// Copyright (C) 2019 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include namespace android { namespace snapshot { using android::base::ReadFully; using android::base::unique_fd; using android::base::WriteFully; using android::fiemap::IImageManager; using testing::AssertionFailure; using testing::AssertionSuccess; void DeleteBackingImage(IImageManager* manager, const std::string& name) { if (manager->IsImageMapped(name)) { ASSERT_TRUE(manager->UnmapImageDevice(name)); } if (manager->BackingImageExists(name)) { ASSERT_TRUE(manager->DeleteBackingImage(name)); } } android::base::unique_fd TestPartitionOpener::Open(const std::string& partition_name, int flags) const { if (partition_name == "super") { return PartitionOpener::Open(fake_super_path_, flags); } return PartitionOpener::Open(partition_name, flags); } bool TestPartitionOpener::GetInfo(const std::string& partition_name, android::fs_mgr::BlockDeviceInfo* info) const { if (partition_name != "super") { return PartitionOpener::GetInfo(partition_name, info); } if (PartitionOpener::GetInfo(fake_super_path_, info)) { // SnapshotUpdateTest uses a relatively small super partition, which requires a small // alignment and 0 offset to work. For the purpose of this test, hardcode the alignment // and offset. This test isn't about testing liblp or libdm. info->alignment_offset = 0; info->alignment = std::min(info->alignment, static_cast(128_KiB)); return true; } return false; } std::string TestPartitionOpener::GetDeviceString(const std::string& partition_name) const { if (partition_name == "super") { return fake_super_path_; } return PartitionOpener::GetDeviceString(partition_name); } std::string ToHexString(const uint8_t* buf, size_t len) { char lookup[] = "0123456789abcdef"; std::string out(len * 2 + 1, '\0'); char* outp = out.data(); for (; len > 0; len--, buf++) { *outp++ = (char)lookup[*buf >> 4]; *outp++ = (char)lookup[*buf & 0xf]; } return out; } bool WriteRandomData(const std::string& path, std::optional expect_size, std::string* hash) { unique_fd rand(open("/dev/urandom", O_RDONLY)); unique_fd fd(open(path.c_str(), O_WRONLY)); SHA256_CTX ctx; if (hash) { SHA256_Init(&ctx); } char buf[4096]; size_t total_written = 0; while (!expect_size || total_written < *expect_size) { ssize_t n = TEMP_FAILURE_RETRY(read(rand.get(), buf, sizeof(buf))); if (n <= 0) return false; if (!WriteFully(fd.get(), buf, n)) { if (errno == ENOSPC) { break; } PLOG(ERROR) << "Cannot write " << path; return false; } total_written += n; if (hash) { SHA256_Update(&ctx, buf, n); } } if (expect_size && total_written != *expect_size) { PLOG(ERROR) << "Written " << total_written << " bytes, expected " << *expect_size; return false; } if (hash) { uint8_t out[32]; SHA256_Final(out, &ctx); *hash = ToHexString(out, sizeof(out)); } return true; } bool WriteRandomData(ICowWriter* writer, std::string* hash) { unique_fd rand(open("/dev/urandom", O_RDONLY)); if (rand < 0) { PLOG(ERROR) << "open /dev/urandom"; return false; } SHA256_CTX ctx; if (hash) { SHA256_Init(&ctx); } if (!writer->options().max_blocks) { LOG(ERROR) << "CowWriter must specify maximum number of blocks"; return false; } uint64_t num_blocks = writer->options().max_blocks.value(); size_t block_size = writer->options().block_size; std::string block(block_size, '\0'); for (uint64_t i = 0; i < num_blocks; i++) { if (!ReadFully(rand, block.data(), block.size())) { PLOG(ERROR) << "read /dev/urandom"; return false; } if (!writer->AddRawBlocks(i, block.data(), block.size())) { LOG(ERROR) << "Failed to add raw block " << i; return false; } if (hash) { SHA256_Update(&ctx, block.data(), block.size()); } } if (hash) { uint8_t out[32]; SHA256_Final(out, &ctx); *hash = ToHexString(out, sizeof(out)); } return true; } std::string HashSnapshot(ISnapshotWriter* writer) { auto reader = writer->OpenReader(); if (!reader) { return {}; } SHA256_CTX ctx; SHA256_Init(&ctx); uint64_t remaining = reader->BlockDevSize(); char buffer[4096]; while (remaining) { size_t to_read = static_cast(std::min(remaining, static_cast(sizeof(buffer)))); ssize_t read = reader->Read(&buffer, to_read); if (read <= 0) { if (read < 0) { LOG(ERROR) << "Failed to read from snapshot writer"; return {}; } break; } SHA256_Update(&ctx, buffer, to_read); remaining -= static_cast(read); } uint8_t out[32]; SHA256_Final(out, &ctx); return ToHexString(out, sizeof(out)); } std::optional GetHash(const std::string& path) { std::string content; if (!android::base::ReadFileToString(path, &content, true)) { PLOG(ERROR) << "Cannot access " << path; return std::nullopt; } SHA256_CTX ctx; SHA256_Init(&ctx); SHA256_Update(&ctx, content.c_str(), content.size()); uint8_t out[32]; SHA256_Final(out, &ctx); return ToHexString(out, sizeof(out)); } AssertionResult FillFakeMetadata(MetadataBuilder* builder, const DeltaArchiveManifest& manifest, const std::string& suffix) { for (const auto& group : manifest.dynamic_partition_metadata().groups()) { if (!builder->AddGroup(group.name() + suffix, group.size())) { return AssertionFailure() << "Cannot add group " << group.name() << " with size " << group.size(); } for (const auto& partition_name : group.partition_names()) { auto p = builder->AddPartition(partition_name + suffix, group.name() + suffix, 0 /* attr */); if (!p) { return AssertionFailure() << "Cannot add partition " << partition_name + suffix << " to group " << group.name() << suffix; } } } for (const auto& partition : manifest.partitions()) { auto p = builder->FindPartition(partition.partition_name() + suffix); if (!p) { return AssertionFailure() << "Cannot resize partition " << partition.partition_name() << suffix << "; it is not found."; } if (!builder->ResizePartition(p, partition.new_partition_info().size())) { return AssertionFailure() << "Cannot resize partition " << partition.partition_name() << suffix << " to size " << partition.new_partition_info().size(); } } return AssertionSuccess(); } void SetSize(PartitionUpdate* partition_update, uint64_t size) { partition_update->mutable_new_partition_info()->set_size(size); } uint64_t GetSize(PartitionUpdate* partition_update) { return partition_update->mutable_new_partition_info()->size(); } AssertionResult LowSpaceUserdata::Init(uint64_t max_free_space) { auto res = ReadUserdataStats(); if (!res) return res; // Try to fill up the disk as much as possible until free_space_ <= max_free_space. big_file_ = std::make_unique(); if (big_file_->fd == -1) { return AssertionFailure() << strerror(errno); } if (!android::base::StartsWith(big_file_->path, kUserDataDevice)) { return AssertionFailure() << "Temp file allocated to " << big_file_->path << ", not in " << kUserDataDevice; } uint64_t next_consume = std::min(free_space_ - max_free_space, (uint64_t)std::numeric_limits::max()); off_t allocated = 0; while (next_consume > 0 && free_space_ > max_free_space) { int status = fallocate(big_file_->fd, 0, allocated, next_consume); if (status == -1 && errno == ENOSPC) { next_consume /= 2; continue; } if (status == -1) { return AssertionFailure() << strerror(errno); } allocated += next_consume; res = ReadUserdataStats(); if (!res) return res; } LOG(INFO) << allocated << " bytes allocated to " << big_file_->path; initialized_ = true; return AssertionSuccess(); } AssertionResult LowSpaceUserdata::ReadUserdataStats() { struct statvfs buf; if (statvfs(kUserDataDevice, &buf) == -1) { return AssertionFailure() << strerror(errno); } bsize_ = buf.f_bsize; free_space_ = bsize_ * buf.f_bfree; available_space_ = bsize_ * buf.f_bavail; return AssertionSuccess(); } uint64_t LowSpaceUserdata::free_space() const { CHECK(initialized_); return free_space_; } uint64_t LowSpaceUserdata::available_space() const { CHECK(initialized_); return available_space_; } uint64_t LowSpaceUserdata::bsize() const { CHECK(initialized_); return bsize_; } bool IsVirtualAbEnabled() { return android::base::GetBoolProperty("ro.virtual_ab.enabled", false); } } // namespace snapshot } // namespace android