// // Copyright (C) 2015 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #ifndef UPDATE_ENGINE_PAYLOAD_GENERATOR_PAYLOAD_GENERATION_CONFIG_H_ #define UPDATE_ENGINE_PAYLOAD_GENERATOR_PAYLOAD_GENERATION_CONFIG_H_ #include #include #include #include #include #include #include "update_engine/payload_consumer/payload_constants.h" #include "update_engine/payload_generator/filesystem_interface.h" #include "update_engine/update_metadata.pb.h" namespace chromeos_update_engine { struct PostInstallConfig { // Whether the postinstall config is empty. bool IsEmpty() const; // Whether this partition carries a filesystem with post-install program that // must be run to finalize the update process. bool run = false; // The path to the post-install program relative to the root of this // filesystem. std::string path; // The filesystem type used to mount the partition in order to run the // post-install program. std::string filesystem_type; // Whether this postinstall script should be ignored if it fails. bool optional = false; }; // Data will be written to the payload and used for hash tree and FEC generation // at device update time. struct VerityConfig { // Whether the verity config is empty. bool IsEmpty() const; // The extent for data covered by verity hash tree. Extent hash_tree_data_extent; // The extent to store verity hash tree. Extent hash_tree_extent; // The hash algorithm used in verity hash tree. std::string hash_tree_algorithm; // The salt used for verity hash tree. brillo::Blob hash_tree_salt; // The extent for data covered by FEC. Extent fec_data_extent; // The extent to store FEC. Extent fec_extent; // The number of FEC roots. uint32_t fec_roots = 0; }; struct PartitionConfig { explicit PartitionConfig(std::string name) : name(name) {} // Returns whether the PartitionConfig is not an empty image and all the // fields are set correctly to a valid image file. bool ValidateExists() const; // Open then filesystem stored in this partition and stores it in // |fs_interface|. Returns whether opening the filesystem worked. bool OpenFilesystem(); // The path to the partition file. This can be a regular file or a block // device such as a loop device. std::string path; // The path to the .map file associated with |path| if any. The .map file is // generated by the Android filesystem generation tools when creating a // filesystem and describes the blocks used by each file. std::string mapfile_path; // The size of the data in |path|. If rootfs verification is used (verity) // this value should match the size of the verity device for the rootfs, and // the size of the whole kernel. This value could be smaller than the // partition and is the size of the data update_engine assumes verified for // the source image, and the size of that data it should generate for the // target image. uint64_t size = 0; // The FilesystemInterface implementation used to access this partition's // files. std::unique_ptr fs_interface; std::string name; PostInstallConfig postinstall; VerityConfig verity; // Enables the on device fec data computation by default. bool disable_fec_computation = false; // Per-partition version, usually a number representing timestamp. std::string version; }; // The ImageConfig struct describes a pair of binaries kernel and rootfs and the // metadata associated with the image they are part of, like build number, size, // etc. struct ImageConfig { // Returns whether the ImageConfig is an empty image. bool ValidateIsEmpty() const; // Load |rootfs_size| and |kernel.size| from the respective image files. For // the kernel, the whole |kernel.path| file is assumed. For the rootfs, the // size is detected from the filesystem. // Returns whether the image size was properly detected. bool LoadImageSize(); // Load postinstall config from a key value store. bool LoadPostInstallConfig(const brillo::KeyValueStore& store); // Load verity config by parsing the partition images. bool LoadVerityConfig(); // Load dynamic partition info from a key value store. bool LoadDynamicPartitionMetadata(const brillo::KeyValueStore& store); // Validate |dynamic_partition_metadata| against |partitions|. bool ValidateDynamicPartitionMetadata() const; // The updated partitions. std::vector partitions; // The super partition metadata. std::unique_ptr dynamic_partition_metadata; }; struct PayloadVersion { PayloadVersion() : PayloadVersion(0, 0) {} PayloadVersion(uint64_t major_version, uint32_t minor_version); // Returns whether the PayloadVersion is valid. bool Validate() const; // Return whether the passed |operation| is allowed by this payload. bool OperationAllowed(InstallOperation::Type operation) const; // Whether this payload version is a delta or partial payload. bool IsDeltaOrPartial() const; // The major version of the payload. uint64_t major; // The minor version of the payload. uint32_t minor; }; // The PayloadGenerationConfig struct encapsulates all the configuration to // build the requested payload. This includes information about the old and new // image as well as the restrictions applied to the payload (like minor-version // and full/delta payload). struct PayloadGenerationConfig { // Returns whether the PayloadGenerationConfig is valid. bool Validate() const; // Image information about the new image that's the target of this payload. ImageConfig target; // Image information pertaining the old image, if any. This is only valid // if is_full is false, so we are requested a delta payload. ImageConfig source; // Whether the requested payload is a delta payload. bool is_delta = false; // Whether the requested payload is a partial payload, i.e. only update a // subset of partitions on device. bool is_partial_update = false; // The major/minor version of the payload. PayloadVersion version; // The size of the rootfs partition, that not necessarily is the same as the // filesystem in either source or target version, since there is some space // after the partition used to store the verity hashes and or the bootcache. uint64_t rootfs_partition_size = 0; // The |hard_chunk_size| is the maximum size that a single operation should // write in the destination. Operations bigger than chunk_size should be // split. A value of -1 means no hard chunk size limit. A very low limit // means more operations, and less of a chance to reuse the data. ssize_t hard_chunk_size = -1; // The |soft_chunk_size| is the preferred chunk size to use when there's no // significant impact to the operations. For example, REPLACE, MOVE and // SOURCE_COPY operations are not significantly impacted by the chunk size, // except for a few bytes overhead in the manifest to describe extra // operations. On the other hand, splitting BSDIFF operations impacts the // payload size since it is not possible to use the redundancy *between* // chunks. size_t soft_chunk_size = 2 * 1024 * 1024; // TODO(deymo): Remove the block_size member and maybe replace it with a // minimum alignment size for blocks (if needed). Algorithms should be able to // pick the block_size they want, but for now only 4 KiB is supported. // The block size used for all the operations in the manifest. size_t block_size = 4096; // The maximum timestamp of the OS allowed to apply this payload. int64_t max_timestamp = 0; // Path to apex_info.pb, extracted from target_file.zip std::string apex_info_file; }; } // namespace chromeos_update_engine #endif // UPDATE_ENGINE_PAYLOAD_GENERATOR_PAYLOAD_GENERATION_CONFIG_H_