/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "avb_util.h" #include #include #include #include #include #include #include "util.h" using android::base::Basename; using android::base::ReadFileToString; using android::base::StartsWith; using android::base::unique_fd; namespace android { namespace fs_mgr { std::string GetAvbPropertyDescriptor(const std::string& key, const std::vector& vbmeta_images) { size_t value_size; for (const auto& vbmeta : vbmeta_images) { const char* value = avb_property_lookup(vbmeta.data(), vbmeta.size(), key.data(), key.size(), &value_size); if (value != nullptr) { return {value, value_size}; } } return ""; } // Constructs dm-verity arguments for sending DM_TABLE_LOAD ioctl to kernel. // See the following link for more details: // https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity bool ConstructVerityTable(const FsAvbHashtreeDescriptor& hashtree_desc, const std::string& blk_device, android::dm::DmTable* table) { // Loads androidboot.veritymode from kernel cmdline. std::string verity_mode; if (!fs_mgr_get_boot_config("veritymode", &verity_mode)) { verity_mode = "enforcing"; // Defaults to enforcing when it's absent. } // Converts veritymode to the format used in kernel. std::string dm_verity_mode; if (verity_mode == "panicking") { dm_verity_mode = "panic_on_corruption"; } else if (verity_mode == "enforcing") { dm_verity_mode = "restart_on_corruption"; } else if (verity_mode == "logging") { dm_verity_mode = "ignore_corruption"; } else if (verity_mode != "eio") { // Default dm_verity_mode is eio. LERROR << "Unknown androidboot.veritymode: " << verity_mode; return false; } std::ostringstream hash_algorithm; hash_algorithm << hashtree_desc.hash_algorithm; android::dm::DmTargetVerity target( 0, hashtree_desc.image_size / 512, hashtree_desc.dm_verity_version, blk_device, blk_device, hashtree_desc.data_block_size, hashtree_desc.hash_block_size, hashtree_desc.image_size / hashtree_desc.data_block_size, hashtree_desc.tree_offset / hashtree_desc.hash_block_size, hash_algorithm.str(), hashtree_desc.root_digest, hashtree_desc.salt); if (hashtree_desc.fec_size > 0) { target.UseFec(blk_device, hashtree_desc.fec_num_roots, hashtree_desc.fec_offset / hashtree_desc.data_block_size, hashtree_desc.fec_offset / hashtree_desc.data_block_size); } if (!dm_verity_mode.empty()) { target.SetVerityMode(dm_verity_mode); } // Always use ignore_zero_blocks. target.IgnoreZeroBlocks(); LINFO << "Built verity table: '" << target.GetParameterString() << "'"; return table->AddTarget(std::make_unique(target)); } bool HashtreeDmVeritySetup(FstabEntry* fstab_entry, const FsAvbHashtreeDescriptor& hashtree_desc, bool wait_for_verity_dev) { android::dm::DmTable table; if (!ConstructVerityTable(hashtree_desc, fstab_entry->blk_device, &table) || !table.valid()) { LERROR << "Failed to construct verity table."; return false; } table.set_readonly(true); std::chrono::milliseconds timeout = {}; if (wait_for_verity_dev) timeout = 1s; std::string dev_path; const std::string mount_point(Basename(fstab_entry->mount_point)); const std::string device_name(GetVerityDeviceName(*fstab_entry)); android::dm::DeviceMapper& dm = android::dm::DeviceMapper::Instance(); if (!dm.CreateDevice(device_name, table, &dev_path, timeout)) { LERROR << "Couldn't create verity device!"; return false; } // Marks the underlying block device as read-only. SetBlockDeviceReadOnly(fstab_entry->blk_device); // Updates fstab_rec->blk_device to verity device name. fstab_entry->blk_device = dev_path; return true; } std::unique_ptr GetHashDescriptor( const std::string& partition_name, const std::vector& vbmeta_images) { bool found = false; const uint8_t* desc_partition_name; auto hash_desc = std::make_unique(); for (const auto& vbmeta : vbmeta_images) { size_t num_descriptors; std::unique_ptr descriptors( avb_descriptor_get_all(vbmeta.data(), vbmeta.size(), &num_descriptors), avb_free); if (!descriptors || num_descriptors < 1) { continue; } for (size_t n = 0; n < num_descriptors && !found; n++) { AvbDescriptor desc; if (!avb_descriptor_validate_and_byteswap(descriptors[n], &desc)) { LWARNING << "Descriptor[" << n << "] is invalid"; continue; } if (desc.tag == AVB_DESCRIPTOR_TAG_HASH) { desc_partition_name = (const uint8_t*)descriptors[n] + sizeof(AvbHashDescriptor); if (!avb_hash_descriptor_validate_and_byteswap((AvbHashDescriptor*)descriptors[n], hash_desc.get())) { continue; } if (hash_desc->partition_name_len != partition_name.length()) { continue; } // Notes that desc_partition_name is not NUL-terminated. std::string hash_partition_name((const char*)desc_partition_name, hash_desc->partition_name_len); if (hash_partition_name == partition_name) { found = true; } } } if (found) break; } if (!found) { LERROR << "Hash descriptor not found: " << partition_name; return nullptr; } hash_desc->partition_name = partition_name; const uint8_t* desc_salt = desc_partition_name + hash_desc->partition_name_len; hash_desc->salt = BytesToHex(desc_salt, hash_desc->salt_len); const uint8_t* desc_digest = desc_salt + hash_desc->salt_len; hash_desc->digest = BytesToHex(desc_digest, hash_desc->digest_len); return hash_desc; } std::unique_ptr GetHashtreeDescriptor( const std::string& partition_name, const std::vector& vbmeta_images) { bool found = false; const uint8_t* desc_partition_name; auto hashtree_desc = std::make_unique(); for (const auto& vbmeta : vbmeta_images) { size_t num_descriptors; std::unique_ptr descriptors( avb_descriptor_get_all(vbmeta.data(), vbmeta.size(), &num_descriptors), avb_free); if (!descriptors || num_descriptors < 1) { continue; } for (size_t n = 0; n < num_descriptors && !found; n++) { AvbDescriptor desc; if (!avb_descriptor_validate_and_byteswap(descriptors[n], &desc)) { LWARNING << "Descriptor[" << n << "] is invalid"; continue; } if (desc.tag == AVB_DESCRIPTOR_TAG_HASHTREE) { desc_partition_name = (const uint8_t*)descriptors[n] + sizeof(AvbHashtreeDescriptor); if (!avb_hashtree_descriptor_validate_and_byteswap( (AvbHashtreeDescriptor*)descriptors[n], hashtree_desc.get())) { continue; } if (hashtree_desc->partition_name_len != partition_name.length()) { continue; } // Notes that desc_partition_name is not NUL-terminated. std::string hashtree_partition_name((const char*)desc_partition_name, hashtree_desc->partition_name_len); if (hashtree_partition_name == partition_name) { found = true; } } } if (found) break; } if (!found) { LERROR << "Hashtree descriptor not found: " << partition_name; return nullptr; } hashtree_desc->partition_name = partition_name; const uint8_t* desc_salt = desc_partition_name + hashtree_desc->partition_name_len; hashtree_desc->salt = BytesToHex(desc_salt, hashtree_desc->salt_len); const uint8_t* desc_digest = desc_salt + hashtree_desc->salt_len; hashtree_desc->root_digest = BytesToHex(desc_digest, hashtree_desc->root_digest_len); return hashtree_desc; } bool LoadAvbHashtreeToEnableVerity(FstabEntry* fstab_entry, bool wait_for_verity_dev, const std::vector& vbmeta_images, const std::string& ab_suffix, const std::string& ab_other_suffix) { // Derives partition_name from blk_device to query the corresponding AVB HASHTREE descriptor // to setup dm-verity. The partition_names in AVB descriptors are without A/B suffix. std::string partition_name = DeriveAvbPartitionName(*fstab_entry, ab_suffix, ab_other_suffix); if (partition_name.empty()) { LERROR << "partition name is empty, cannot lookup AVB descriptors"; return false; } std::unique_ptr hashtree_descriptor = GetHashtreeDescriptor(partition_name, vbmeta_images); if (!hashtree_descriptor) { return false; } // Converts HASHTREE descriptor to verity table to load into kernel. // When success, the new device path will be returned, e.g., /dev/block/dm-2. return HashtreeDmVeritySetup(fstab_entry, *hashtree_descriptor, wait_for_verity_dev); } // Converts a AVB partition_name (without A/B suffix) to a device partition name. // e.g., "system" => "system_a", // "system_other" => "system_b". // // If the device is non-A/B, converts it to a partition name without suffix. // e.g., "system" => "system", // "system_other" => "system". std::string AvbPartitionToDevicePatition(const std::string& avb_partition_name, const std::string& ab_suffix, const std::string& ab_other_suffix) { bool is_other_slot = false; std::string sanitized_partition_name(avb_partition_name); auto other_suffix = sanitized_partition_name.rfind("_other"); if (other_suffix != std::string::npos) { sanitized_partition_name.erase(other_suffix); // converts system_other => system is_other_slot = true; } auto append_suffix = is_other_slot ? ab_other_suffix : ab_suffix; return sanitized_partition_name + append_suffix; } // Converts fstab_entry.blk_device (with ab_suffix) to a AVB partition name. // e.g., "/dev/block/by-name/system_a", slot_select => "system", // "/dev/block/by-name/system_b", slot_select_other => "system_other". // // Or for a logical partition (with ab_suffix): // e.g., "system_a", slot_select => "system", // "system_b", slot_select_other => "system_other". std::string DeriveAvbPartitionName(const FstabEntry& fstab_entry, const std::string& ab_suffix, const std::string& ab_other_suffix) { std::string partition_name; if (fstab_entry.fs_mgr_flags.logical) { partition_name = fstab_entry.logical_partition_name; } else { partition_name = Basename(fstab_entry.blk_device); } if (fstab_entry.fs_mgr_flags.slot_select) { auto found = partition_name.rfind(ab_suffix); if (found != std::string::npos) { partition_name.erase(found); // converts system_a => system } } else if (fstab_entry.fs_mgr_flags.slot_select_other) { auto found = partition_name.rfind(ab_other_suffix); if (found != std::string::npos) { partition_name.erase(found); // converts system_b => system } partition_name += "_other"; // converts system => system_other } return partition_name; } off64_t GetTotalSize(int fd) { off64_t saved_current = lseek64(fd, 0, SEEK_CUR); if (saved_current == -1) { PERROR << "Failed to get current position"; return -1; } // lseek64() returns the resulting offset location from the beginning of the file. off64_t total_size = lseek64(fd, 0, SEEK_END); if (total_size == -1) { PERROR << "Failed to lseek64 to end of the partition"; return -1; } // Restores the original offset. if (lseek64(fd, saved_current, SEEK_SET) == -1) { PERROR << "Failed to lseek64 to the original offset: " << saved_current; } return total_size; } std::unique_ptr GetAvbFooter(int fd) { std::array footer_buf; auto footer = std::make_unique(); off64_t footer_offset = GetTotalSize(fd) - AVB_FOOTER_SIZE; ssize_t num_read = TEMP_FAILURE_RETRY(pread64(fd, footer_buf.data(), AVB_FOOTER_SIZE, footer_offset)); if (num_read < 0 || num_read != AVB_FOOTER_SIZE) { PERROR << "Failed to read AVB footer at offset: " << footer_offset; return nullptr; } if (!avb_footer_validate_and_byteswap((const AvbFooter*)footer_buf.data(), footer.get())) { PERROR << "AVB footer verification failed at offset " << footer_offset; return nullptr; } return footer; } bool ValidatePublicKeyBlob(const uint8_t* key, size_t length, const std::string& expected_key_blob) { if (expected_key_blob.empty()) { // no expectation of the key, return true. return true; } if (expected_key_blob.size() != length) { return false; } if (0 == memcmp(key, expected_key_blob.data(), length)) { return true; } return false; } bool ValidatePublicKeyBlob(const std::string& key_blob_to_validate, const std::vector& allowed_key_paths) { std::string allowed_key_blob; if (key_blob_to_validate.empty()) { LWARNING << "Failed to validate an empty key"; return false; } for (const auto& path : allowed_key_paths) { if (ReadFileToString(path, &allowed_key_blob)) { if (key_blob_to_validate == allowed_key_blob) return true; } } return false; } VBMetaVerifyResult VerifyVBMetaSignature(const VBMetaData& vbmeta, const std::string& expected_public_key_blob, std::string* out_public_key_data) { const uint8_t* pk_data; size_t pk_len; ::AvbVBMetaVerifyResult vbmeta_ret; vbmeta_ret = avb_vbmeta_image_verify(vbmeta.data(), vbmeta.size(), &pk_data, &pk_len); if (out_public_key_data != nullptr) { out_public_key_data->clear(); if (pk_len > 0) { out_public_key_data->append(reinterpret_cast(pk_data), pk_len); } } switch (vbmeta_ret) { case AVB_VBMETA_VERIFY_RESULT_OK: if (pk_data == nullptr || pk_len <= 0) { LERROR << vbmeta.partition() << ": Error verifying vbmeta image: failed to get public key"; return VBMetaVerifyResult::kError; } if (!ValidatePublicKeyBlob(pk_data, pk_len, expected_public_key_blob)) { LERROR << vbmeta.partition() << ": Error verifying vbmeta image: public key used to" << " sign data does not match key in chain descriptor"; return VBMetaVerifyResult::kErrorVerification; } return VBMetaVerifyResult::kSuccess; case AVB_VBMETA_VERIFY_RESULT_OK_NOT_SIGNED: case AVB_VBMETA_VERIFY_RESULT_HASH_MISMATCH: case AVB_VBMETA_VERIFY_RESULT_SIGNATURE_MISMATCH: LERROR << vbmeta.partition() << ": Error verifying vbmeta image: " << avb_vbmeta_verify_result_to_string(vbmeta_ret); return VBMetaVerifyResult::kErrorVerification; case AVB_VBMETA_VERIFY_RESULT_INVALID_VBMETA_HEADER: // No way to continue this case. LERROR << vbmeta.partition() << ": Error verifying vbmeta image: invalid vbmeta header"; break; case AVB_VBMETA_VERIFY_RESULT_UNSUPPORTED_VERSION: // No way to continue this case. LERROR << vbmeta.partition() << ": Error verifying vbmeta image: unsupported AVB version"; break; default: LERROR << "Unknown vbmeta image verify return value: " << vbmeta_ret; break; } return VBMetaVerifyResult::kError; } std::unique_ptr VerifyVBMetaData(int fd, const std::string& partition_name, const std::string& expected_public_key_blob, std::string* out_public_key_data, VBMetaVerifyResult* out_verify_result) { uint64_t vbmeta_offset = 0; uint64_t vbmeta_size = VBMetaData::kMaxVBMetaSize; bool is_vbmeta_partition = StartsWith(partition_name, "vbmeta"); if (out_verify_result) { *out_verify_result = VBMetaVerifyResult::kError; } if (!is_vbmeta_partition) { std::unique_ptr footer = GetAvbFooter(fd); if (!footer) { return nullptr; } vbmeta_offset = footer->vbmeta_offset; vbmeta_size = footer->vbmeta_size; } if (vbmeta_size > VBMetaData::kMaxVBMetaSize) { LERROR << "VbMeta size in footer exceeds kMaxVBMetaSize"; return nullptr; } auto vbmeta = std::make_unique(vbmeta_size, partition_name); ssize_t num_read = TEMP_FAILURE_RETRY(pread64(fd, vbmeta->data(), vbmeta_size, vbmeta_offset)); // Allows partial read for vbmeta partition, because its vbmeta_size is kMaxVBMetaSize. if (num_read < 0 || (!is_vbmeta_partition && static_cast(num_read) != vbmeta_size)) { PERROR << partition_name << ": Failed to read vbmeta at offset " << vbmeta_offset << " with size " << vbmeta_size; return nullptr; } auto verify_result = VerifyVBMetaSignature(*vbmeta, expected_public_key_blob, out_public_key_data); if (out_verify_result != nullptr) { *out_verify_result = verify_result; } if (verify_result == VBMetaVerifyResult::kSuccess || verify_result == VBMetaVerifyResult::kErrorVerification) { return vbmeta; } return nullptr; } bool RollbackDetected(const std::string& partition_name ATTRIBUTE_UNUSED, uint64_t rollback_index ATTRIBUTE_UNUSED) { // TODO(bowgotsai): Support rollback protection. return false; } std::vector GetChainPartitionInfo(const VBMetaData& vbmeta, bool* fatal_error) { CHECK(fatal_error != nullptr); std::vector chain_partitions; size_t num_descriptors; std::unique_ptr descriptors( avb_descriptor_get_all(vbmeta.data(), vbmeta.size(), &num_descriptors), avb_free); if (!descriptors || num_descriptors < 1) { return {}; } for (size_t i = 0; i < num_descriptors; i++) { AvbDescriptor desc; if (!avb_descriptor_validate_and_byteswap(descriptors[i], &desc)) { LERROR << "Descriptor[" << i << "] is invalid in vbmeta: " << vbmeta.partition(); *fatal_error = true; return {}; } if (desc.tag == AVB_DESCRIPTOR_TAG_CHAIN_PARTITION) { AvbChainPartitionDescriptor chain_desc; if (!avb_chain_partition_descriptor_validate_and_byteswap( (AvbChainPartitionDescriptor*)descriptors[i], &chain_desc)) { LERROR << "Chain descriptor[" << i << "] is invalid in vbmeta: " << vbmeta.partition(); *fatal_error = true; return {}; } const char* chain_partition_name = ((const char*)descriptors[i]) + sizeof(AvbChainPartitionDescriptor); const char* chain_public_key_blob = chain_partition_name + chain_desc.partition_name_len; chain_partitions.emplace_back( std::string(chain_partition_name, chain_desc.partition_name_len), std::string(chain_public_key_blob, chain_desc.public_key_len)); } } return chain_partitions; } // Loads the vbmeta from a given path. std::unique_ptr LoadAndVerifyVbmetaByPath( const std::string& image_path, const std::string& partition_name, const std::string& expected_public_key_blob, bool allow_verification_error, bool rollback_protection, bool is_chained_vbmeta, std::string* out_public_key_data, bool* out_verification_disabled, VBMetaVerifyResult* out_verify_result) { if (out_verify_result) { *out_verify_result = VBMetaVerifyResult::kError; } // Ensures the device path (might be a symlink created by init) is ready to access. if (!WaitForFile(image_path, 1s)) { PERROR << "No such path: " << image_path; return nullptr; } unique_fd fd(TEMP_FAILURE_RETRY(open(image_path.c_str(), O_RDONLY | O_CLOEXEC))); if (fd < 0) { PERROR << "Failed to open: " << image_path; return nullptr; } VBMetaVerifyResult verify_result; std::unique_ptr vbmeta = VerifyVBMetaData( fd, partition_name, expected_public_key_blob, out_public_key_data, &verify_result); if (!vbmeta) { LERROR << partition_name << ": Failed to load vbmeta, result: " << verify_result; return nullptr; } vbmeta->set_vbmeta_path(image_path); if (!allow_verification_error && verify_result == VBMetaVerifyResult::kErrorVerification) { LERROR << partition_name << ": allow verification error is not allowed"; return nullptr; } std::unique_ptr vbmeta_header = vbmeta->GetVBMetaHeader(true /* update_vbmeta_size */); if (!vbmeta_header) { LERROR << partition_name << ": Failed to get vbmeta header"; return nullptr; } if (rollback_protection && RollbackDetected(partition_name, vbmeta_header->rollback_index)) { return nullptr; } // vbmeta flags can only be set by the top-level vbmeta image. if (is_chained_vbmeta && vbmeta_header->flags != 0) { LERROR << partition_name << ": chained vbmeta image has non-zero flags"; return nullptr; } // Checks if verification has been disabled by setting a bit in the image. if (out_verification_disabled) { if (vbmeta_header->flags & AVB_VBMETA_IMAGE_FLAGS_VERIFICATION_DISABLED) { LWARNING << "VERIFICATION_DISABLED bit is set for partition: " << partition_name; *out_verification_disabled = true; } else { *out_verification_disabled = false; } } if (out_verify_result) { *out_verify_result = verify_result; } return vbmeta; } VBMetaVerifyResult LoadAndVerifyVbmetaByPartition( const std::string& partition_name, const std::string& ab_suffix, const std::string& ab_other_suffix, const std::string& expected_public_key_blob, bool allow_verification_error, bool load_chained_vbmeta, bool rollback_protection, std::function device_path_constructor, bool is_chained_vbmeta, std::vector* out_vbmeta_images) { auto image_path = device_path_constructor( AvbPartitionToDevicePatition(partition_name, ab_suffix, ab_other_suffix)); bool verification_disabled = false; VBMetaVerifyResult verify_result; auto vbmeta = LoadAndVerifyVbmetaByPath(image_path, partition_name, expected_public_key_blob, allow_verification_error, rollback_protection, is_chained_vbmeta, nullptr /* out_public_key_data */, &verification_disabled, &verify_result); if (!vbmeta) { return VBMetaVerifyResult::kError; } if (out_vbmeta_images) { out_vbmeta_images->emplace_back(std::move(*vbmeta)); } // Only loads chained vbmeta if AVB verification is NOT disabled. if (!verification_disabled && load_chained_vbmeta) { bool fatal_error = false; auto chain_partitions = GetChainPartitionInfo(*out_vbmeta_images->rbegin(), &fatal_error); if (fatal_error) { return VBMetaVerifyResult::kError; } for (auto& chain : chain_partitions) { auto sub_ret = LoadAndVerifyVbmetaByPartition( chain.partition_name, ab_suffix, ab_other_suffix, chain.public_key_blob, allow_verification_error, load_chained_vbmeta, rollback_protection, device_path_constructor, true, /* is_chained_vbmeta */ out_vbmeta_images); if (sub_ret != VBMetaVerifyResult::kSuccess) { verify_result = sub_ret; // might be 'ERROR' or 'ERROR VERIFICATION'. if (verify_result == VBMetaVerifyResult::kError) { return verify_result; // stop here if we got an 'ERROR'. } } } } return verify_result; } } // namespace fs_mgr } // namespace android