/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <algorithm> #include <gtest/gtest.h> #include <openssl/engine.h> #include <openssl/rand.h> #include <keymaster/android_keymaster_utils.h> #include <keymaster/authorization_set.h> #include <keymaster/key_blob_utils/auth_encrypted_key_blob.h> #include <keymaster/key_blob_utils/integrity_assured_key_blob.h> #include <keymaster/keymaster_tags.h> #include <keymaster/km_openssl/software_random_source.h> #include "android_keymaster_test_utils.h" namespace keymaster { namespace test { namespace { const uint8_t master_key_data[16] = {}; const uint8_t key_data[5] = {21, 22, 23, 24, 25}; } // namespace class KeyBlobTest : public testing::Test, public SoftwareRandomSource { protected: KeyBlobTest() : key_material_(key_data, array_length(key_data)), master_key_(master_key_data, array_length(master_key_data)) { hw_enforced_.push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA); hw_enforced_.push_back(TAG_KEY_SIZE, 256); hw_enforced_.push_back(TAG_BLOB_USAGE_REQUIREMENTS, KM_BLOB_STANDALONE); hw_enforced_.push_back(TAG_MIN_SECONDS_BETWEEN_OPS, 10); hw_enforced_.push_back(TAG_ALL_USERS); hw_enforced_.push_back(TAG_NO_AUTH_REQUIRED); hw_enforced_.push_back(TAG_ORIGIN, KM_ORIGIN_GENERATED); sw_enforced_.push_back(TAG_ACTIVE_DATETIME, 10); sw_enforced_.push_back(TAG_ORIGINATION_EXPIRE_DATETIME, 100); sw_enforced_.push_back(TAG_CREATION_DATETIME, 10); hidden_.push_back(TAG_ROOT_OF_TRUST, "foo", 3); hidden_.push_back(TAG_APPLICATION_ID, "my_app", 6); } keymaster_error_t Encrypt(AuthEncryptedBlobFormat format = AES_GCM_WITH_SW_ENFORCED) { keymaster_error_t error; encrypted_key_ = EncryptKey(key_material_, format, hw_enforced_, sw_enforced_, hidden_, master_key_, *this, &error); return error; } keymaster_error_t Decrypt() { keymaster_error_t error; decrypted_plaintext_ = DecryptKey(move(deserialized_key_), hidden_, master_key_, &error); return error; } keymaster_error_t Serialize() { keymaster_error_t error; serialized_blob_ = SerializeAuthEncryptedBlob(encrypted_key_, hw_enforced_, sw_enforced_, &error); return error; } keymaster_error_t Deserialize() { keymaster_error_t error; deserialized_key_ = DeserializeAuthEncryptedBlob(serialized_blob_, &error); return error; } // Encryption inputs AuthorizationSet hw_enforced_; AuthorizationSet sw_enforced_; AuthorizationSet hidden_; KeymasterKeyBlob key_material_; KeymasterKeyBlob master_key_; // Encryption output EncryptedKey encrypted_key_; // Serialization output KeymasterKeyBlob serialized_blob_; // Deserialization output DeserializedKey deserialized_key_; // Decryption output. KeymasterKeyBlob decrypted_plaintext_; }; TEST_F(KeyBlobTest, EncryptDecrypt) { for (auto format : {AES_OCB, AES_GCM_WITH_SW_ENFORCED}) { ASSERT_EQ(KM_ERROR_OK, Encrypt(format)); ASSERT_EQ(KM_ERROR_OK, Serialize()); // key_data shouldn't be anywhere in the blob, ciphertext should. EXPECT_EQ(serialized_blob_.end(), std::search(serialized_blob_.begin(), serialized_blob_.end(), key_material_.begin(), key_material_.end())); EXPECT_NE(serialized_blob_.end(), std::search(serialized_blob_.begin(), serialized_blob_.end(), encrypted_key_.ciphertext.begin(), encrypted_key_.ciphertext.end())); keymaster_error_t error; DeserializedKey deserialized = DeserializeAuthEncryptedBlob(serialized_blob_, &error); ASSERT_EQ(KM_ERROR_OK, error); EXPECT_EQ(hw_enforced_, deserialized.hw_enforced); switch (format) { case AES_OCB: case AES_GCM_WITH_SW_ENFORCED: EXPECT_EQ(sw_enforced_, deserialized.sw_enforced); break; } KeymasterKeyBlob plaintext = DecryptKey(move(deserialized), hidden_, master_key_, &error); ASSERT_EQ(key_material_.size(), plaintext.size()); EXPECT_TRUE(std::equal(key_material_.begin(), key_material_.end(), plaintext.begin())); } } TEST_F(KeyBlobTest, WrongKeyLength) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); // Modify the key length, shouldn't be able to parse. serialized_blob_.writable_data()[1 /* version */ + 4 /* nonce len */ + 12 /* nonce */ + 3]++; ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Deserialize()); } TEST_F(KeyBlobTest, WrongNonce) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); // Find the nonce, then modify it. auto nonce_ptr = std::search(serialized_blob_.begin(), serialized_blob_.end(), encrypted_key_.nonce.begin(), encrypted_key_.nonce.end()); ASSERT_NE(nonce_ptr, serialized_blob_.end()); (*const_cast<uint8_t*>(nonce_ptr))++; // Deserialization shouldn't be affected, but decryption should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt()); } TEST_F(KeyBlobTest, WrongTag) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); // Find the tag, then modify it. auto tag_ptr = std::search(serialized_blob_.begin(), serialized_blob_.end(), encrypted_key_.tag.begin(), encrypted_key_.tag.end()); ASSERT_NE(tag_ptr, serialized_blob_.end()); (*const_cast<uint8_t*>(tag_ptr))++; // Deserialization shouldn't be affected, but decryption should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt()); } TEST_F(KeyBlobTest, WrongCiphertext) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); // Find the ciphertext, then modify it. auto ciphertext_ptr = std::search(serialized_blob_.begin(), serialized_blob_.end(), encrypted_key_.ciphertext.begin(), encrypted_key_.ciphertext.end()); ASSERT_NE(ciphertext_ptr, serialized_blob_.end()); (*const_cast<uint8_t*>(ciphertext_ptr))++; // Deserialization shouldn't be affected, but decryption should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt()); } TEST_F(KeyBlobTest, WrongMasterKey) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); uint8_t wrong_master_data[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; KeymasterKeyBlob wrong_master(wrong_master_data, array_length(wrong_master_data)); // Decrypting with wrong master key should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); keymaster_error_t error; DecryptKey(move(deserialized_key_), hidden_, wrong_master, &error); ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, error); } TEST_F(KeyBlobTest, WrongHwEnforced) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); // Find enforced serialization data and modify it. size_t hw_enforced_size = hw_enforced_.SerializedSize(); UniquePtr<uint8_t[]> hw_enforced_data(new uint8_t[hw_enforced_size]); hw_enforced_.Serialize(hw_enforced_data.get(), hw_enforced_data.get() + hw_enforced_size); auto hw_enforced_ptr = std::search(serialized_blob_.begin(), serialized_blob_.end(), hw_enforced_data.get(), hw_enforced_data.get() + hw_enforced_size); ASSERT_NE(serialized_blob_.end(), hw_enforced_ptr); (*(const_cast<uint8_t*>(hw_enforced_ptr) + hw_enforced_size - 1))++; // Deserialization shouldn't be affected, but decryption should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt()); } TEST_F(KeyBlobTest, WrongSwEnforced) { for (auto format : {AES_OCB, AES_GCM_WITH_SW_ENFORCED}) { ASSERT_EQ(KM_ERROR_OK, Encrypt(format)); ASSERT_EQ(KM_ERROR_OK, Serialize()); // Find enforced serialization data and modify it. size_t sw_enforced_size = sw_enforced_.SerializedSize(); UniquePtr<uint8_t[]> sw_enforced_data(new uint8_t[sw_enforced_size]); sw_enforced_.Serialize(sw_enforced_data.get(), sw_enforced_data.get() + sw_enforced_size); auto sw_enforced_ptr = std::search(serialized_blob_.begin(), serialized_blob_.end(), sw_enforced_data.get(), sw_enforced_data.get() + sw_enforced_size); ASSERT_NE(serialized_blob_.end(), sw_enforced_ptr); (*(const_cast<uint8_t*>(sw_enforced_ptr) + sw_enforced_size - 1))++; // Deserialization shouldn't be affected, but decryption should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt()); } } TEST_F(KeyBlobTest, EmptyHidden) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); AuthorizationSet wrong_hidden; // Deserialization shouldn't be affected, but decryption should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); keymaster_error_t error; DecryptKey(move(deserialized_key_), wrong_hidden, master_key_, &error); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error); } TEST_F(KeyBlobTest, WrongRootOfTrust) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); AuthorizationSet wrong_hidden; wrong_hidden.push_back(TAG_ROOT_OF_TRUST, "bar", 2); wrong_hidden.push_back(TAG_APPLICATION_ID, "my_app", 6); // Deserialization shouldn't be affected, but decryption should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); keymaster_error_t error; DecryptKey(move(deserialized_key_), wrong_hidden, master_key_, &error); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error); } TEST_F(KeyBlobTest, WrongAppId) { ASSERT_EQ(KM_ERROR_OK, Encrypt()); ASSERT_EQ(KM_ERROR_OK, Serialize()); AuthorizationSet wrong_hidden; wrong_hidden.push_back(TAG_ROOT_OF_TRUST, "foo", 3); wrong_hidden.push_back(TAG_APPLICATION_ID, "your_app", 7); // Deserialization shouldn't be affected, but decryption should fail. ASSERT_EQ(KM_ERROR_OK, Deserialize()); keymaster_error_t error; DecryptKey(move(deserialized_key_), wrong_hidden, master_key_, &error); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error); } // This test is especially useful when compiled for 32-bit mode and run under valgrind. TEST_F(KeyBlobTest, FuzzTest) { time_t now = time(NULL); std::cout << "Seeding rand() with " << now << " for fuzz test." << std::endl; srand(now); // Fill large buffer with random bytes. const int kBufSize = 10000; UniquePtr<uint8_t[]> buf(new uint8_t[kBufSize]); for (size_t i = 0; i < kBufSize; ++i) buf[i] = static_cast<uint8_t>(rand()); // Try to deserialize every offset with multiple methods. size_t deserialize_auth_encrypted_success = 0; for (size_t i = 0; i < kBufSize; ++i) { keymaster_key_blob_t blob = {buf.get() + i, kBufSize - i}; KeymasterKeyBlob key_blob(blob); // Integrity-assured blob. ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, DeserializeIntegrityAssuredBlob(key_blob, hidden_, &key_material_, &hw_enforced_, &sw_enforced_)); // Auth-encrypted blob. keymaster_error_t error; auto deserialized = DeserializeAuthEncryptedBlob(key_blob, &error); if (error == KM_ERROR_OK) { // It's possible to deserialize successfully. Decryption should always fail. ++deserialize_auth_encrypted_success; DecryptKey(move(deserialized), hidden_, master_key_, &error); } ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, error) << "Somehow sucessfully parsed a blob with seed " << now << " at offset " << i; } } TEST_F(KeyBlobTest, UnderflowTest) { uint8_t buf[0]; keymaster_key_blob_t blob = {buf, 0}; KeymasterKeyBlob key_blob(blob); EXPECT_NE(nullptr, key_blob.key_material); EXPECT_EQ(0U, key_blob.key_material_size); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, DeserializeIntegrityAssuredBlob(key_blob, hidden_, &key_material_, &hw_enforced_, &sw_enforced_)); keymaster_error_t error; DeserializeAuthEncryptedBlob(key_blob, &error); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error); } TEST_F(KeyBlobTest, DupBufferToolarge) { uint8_t buf[0]; keymaster_key_blob_t blob = {buf, 0}; blob.key_material_size = 16 * 1024 * 1024 + 1; KeymasterKeyBlob key_blob(blob); EXPECT_EQ(nullptr, key_blob.key_material); EXPECT_EQ(0U, key_blob.key_material_size); ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, DeserializeIntegrityAssuredBlob(key_blob, hidden_, &key_material_, &hw_enforced_, &sw_enforced_)); keymaster_error_t error; DeserializeAuthEncryptedBlob(key_blob, &error); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error); } } // namespace test } // namespace keymaster