// // Copyright (C) 2014 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_consumer/payload_verifier.h" #include #include #include #include #include "update_engine/common/constants.h" #include "update_engine/common/hash_calculator.h" #include "update_engine/common/utils.h" #include "update_engine/payload_consumer/certificate_parser_interface.h" #include "update_engine/update_metadata.pb.h" using std::string; namespace chromeos_update_engine { namespace { // The ASN.1 DigestInfo prefix for encoding SHA256 digest. The complete 51-byte // DigestInfo consists of 19-byte SHA256_DIGEST_INFO_PREFIX and 32-byte SHA256 // digest. // // SEQUENCE(2+49) { // SEQUENCE(2+13) { // OBJECT(2+9) id-sha256 // NULL(2+0) // } // OCTET STRING(2+32) // } const uint8_t kSHA256DigestInfoPrefix[] = { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20, }; } // namespace std::unique_ptr PayloadVerifier::CreateInstance( const std::string& pem_public_key) { std::unique_ptr bp( BIO_new_mem_buf(pem_public_key.data(), pem_public_key.size()), BIO_free); if (!bp) { LOG(ERROR) << "Failed to read " << pem_public_key << " into buffer."; return nullptr; } auto pub_key = std::unique_ptr( PEM_read_bio_PUBKEY(bp.get(), nullptr, nullptr, nullptr), EVP_PKEY_free); if (!pub_key) { LOG(ERROR) << "Failed to parse the public key in: " << pem_public_key; return nullptr; } std::vector> keys; keys.emplace_back(std::move(pub_key)); return std::unique_ptr(new PayloadVerifier(std::move(keys))); } std::unique_ptr PayloadVerifier::CreateInstanceFromZipPath( const std::string& certificate_zip_path) { auto parser = CreateCertificateParser(); if (!parser) { LOG(ERROR) << "Failed to create certificate parser from " << certificate_zip_path; return nullptr; } std::vector> public_keys; if (!parser->ReadPublicKeysFromCertificates(certificate_zip_path, &public_keys) || public_keys.empty()) { LOG(ERROR) << "Failed to parse public keys in: " << certificate_zip_path; return nullptr; } return std::unique_ptr( new PayloadVerifier(std::move(public_keys))); } bool PayloadVerifier::VerifySignature( const string& signature_proto, const brillo::Blob& sha256_hash_data) const { TEST_AND_RETURN_FALSE(!public_keys_.empty()); Signatures signatures; LOG(INFO) << "signature blob size = " << signature_proto.size(); TEST_AND_RETURN_FALSE(signatures.ParseFromString(signature_proto)); if (!signatures.signatures_size()) { LOG(ERROR) << "No signatures stored in the blob."; return false; } std::vector tested_hashes; // Tries every signature in the signature blob. for (int i = 0; i < signatures.signatures_size(); i++) { const Signatures::Signature& signature = signatures.signatures(i); brillo::Blob sig_data; if (signature.has_unpadded_signature_size()) { TEST_AND_RETURN_FALSE(signature.unpadded_signature_size() <= signature.data().size()); LOG(INFO) << "Truncating the signature to its unpadded size: " << signature.unpadded_signature_size() << "."; sig_data.assign( signature.data().begin(), signature.data().begin() + signature.unpadded_signature_size()); } else { sig_data.assign(signature.data().begin(), signature.data().end()); } brillo::Blob sig_hash_data; if (VerifyRawSignature(sig_data, sha256_hash_data, &sig_hash_data)) { LOG(INFO) << "Verified correct signature " << i + 1 << " out of " << signatures.signatures_size() << " signatures."; return true; } if (!sig_hash_data.empty()) { tested_hashes.push_back(sig_hash_data); } } LOG(ERROR) << "None of the " << signatures.signatures_size() << " signatures is correct. Expected hash before padding:"; utils::HexDumpVector(sha256_hash_data); LOG(ERROR) << "But found RSA decrypted hashes:"; for (const auto& sig_hash_data : tested_hashes) { utils::HexDumpVector(sig_hash_data); } return false; } bool PayloadVerifier::VerifyRawSignature( const brillo::Blob& sig_data, const brillo::Blob& sha256_hash_data, brillo::Blob* decrypted_sig_data) const { TEST_AND_RETURN_FALSE(!public_keys_.empty()); for (const auto& public_key : public_keys_) { int key_type = EVP_PKEY_id(public_key.get()); if (key_type == EVP_PKEY_RSA) { brillo::Blob sig_hash_data; if (!GetRawHashFromSignature( sig_data, public_key.get(), &sig_hash_data)) { LOG(WARNING) << "Failed to get the raw hash with RSA key. Trying other keys."; continue; } if (decrypted_sig_data != nullptr) { *decrypted_sig_data = sig_hash_data; } brillo::Blob padded_hash_data = sha256_hash_data; TEST_AND_RETURN_FALSE( PadRSASHA256Hash(&padded_hash_data, sig_hash_data.size())); if (padded_hash_data == sig_hash_data) { return true; } } else if (key_type == EVP_PKEY_EC) { EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(public_key.get()); TEST_AND_RETURN_FALSE(ec_key != nullptr); if (ECDSA_verify(0, sha256_hash_data.data(), sha256_hash_data.size(), sig_data.data(), sig_data.size(), ec_key) == 1) { return true; } } else { LOG(ERROR) << "Unsupported key type " << key_type; return false; } } LOG(INFO) << "Failed to verify the signature with " << public_keys_.size() << " keys."; return false; } bool PayloadVerifier::GetRawHashFromSignature( const brillo::Blob& sig_data, const EVP_PKEY* public_key, brillo::Blob* out_hash_data) const { // The code below executes the equivalent of: // // openssl rsautl -verify -pubin -inkey <(echo pem_public_key) // -in |sig_data| -out |out_hash_data| RSA* rsa = EVP_PKEY_get0_RSA(const_cast(public_key)); TEST_AND_RETURN_FALSE(rsa != nullptr); unsigned int keysize = RSA_size(rsa); if (sig_data.size() > 2 * keysize) { LOG(ERROR) << "Signature size is too big for public key size."; return false; } // Decrypts the signature. brillo::Blob hash_data(keysize); int decrypt_size = RSA_public_decrypt( sig_data.size(), sig_data.data(), hash_data.data(), rsa, RSA_NO_PADDING); TEST_AND_RETURN_FALSE(decrypt_size > 0 && decrypt_size <= static_cast(hash_data.size())); hash_data.resize(decrypt_size); out_hash_data->swap(hash_data); return true; } bool PayloadVerifier::PadRSASHA256Hash(brillo::Blob* hash, size_t rsa_size) { TEST_AND_RETURN_FALSE(hash->size() == kSHA256Size); TEST_AND_RETURN_FALSE(rsa_size == 256 || rsa_size == 512); // The following is a standard PKCS1-v1_5 padding for SHA256 signatures, as // defined in RFC3447 section 9.2. It is prepended to the actual signature // (32 bytes) to form a sequence of 256|512 bytes (2048|4096 bits) that is // amenable to RSA signing. The padded hash will look as follows: // // 0x00 0x01 0xff ... 0xff 0x00 ASN1HEADER SHA256HASH // |-----------205|461----------||----19----||----32----| size_t padding_string_size = rsa_size - hash->size() - sizeof(kSHA256DigestInfoPrefix) - 3; brillo::Blob padded_result = brillo::CombineBlobs({ {0x00, 0x01}, brillo::Blob(padding_string_size, 0xff), {0x00}, brillo::Blob(kSHA256DigestInfoPrefix, kSHA256DigestInfoPrefix + sizeof(kSHA256DigestInfoPrefix)), *hash, }); *hash = std::move(padded_result); TEST_AND_RETURN_FALSE(hash->size() == rsa_size); return true; } } // namespace chromeos_update_engine