test variables fastboot::GenerateXmlTests(fastboot::config); } if (args.find("serial") != args.end()) { fastboot::FastBootTest::device_serial = args.at("serial"); } setbuf(stdout, NULL); // no buffering if (!fastboot::FastBootTest::IsFastbootOverTcp()) { printf("\n"); const auto matcher = [](usb_ifc_info* info) -> int { return fastboot::FastBootTest::MatchFastboot(info, fastboot::FastBootTest::device_serial); }; Transport* transport = nullptr; while (!transport) { transport = usb_open(matcher); std::this_thread::sleep_for(std::chrono::milliseconds(10)); } transport->Close(); } if (args.find("serial_port") != args.end()) { fastboot::FastBootTest::serial_port = fastboot::ConfigureSerial(args.at("serial_port")); } ::testing::InitGoogleTest(&argc, argv); auto ret = RUN_ALL_TESTS(); if (fastboot::FastBootTest::serial_port > 0) { close(fastboot::FastBootTest::serial_port); } return ret; }