/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef TEMP_FAILURE_RETRY /* Used to retry syscalls that can return EINTR. */ #define TEMP_FAILURE_RETRY(exp) \ ({ \ __typeof__(exp) _rc; \ do { \ _rc = (exp); \ } while (_rc == -1 && errno == EINTR); \ _rc; \ }) #endif static constexpr const char* COLOR_RESET = "\033[m"; static constexpr const char* COLOR_RED = "\033[0;31m"; static constexpr const char* COLOR_GREEN = "\033[0;32m"; static constexpr const char* COLOR_YELLOW = "\033[0;33m"; static bool ShouldUseColor() { const auto& gtest_color = ::testing::GTEST_FLAG(color); if (gtest_color == "yes" || gtest_color == "true" || gtest_color == "t") { return true; } bool stdout_is_tty = isatty(STDOUT_FILENO) != 0; if (!stdout_is_tty) { return false; } if (gtest_color != "auto") { return false; } const char* const term = getenv("COLORTERM"); return term != nullptr && term[0] != 0; } static void ColoredPrintf(const char* const color, const char* fmt, ...) { static const bool use_color = ShouldUseColor(); va_list args; va_start(args, fmt); if (!use_color) { vprintf(fmt, args); } else { printf("%s", color); vprintf(fmt, args); printf("%s", COLOR_RESET); } va_end(args); } constexpr int DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS = 90000; constexpr int DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS = 2000; // The time each test can run before killed for the reason of timeout. // It takes effect only with --isolate option. static int global_test_run_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS; // The time each test can run before be warned for too much running time. // It takes effect only with --isolate option. static int global_test_run_warnline_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS; // Return deadline duration for a test, in ms. static int GetDeadlineInfo(const std::string& /*test_name*/) { return global_test_run_deadline_ms; } // Return warnline duration for a test, in ms. static int GetWarnlineInfo(const std::string& /*test_name*/) { return global_test_run_warnline_ms; } static void PrintHelpInfo() { printf( "VTS Unit Test Options:\n" " -j [JOB_COUNT] or -j[JOB_COUNT]\n" " Run up to JOB_COUNT tests in parallel.\n" " Use isolation mode, Run each test in a separate process.\n" " If JOB_COUNT is not given, it is set to the count of available " "processors.\n" " --no-isolate\n" " Don't use isolation mode, run all tests in a single process.\n" " --deadline=[TIME_IN_MS]\n" " Run each test in no longer than [TIME_IN_MS] time.\n" " It takes effect only in isolation mode. Deafult deadline is 90000 " "ms.\n" " --warnline=[TIME_IN_MS]\n" " Test running longer than [TIME_IN_MS] will be warned.\n" " It takes effect only in isolation mode. Default warnline is 2000 " "ms.\n" " --gtest-filter=POSITIVE_PATTERNS[-NEGATIVE_PATTERNS]\n" " Used as a synonym for --gtest_filter option in gtest.\n" "Default vts unit test option is -j.\n" "In isolation mode, you can send SIGQUIT to the parent process to show " "current\n" "running tests, or send SIGINT to the parent process to stop testing " "and\n" "clean up current running tests.\n" "\n"); } enum TestResult { TEST_SUCCESS = 0, TEST_FAILED, TEST_TIMEOUT }; class Test { public: Test() {} // For std::vector. explicit Test(const char* name) : name_(name) {} const std::string& GetName() const { return name_; } void SetResult(TestResult result) { result_ = result; } TestResult GetResult() const { return result_; } void SetTestTime(int64_t elapsed_time_ns) { elapsed_time_ns_ = elapsed_time_ns; } int64_t GetTestTime() const { return elapsed_time_ns_; } void AppendTestOutput(const std::string& s) { output_ += s; } const std::string& GetTestOutput() const { return output_; } private: const std::string name_; TestResult result_; int64_t elapsed_time_ns_; std::string output_; }; class TestCase { public: TestCase() {} // For std::vector. explicit TestCase(const char* name) : name_(name) {} const std::string& GetName() const { return name_; } void AppendTest(const char* test_name) { test_list_.push_back(Test(test_name)); } size_t TestCount() const { return test_list_.size(); } std::string GetTestName(size_t test_id) const { VerifyTestId(test_id); return name_ + "." + test_list_[test_id].GetName(); } Test& GetTest(size_t test_id) { VerifyTestId(test_id); return test_list_[test_id]; } const Test& GetTest(size_t test_id) const { VerifyTestId(test_id); return test_list_[test_id]; } void SetTestResult(size_t test_id, TestResult result) { VerifyTestId(test_id); test_list_[test_id].SetResult(result); } TestResult GetTestResult(size_t test_id) const { VerifyTestId(test_id); return test_list_[test_id].GetResult(); } void SetTestTime(size_t test_id, int64_t elapsed_time_ns) { VerifyTestId(test_id); test_list_[test_id].SetTestTime(elapsed_time_ns); } int64_t GetTestTime(size_t test_id) const { VerifyTestId(test_id); return test_list_[test_id].GetTestTime(); } private: void VerifyTestId(size_t test_id) const { if (test_id >= test_list_.size()) { fprintf(stderr, "test_id %zu out of range [0, %zu)\n", test_id, test_list_.size()); exit(1); } } private: const std::string name_; std::vector test_list_; }; class TestResultPrinter : public testing::EmptyTestEventListener { public: TestResultPrinter() : pinfo_(NULL) {} virtual void OnTestStart(const testing::TestInfo& test_info) { pinfo_ = &test_info; // Record test_info for use in OnTestPartResult. } virtual void OnTestPartResult(const testing::TestPartResult& result); private: const testing::TestInfo* pinfo_; }; // Called after an assertion failure. void TestResultPrinter::OnTestPartResult( const testing::TestPartResult& result) { // If the test part succeeded, we don't need to do anything. if (result.type() == testing::TestPartResult::kSuccess) return; // Print failure message from the assertion (e.g. expected this and got that). printf("%s:(%d) Failure in test %s.%s\n%s\n", result.file_name(), result.line_number(), pinfo_->test_case_name(), pinfo_->name(), result.message()); fflush(stdout); } static int64_t NanoTime() { std::chrono::nanoseconds duration( std::chrono::steady_clock::now().time_since_epoch()); return static_cast(duration.count()); } static bool EnumerateTests(int argc, char** argv, std::vector& testcase_list) { std::string command; for (int i = 0; i < argc; ++i) { command += argv[i]; command += " "; } command += "--gtest_list_tests"; FILE* fp = popen(command.c_str(), "r"); if (fp == NULL) { perror("popen"); return false; } char buf[200]; while (fgets(buf, sizeof(buf), fp) != NULL) { char* p = buf; while (*p != '\0' && isspace(*p)) { ++p; } if (*p == '\0') continue; char* start = p; while (*p != '\0' && !isspace(*p)) { ++p; } char* end = p; while (*p != '\0' && isspace(*p)) { ++p; } if (*p != '\0' && *p != '#') { // This is not we want, gtest must meet with some error when parsing the // arguments. fprintf(stderr, "argument error, check with --help\n"); return false; } *end = '\0'; if (*(end - 1) == '.') { *(end - 1) = '\0'; testcase_list.push_back(TestCase(start)); } else { testcase_list.back().AppendTest(start); } } int result = pclose(fp); return (result != -1 && WEXITSTATUS(result) == 0); } // Part of the following *Print functions are copied from // external/gtest/src/gtest.cc: // PrettyUnitTestResultPrinter. The reason for copy is that // PrettyUnitTestResultPrinter // is defined and used in gtest.cc, which is hard to reuse. static void OnTestIterationStartPrint( const std::vector& testcase_list, size_t iteration, int iteration_count) { if (iteration_count != 1) { printf("\nRepeating all tests (iteration %zu) . . .\n\n", iteration); } ColoredPrintf(COLOR_GREEN, "[==========] "); size_t testcase_count = testcase_list.size(); size_t test_count = 0; for (const auto& testcase : testcase_list) { test_count += testcase.TestCount(); } printf("Running %zu %s from %zu %s.\n", test_count, (test_count == 1) ? "test" : "tests", testcase_count, (testcase_count == 1) ? "test case" : "test cases"); fflush(stdout); } // vts cts test needs gtest output format. static void OnTestEndPrint(const TestCase& testcase, size_t test_id) { ColoredPrintf(COLOR_GREEN, "[ RUN ] "); printf("%s\n", testcase.GetTestName(test_id).c_str()); const std::string& test_output = testcase.GetTest(test_id).GetTestOutput(); printf("%s", test_output.c_str()); TestResult result = testcase.GetTestResult(test_id); if (result == TEST_SUCCESS) { ColoredPrintf(COLOR_GREEN, "[ OK ] "); } else { ColoredPrintf(COLOR_RED, "[ FAILED ] "); } printf("%s", testcase.GetTestName(test_id).c_str()); if (testing::GTEST_FLAG(print_time)) { printf(" (%" PRId64 " ms)", testcase.GetTestTime(test_id) / 1000000); } printf("\n"); fflush(stdout); } static void OnTestIterationEndPrint(const std::vector& testcase_list, size_t /*iteration*/, int64_t elapsed_time_ns) { std::vector fail_test_name_list; std::vector> timeout_test_list; // For tests run exceed warnline but not timeout. std::vector> slow_test_list; size_t testcase_count = testcase_list.size(); size_t test_count = 0; size_t success_test_count = 0; for (const auto& testcase : testcase_list) { test_count += testcase.TestCount(); for (size_t i = 0; i < testcase.TestCount(); ++i) { TestResult result = testcase.GetTestResult(i); if (result == TEST_SUCCESS) { ++success_test_count; } else if (result == TEST_FAILED) { fail_test_name_list.push_back(testcase.GetTestName(i)); } else if (result == TEST_TIMEOUT) { timeout_test_list.push_back( std::make_pair(testcase.GetTestName(i), testcase.GetTestTime(i))); } if (result != TEST_TIMEOUT && testcase.GetTestTime(i) / 1000000 >= GetWarnlineInfo(testcase.GetTestName(i))) { slow_test_list.push_back( std::make_tuple(testcase.GetTestName(i), testcase.GetTestTime(i), GetWarnlineInfo(testcase.GetTestName(i)))); } } } ColoredPrintf(COLOR_GREEN, "[==========] "); printf("%zu %s from %zu %s ran.", test_count, (test_count == 1) ? "test" : "tests", testcase_count, (testcase_count == 1) ? "test case" : "test cases"); if (testing::GTEST_FLAG(print_time)) { printf(" (%" PRId64 " ms total)", elapsed_time_ns / 1000000); } printf("\n"); ColoredPrintf(COLOR_GREEN, "[ PASS ] "); printf("%zu %s.\n", success_test_count, (success_test_count == 1) ? "test" : "tests"); // Print tests failed. size_t fail_test_count = fail_test_name_list.size(); if (fail_test_count > 0) { ColoredPrintf(COLOR_RED, "[ FAIL ] "); printf("%zu %s, listed below:\n", fail_test_count, (fail_test_count == 1) ? "test" : "tests"); for (const auto& name : fail_test_name_list) { ColoredPrintf(COLOR_RED, "[ FAIL ] "); printf("%s\n", name.c_str()); } } // Print tests run timeout. size_t timeout_test_count = timeout_test_list.size(); if (timeout_test_count > 0) { ColoredPrintf(COLOR_RED, "[ TIMEOUT ] "); printf("%zu %s, listed below:\n", timeout_test_count, (timeout_test_count == 1) ? "test" : "tests"); for (const auto& timeout_pair : timeout_test_list) { ColoredPrintf(COLOR_RED, "[ TIMEOUT ] "); printf("%s (stopped at %" PRId64 " ms)\n", timeout_pair.first.c_str(), timeout_pair.second / 1000000); } } // Print tests run exceed warnline. size_t slow_test_count = slow_test_list.size(); if (slow_test_count > 0) { ColoredPrintf(COLOR_YELLOW, "[ SLOW ] "); printf("%zu %s, listed below:\n", slow_test_count, (slow_test_count == 1) ? "test" : "tests"); for (const auto& slow_tuple : slow_test_list) { ColoredPrintf(COLOR_YELLOW, "[ SLOW ] "); printf("%s (%" PRId64 " ms, exceed warnline %d ms)\n", std::get<0>(slow_tuple).c_str(), std::get<1>(slow_tuple) / 1000000, std::get<2>(slow_tuple)); } } if (fail_test_count > 0) { printf("\n%2zu FAILED %s\n", fail_test_count, (fail_test_count == 1) ? "TEST" : "TESTS"); } if (timeout_test_count > 0) { printf("%2zu TIMEOUT %s\n", timeout_test_count, (timeout_test_count == 1) ? "TEST" : "TESTS"); } if (slow_test_count > 0) { printf("%2zu SLOW %s\n", slow_test_count, (slow_test_count == 1) ? "TEST" : "TESTS"); } fflush(stdout); } std::string XmlEscape(const std::string& xml) { std::string escaped; escaped.reserve(xml.size()); for (auto c : xml) { switch (c) { case '<': escaped.append("<"); break; case '>': escaped.append(">"); break; case '&': escaped.append("&"); break; case '\'': escaped.append("'"); break; case '"': escaped.append("""); break; default: escaped.append(1, c); break; } } return escaped; } // Output xml file when --gtest_output is used, write this function as we can't // reuse // gtest.cc:XmlUnitTestResultPrinter. The reason is XmlUnitTestResultPrinter is // totally // defined in gtest.cc and not expose to outside. What's more, as we don't run // gtest in // the parent process, we don't have gtest classes which are needed by // XmlUnitTestResultPrinter. void OnTestIterationEndXmlPrint(const std::string& xml_output_filename, const std::vector& testcase_list, time_t epoch_iteration_start_time, int64_t elapsed_time_ns) { FILE* fp = fopen(xml_output_filename.c_str(), "w"); if (fp == NULL) { fprintf(stderr, "failed to open '%s': %s\n", xml_output_filename.c_str(), strerror(errno)); exit(1); } size_t total_test_count = 0; size_t total_failed_count = 0; std::vector failed_count_list(testcase_list.size(), 0); std::vector elapsed_time_list(testcase_list.size(), 0); for (size_t i = 0; i < testcase_list.size(); ++i) { auto& testcase = testcase_list[i]; total_test_count += testcase.TestCount(); for (size_t j = 0; j < testcase.TestCount(); ++j) { if (testcase.GetTestResult(j) != TEST_SUCCESS) { ++failed_count_list[i]; } elapsed_time_list[i] += testcase.GetTestTime(j); } total_failed_count += failed_count_list[i]; } const tm* time_struct = localtime(&epoch_iteration_start_time); char timestamp[40]; snprintf(timestamp, sizeof(timestamp), "%4d-%02d-%02dT%02d:%02d:%02d", time_struct->tm_year + 1900, time_struct->tm_mon + 1, time_struct->tm_mday, time_struct->tm_hour, time_struct->tm_min, time_struct->tm_sec); fputs("\n", fp); fprintf( fp, "\n", timestamp, elapsed_time_ns / 1e9); for (size_t i = 0; i < testcase_list.size(); ++i) { auto& testcase = testcase_list[i]; fprintf(fp, " \n", elapsed_time_list[i] / 1e9); for (size_t j = 0; j < testcase.TestCount(); ++j) { fprintf(fp, " \n", fp); } else { fputs(">\n", fp); const std::string& test_output = testcase.GetTest(j).GetTestOutput(); const std::string escaped_test_output = XmlEscape(test_output); fprintf(fp, " \n", escaped_test_output.c_str()); fputs(" \n", fp); fputs(" \n", fp); } } fputs(" \n", fp); } fputs("\n", fp); fclose(fp); } static bool sigint_flag; static bool sigquit_flag; static void signal_handler(int sig) { if (sig == SIGINT) { sigint_flag = true; } else if (sig == SIGQUIT) { sigquit_flag = true; } } static bool RegisterSignalHandler() { sigint_flag = false; sigquit_flag = false; sig_t ret = signal(SIGINT, signal_handler); if (ret != SIG_ERR) { ret = signal(SIGQUIT, signal_handler); } if (ret == SIG_ERR) { perror("RegisterSignalHandler"); return false; } return true; } static bool UnregisterSignalHandler() { sig_t ret = signal(SIGINT, SIG_DFL); if (ret != SIG_ERR) { ret = signal(SIGQUIT, SIG_DFL); } if (ret == SIG_ERR) { perror("UnregisterSignalHandler"); return false; } return true; } struct ChildProcInfo { pid_t pid; int64_t start_time_ns; int64_t end_time_ns; int64_t deadline_end_time_ns; // The time when the test is thought of as timeout. size_t testcase_id, test_id; bool finished; bool timed_out; int exit_status; int child_read_fd; // File descriptor to read child test failure info. }; // Forked Child process, run the single test. static void ChildProcessFn(int argc, char** argv, const std::string& test_name) { char** new_argv = new char*[argc + 2]; memcpy(new_argv, argv, sizeof(char*) * argc); char* filter_arg = new char[test_name.size() + 20]; strcpy(filter_arg, "--gtest_filter="); strcat(filter_arg, test_name.c_str()); new_argv[argc] = filter_arg; new_argv[argc + 1] = NULL; int new_argc = argc + 1; testing::InitGoogleTest(&new_argc, new_argv); int result = RUN_ALL_TESTS(); exit(result); } static ChildProcInfo RunChildProcess(const std::string& test_name, int testcase_id, int test_id, int argc, char** argv) { int pipefd[2]; if (pipe(pipefd) == -1) { perror("pipe in RunTestInSeparateProc"); exit(1); } if (fcntl(pipefd[0], F_SETFL, O_NONBLOCK) == -1) { perror("fcntl in RunTestInSeparateProc"); exit(1); } pid_t pid = fork(); if (pid == -1) { perror("fork in RunTestInSeparateProc"); exit(1); } else if (pid == 0) { // In child process, run a single test. close(pipefd[0]); close(STDOUT_FILENO); close(STDERR_FILENO); dup2(pipefd[1], STDOUT_FILENO); dup2(pipefd[1], STDERR_FILENO); if (!UnregisterSignalHandler()) { exit(1); } ChildProcessFn(argc, argv, test_name); // Unreachable. } // In parent process, initialize child process info. close(pipefd[1]); ChildProcInfo child_proc; child_proc.child_read_fd = pipefd[0]; child_proc.pid = pid; child_proc.start_time_ns = NanoTime(); child_proc.deadline_end_time_ns = child_proc.start_time_ns + GetDeadlineInfo(test_name) * 1000000LL; child_proc.testcase_id = testcase_id; child_proc.test_id = test_id; child_proc.finished = false; return child_proc; } static void HandleSignals(std::vector& testcase_list, std::vector& child_proc_list) { if (sigquit_flag) { sigquit_flag = false; // Print current running tests. printf("List of current running tests:\n"); for (const auto& child_proc : child_proc_list) { if (child_proc.pid != 0) { std::string test_name = testcase_list[child_proc.testcase_id].GetTestName( child_proc.test_id); int64_t current_time_ns = NanoTime(); int64_t run_time_ms = (current_time_ns - child_proc.start_time_ns) / 1000000; printf(" %s (%" PRId64 " ms)\n", test_name.c_str(), run_time_ms); } } } else if (sigint_flag) { sigint_flag = false; // Kill current running tests. for (const auto& child_proc : child_proc_list) { if (child_proc.pid != 0) { // Send SIGKILL to ensure the child process can be killed // unconditionally. kill(child_proc.pid, SIGKILL); } } // SIGINT kills the parent process as well. exit(1); } } static bool CheckChildProcExit(pid_t exit_pid, int exit_status, std::vector& child_proc_list) { for (size_t i = 0; i < child_proc_list.size(); ++i) { if (child_proc_list[i].pid == exit_pid) { child_proc_list[i].finished = true; child_proc_list[i].timed_out = false; child_proc_list[i].exit_status = exit_status; child_proc_list[i].end_time_ns = NanoTime(); return true; } } return false; } static size_t CheckChildProcTimeout( std::vector& child_proc_list) { int64_t current_time_ns = NanoTime(); size_t timeout_child_count = 0; for (size_t i = 0; i < child_proc_list.size(); ++i) { if (child_proc_list[i].deadline_end_time_ns <= current_time_ns) { child_proc_list[i].finished = true; child_proc_list[i].timed_out = true; child_proc_list[i].end_time_ns = current_time_ns; ++timeout_child_count; } } return timeout_child_count; } static void ReadChildProcOutput(std::vector& testcase_list, std::vector& child_proc_list) { for (const auto& child_proc : child_proc_list) { TestCase& testcase = testcase_list[child_proc.testcase_id]; int test_id = child_proc.test_id; while (true) { char buf[1024]; ssize_t bytes_read = TEMP_FAILURE_RETRY( read(child_proc.child_read_fd, buf, sizeof(buf) - 1)); if (bytes_read > 0) { buf[bytes_read] = '\0'; testcase.GetTest(test_id).AppendTestOutput(buf); } else if (bytes_read == 0) { break; // Read end. } else { if (errno == EAGAIN) { break; } perror("failed to read child_read_fd"); exit(1); } } } } static void WaitChildProcs(std::vector& testcase_list, std::vector& child_proc_list) { size_t finished_child_count = 0; while (true) { int status; pid_t result; while ((result = TEMP_FAILURE_RETRY(waitpid(-1, &status, WNOHANG))) > 0) { if (CheckChildProcExit(result, status, child_proc_list)) { ++finished_child_count; } } if (result == -1) { if (errno == ECHILD) { // This happens when we have no running child processes. return; } else { perror("waitpid"); exit(1); } } else if (result == 0) { finished_child_count += CheckChildProcTimeout(child_proc_list); } ReadChildProcOutput(testcase_list, child_proc_list); if (finished_child_count > 0) { return; } HandleSignals(testcase_list, child_proc_list); // sleep 1 ms to avoid busy looping. timespec sleep_time; sleep_time.tv_sec = 0; sleep_time.tv_nsec = 1000000; nanosleep(&sleep_time, NULL); } } static TestResult WaitForOneChild(pid_t pid) { int exit_status; pid_t result = TEMP_FAILURE_RETRY(waitpid(pid, &exit_status, 0)); TestResult test_result = TEST_SUCCESS; if (result != pid || WEXITSTATUS(exit_status) != 0) { test_result = TEST_FAILED; } return test_result; } static void CollectChildTestResult(const ChildProcInfo& child_proc, TestCase& testcase) { int test_id = child_proc.test_id; testcase.SetTestTime(test_id, child_proc.end_time_ns - child_proc.start_time_ns); if (child_proc.timed_out) { // The child process marked as timed_out has not exited, and we should kill // it manually. kill(child_proc.pid, SIGKILL); WaitForOneChild(child_proc.pid); } close(child_proc.child_read_fd); if (child_proc.timed_out) { testcase.SetTestResult(test_id, TEST_TIMEOUT); char buf[1024]; snprintf(buf, sizeof(buf), "%s killed because of timeout at %" PRId64 " ms.\n", testcase.GetTestName(test_id).c_str(), testcase.GetTestTime(test_id) / 1000000); testcase.GetTest(test_id).AppendTestOutput(buf); } else if (WIFSIGNALED(child_proc.exit_status)) { // Record signal terminated test as failed. testcase.SetTestResult(test_id, TEST_FAILED); char buf[1024]; snprintf(buf, sizeof(buf), "%s terminated by signal: %s.\n", testcase.GetTestName(test_id).c_str(), strsignal(WTERMSIG(child_proc.exit_status))); testcase.GetTest(test_id).AppendTestOutput(buf); } else { int exitcode = WEXITSTATUS(child_proc.exit_status); testcase.SetTestResult(test_id, exitcode == 0 ? TEST_SUCCESS : TEST_FAILED); if (exitcode != 0) { char buf[1024]; snprintf(buf, sizeof(buf), "%s exited with exitcode %d.\n", testcase.GetTestName(test_id).c_str(), exitcode); testcase.GetTest(test_id).AppendTestOutput(buf); } } } // We choose to use multi-fork and multi-wait here instead of multi-thread, // because it always // makes deadlock to use fork in multi-thread. // Returns true if all tests run successfully, otherwise return false. static bool RunTestInSeparateProc(int argc, char** argv, std::vector& testcase_list, int iteration_count, size_t job_count, const std::string& xml_output_filename) { // Stop default result printer to avoid environment setup/teardown information // for each test. testing::UnitTest::GetInstance()->listeners().Release( testing::UnitTest::GetInstance()->listeners().default_result_printer()); testing::UnitTest::GetInstance()->listeners().Append(new TestResultPrinter); if (!RegisterSignalHandler()) { exit(1); } bool all_tests_passed = true; for (size_t iteration = 1; iteration_count < 0 || iteration <= static_cast(iteration_count); ++iteration) { OnTestIterationStartPrint(testcase_list, iteration, iteration_count); int64_t iteration_start_time_ns = NanoTime(); time_t epoch_iteration_start_time = time(NULL); // Run up to job_count tests in parallel, each test in a child process. std::vector child_proc_list; // Next test to run is [next_testcase_id:next_test_id]. size_t next_testcase_id = 0; size_t next_test_id = 0; // Record how many tests are finished. std::vector finished_test_count_list(testcase_list.size(), 0); size_t finished_testcase_count = 0; while (finished_testcase_count < testcase_list.size()) { // run up to job_count child processes. while (child_proc_list.size() < job_count && next_testcase_id < testcase_list.size()) { std::string test_name = testcase_list[next_testcase_id].GetTestName(next_test_id); ChildProcInfo child_proc = RunChildProcess(test_name, next_testcase_id, next_test_id, argc, argv); child_proc_list.push_back(child_proc); if (++next_test_id == testcase_list[next_testcase_id].TestCount()) { next_test_id = 0; ++next_testcase_id; } } // Wait for any child proc finish or timeout. WaitChildProcs(testcase_list, child_proc_list); // Collect result. auto it = child_proc_list.begin(); while (it != child_proc_list.end()) { auto& child_proc = *it; if (child_proc.finished == true) { size_t testcase_id = child_proc.testcase_id; size_t test_id = child_proc.test_id; TestCase& testcase = testcase_list[testcase_id]; CollectChildTestResult(child_proc, testcase); OnTestEndPrint(testcase, test_id); if (++finished_test_count_list[testcase_id] == testcase.TestCount()) { ++finished_testcase_count; } if (testcase.GetTestResult(test_id) != TEST_SUCCESS) { all_tests_passed = false; } it = child_proc_list.erase(it); } else { ++it; } } } int64_t elapsed_time_ns = NanoTime() - iteration_start_time_ns; OnTestIterationEndPrint(testcase_list, iteration, elapsed_time_ns); if (!xml_output_filename.empty()) { OnTestIterationEndXmlPrint(xml_output_filename, testcase_list, epoch_iteration_start_time, elapsed_time_ns); } } if (!UnregisterSignalHandler()) { exit(1); } return all_tests_passed; } static size_t GetDefaultJobCount() { return static_cast(sysconf(_SC_NPROCESSORS_ONLN)); } static void AddPathSeparatorInTestProgramPath(std::vector& args) { // To run DeathTest in threadsafe mode, gtest requires that the user must // invoke the // test program via a valid path that contains at least one path separator. // The reason is that gtest uses clone() + execve() to run DeathTest in // threadsafe mode, // and execve() doesn't read environment variable PATH, so execve() will not // success // until we specify the absolute path or relative path of the test program // directly. if (strchr(args[0], '/') == NULL) { char path[PATH_MAX]; ssize_t path_len = readlink("/proc/self/exe", path, sizeof(path)); if (path_len <= 0 || path_len >= static_cast(sizeof(path))) { perror("readlink"); exit(1); } path[path_len] = '\0'; args[0] = strdup(path); } } static void AddGtestFilterSynonym(std::vector& args) { // Support --gtest-filter as a synonym for --gtest_filter. for (size_t i = 1; i < args.size(); ++i) { if (strncmp(args[i], "--gtest-filter", strlen("--gtest-filter")) == 0) { args[i][7] = '_'; } } } struct IsolationTestOptions { bool isolate; size_t job_count; int test_deadline_ms; int test_warnline_ms; std::string gtest_color; bool gtest_print_time; int gtest_repeat; std::string gtest_output; }; // Pick options not for gtest: There are two parts in args, one part is used in // isolation test mode // as described in PrintHelpInfo(), the other part is handled by // testing::InitGoogleTest() in // gtest. PickOptions() picks the first part into IsolationTestOptions // structure, leaving the second // part in args. // Arguments: // args is used to pass in all command arguments, and pass out only the part // of options for gtest. // options is used to pass out test options in isolation mode. // Return false if there is error in arguments. static bool PickOptions(std::vector& args, IsolationTestOptions& options) { for (size_t i = 1; i < args.size(); ++i) { if (strcmp(args[i], "--help") == 0 || strcmp(args[i], "-h") == 0) { PrintHelpInfo(); options.isolate = false; return true; } } AddPathSeparatorInTestProgramPath(args); AddGtestFilterSynonym(args); // if --vts-selftest argument is used, only enable self tests, otherwise // remove self tests. bool enable_selftest = false; for (size_t i = 1; i < args.size(); ++i) { if (strcmp(args[i], "--vts-selftest") == 0) { // This argument is to enable "vts_selftest*" for self test, and is not // shown in help info. // Don't remove this option from arguments. enable_selftest = true; } } std::string gtest_filter_str; for (size_t i = args.size() - 1; i >= 1; --i) { if (strncmp(args[i], "--gtest_filter=", strlen("--gtest_filter=")) == 0) { gtest_filter_str = std::string(args[i]); args.erase(args.begin() + i); break; } } if (enable_selftest == true) { args.push_back(strdup("--gtest_filter=vts_selftest*")); } else { if (gtest_filter_str == "") { gtest_filter_str = "--gtest_filter=-vts_selftest*"; } else { // Find if '-' for NEGATIVE_PATTERNS exists. if (gtest_filter_str.find(":-") != std::string::npos) { gtest_filter_str += ":vts_selftest*"; } else { gtest_filter_str += ":-vts_selftest*"; } } args.push_back(strdup(gtest_filter_str.c_str())); } options.isolate = true; // Parse arguments that make us can't run in isolation mode. for (size_t i = 1; i < args.size(); ++i) { if (strcmp(args[i], "--no-isolate") == 0) { options.isolate = false; } else if (strcmp(args[i], "--gtest_list_tests") == 0) { options.isolate = false; } } // Stop parsing if we will not run in isolation mode. if (options.isolate == false) { return true; } // Init default isolation test options. options.job_count = GetDefaultJobCount(); options.test_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS; options.test_warnline_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS; options.gtest_color = testing::GTEST_FLAG(color); options.gtest_print_time = testing::GTEST_FLAG(print_time); options.gtest_repeat = testing::GTEST_FLAG(repeat); options.gtest_output = testing::GTEST_FLAG(output); // Parse arguments speficied for isolation mode. for (size_t i = 1; i < args.size(); ++i) { if (strncmp(args[i], "-j", strlen("-j")) == 0) { char* p = args[i] + strlen("-j"); int count = 0; if (*p != '\0') { // Argument like -j5. count = atoi(p); } else if (args.size() > i + 1) { // Arguments like -j 5. count = atoi(args[i + 1]); ++i; } if (count <= 0) { fprintf(stderr, "invalid job count: %d\n", count); return false; } options.job_count = static_cast(count); } else if (strncmp(args[i], "--deadline=", strlen("--deadline=")) == 0) { int time_ms = atoi(args[i] + strlen("--deadline=")); if (time_ms <= 0) { fprintf(stderr, "invalid deadline: %d\n", time_ms); return false; } options.test_deadline_ms = time_ms; } else if (strncmp(args[i], "--warnline=", strlen("--warnline=")) == 0) { int time_ms = atoi(args[i] + strlen("--warnline=")); if (time_ms <= 0) { fprintf(stderr, "invalid warnline: %d\n", time_ms); return false; } options.test_warnline_ms = time_ms; } else if (strncmp(args[i], "--gtest_color=", strlen("--gtest_color=")) == 0) { options.gtest_color = args[i] + strlen("--gtest_color="); } else if (strcmp(args[i], "--gtest_print_time=0") == 0) { options.gtest_print_time = false; } else if (strncmp(args[i], "--gtest_repeat=", strlen("--gtest_repeat=")) == 0) { // If the value of gtest_repeat is < 0, then it indicates the tests // should be repeated forever. options.gtest_repeat = atoi(args[i] + strlen("--gtest_repeat=")); // Remove --gtest_repeat=xx from arguments, so child process only run one // iteration for a single test. args.erase(args.begin() + i); --i; } else if (strncmp(args[i], "--gtest_output=", strlen("--gtest_output=")) == 0) { std::string output = args[i] + strlen("--gtest_output="); // generate output xml file path according to the strategy in gtest. bool success = true; if (strncmp(output.c_str(), "xml:", strlen("xml:")) == 0) { output = output.substr(strlen("xml:")); if (output.size() == 0) { success = false; } // Make absolute path. if (success && output[0] != '/') { char* cwd = getcwd(NULL, 0); if (cwd != NULL) { output = std::string(cwd) + "/" + output; free(cwd); } else { success = false; } } // Add file name if output is a directory. if (success && output.back() == '/') { output += "test_details.xml"; } } if (success) { options.gtest_output = output; } else { fprintf(stderr, "invalid gtest_output file: %s\n", args[i]); return false; } // Remove --gtest_output=xxx from arguments, so child process will not // write xml file. args.erase(args.begin() + i); --i; } } // Add --no-isolate in args to prevent child process from running in isolation // mode again. // As DeathTest will try to call execve(), this argument should always be // added. args.insert(args.begin() + 1, strdup("--no-isolate")); return true; } int main(int argc, char** argv) { std::vector arg_list; for (int i = 0; i < argc; ++i) { arg_list.push_back(argv[i]); } IsolationTestOptions options; if (PickOptions(arg_list, options) == false) { return 1; } if (options.isolate == true) { // Set global variables. global_test_run_deadline_ms = options.test_deadline_ms; global_test_run_warnline_ms = options.test_warnline_ms; testing::GTEST_FLAG(color) = options.gtest_color.c_str(); testing::GTEST_FLAG(print_time) = options.gtest_print_time; std::vector testcase_list; argc = static_cast(arg_list.size()); arg_list.push_back(NULL); if (EnumerateTests(argc, arg_list.data(), testcase_list) == false) { return 1; } bool all_test_passed = RunTestInSeparateProc( argc, arg_list.data(), testcase_list, options.gtest_repeat, options.job_count, options.gtest_output); return all_test_passed ? 0 : 1; } else { argc = static_cast(arg_list.size()); arg_list.push_back(NULL); testing::InitGoogleTest(&argc, arg_list.data()); return RUN_ALL_TESTS(); } } //################################################################################ // VTS Gtest self test, run this by --vts-selftest option. TEST(vts_selftest, test_success) { ASSERT_EQ(1, 1); } TEST(vts_selftest, test_fail) { ASSERT_EQ(0, 1); } TEST(vts_selftest, test_time_warn) { sleep(4); } TEST(vts_selftest, test_timeout) { while (1) { } } TEST(vts_selftest, test_signal_SEGV_terminated) { char* p = reinterpret_cast(static_cast(atoi("0"))); *p = 3; } class vts_selftest_DeathTest : public ::testing::Test { protected: virtual void SetUp() { ::testing::FLAGS_gtest_death_test_style = "threadsafe"; } }; static void deathtest_helper_success() { ASSERT_EQ(1, 1); exit(0); } TEST_F(vts_selftest_DeathTest, success) { ASSERT_EXIT(deathtest_helper_success(), ::testing::ExitedWithCode(0), ""); } static void deathtest_helper_fail() { ASSERT_EQ(1, 0); } TEST_F(vts_selftest_DeathTest, fail) { ASSERT_EXIT(deathtest_helper_fail(), ::testing::ExitedWithCode(0), ""); }