1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 /* Capstone Disassembly Engine */
15 /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */
16 
17 #ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
18 #define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
19 
20 #include "capstone/platform.h"
21 #include "../../MathExtras.h"
22 
23 /// ARM_AM - ARM Addressing Mode Stuff
24 typedef enum ARM_AM_ShiftOpc {
25 	ARM_AM_no_shift = 0,
26 	ARM_AM_asr,
27 	ARM_AM_lsl,
28 	ARM_AM_lsr,
29 	ARM_AM_ror,
30 	ARM_AM_rrx
31 } ARM_AM_ShiftOpc;
32 
33 typedef enum ARM_AM_AddrOpc {
34 	ARM_AM_sub = 0,
35 	ARM_AM_add
36 } ARM_AM_AddrOpc;
37 
ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)38 static inline const char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)
39 {
40 	return Op == ARM_AM_sub ? "-" : "";
41 }
42 
ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)43 static inline const char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)
44 {
45 	switch (Op) {
46 		default: return "";	//llvm_unreachable("Unknown shift opc!");
47 		case ARM_AM_asr: return "asr";
48 		case ARM_AM_lsl: return "lsl";
49 		case ARM_AM_lsr: return "lsr";
50 		case ARM_AM_ror: return "ror";
51 		case ARM_AM_rrx: return "rrx";
52 	}
53 }
54 
ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)55 static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)
56 {
57 	switch (Op) {
58 		default: return (unsigned int)-1;	//llvm_unreachable("Unknown shift opc!");
59 		case ARM_AM_asr: return 2;
60 		case ARM_AM_lsl: return 0;
61 		case ARM_AM_lsr: return 1;
62 		case ARM_AM_ror: return 3;
63 	}
64 }
65 
66 typedef enum ARM_AM_AMSubMode {
67 	ARM_AM_bad_am_submode = 0,
68 	ARM_AM_ia,
69 	ARM_AM_ib,
70 	ARM_AM_da,
71 	ARM_AM_db
72 } ARM_AM_AMSubMode;
73 
ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)74 static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)
75 {
76 	switch (Mode) {
77 		default: return "";
78 		case ARM_AM_ia: return "ia";
79 		case ARM_AM_ib: return "ib";
80 		case ARM_AM_da: return "da";
81 		case ARM_AM_db: return "db";
82 	}
83 }
84 
85 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
86 ///
rotr32(unsigned Val,unsigned Amt)87 static inline unsigned rotr32(unsigned Val, unsigned Amt)
88 {
89 	//assert(Amt < 32 && "Invalid rotate amount");
90 	return (Val >> Amt) | (Val << ((32-Amt)&31));
91 }
92 
93 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
94 ///
rotl32(unsigned Val,unsigned Amt)95 static inline unsigned rotl32(unsigned Val, unsigned Amt)
96 {
97 	//assert(Amt < 32 && "Invalid rotate amount");
98 	return (Val << Amt) | (Val >> ((32-Amt)&31));
99 }
100 
101 //===--------------------------------------------------------------------===//
102 // Addressing Mode #1: shift_operand with registers
103 //===--------------------------------------------------------------------===//
104 //
105 // This 'addressing mode' is used for arithmetic instructions.  It can
106 // represent things like:
107 //   reg
108 //   reg [asr|lsl|lsr|ror|rrx] reg
109 //   reg [asr|lsl|lsr|ror|rrx] imm
110 //
111 // This is stored three operands [rega, regb, opc].  The first is the base
112 // reg, the second is the shift amount (or reg0 if not present or imm).  The
113 // third operand encodes the shift opcode and the imm if a reg isn't present.
114 //
getSORegOpc(ARM_AM_ShiftOpc ShOp,unsigned Imm)115 static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm)
116 {
117 	return ShOp | (Imm << 3);
118 }
119 
getSORegOffset(unsigned Op)120 static inline unsigned getSORegOffset(unsigned Op)
121 {
122 	return Op >> 3;
123 }
124 
ARM_AM_getSORegShOp(unsigned Op)125 static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op)
126 {
127 	return (ARM_AM_ShiftOpc)(Op & 7);
128 }
129 
130 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
131 /// the 8-bit imm value.
getSOImmValImm(unsigned Imm)132 static inline unsigned getSOImmValImm(unsigned Imm)
133 {
134 	return Imm & 0xFF;
135 }
136 
137 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
138 /// the rotate amount.
getSOImmValRot(unsigned Imm)139 static inline unsigned getSOImmValRot(unsigned Imm)
140 {
141 	return (Imm >> 8) * 2;
142 }
143 
144 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
145 /// computing the rotate amount to use.  If this immediate value cannot be
146 /// handled with a single shifter-op, determine a good rotate amount that will
147 /// take a maximal chunk of bits out of the immediate.
getSOImmValRotate(unsigned Imm)148 static inline unsigned getSOImmValRotate(unsigned Imm)
149 {
150 	unsigned TZ, RotAmt;
151 	// 8-bit (or less) immediates are trivially shifter_operands with a rotate
152 	// of zero.
153 	if ((Imm & ~255U) == 0) return 0;
154 
155 	// Use CTZ to compute the rotate amount.
156 	TZ = CountTrailingZeros_32(Imm);
157 
158 	// Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
159 	// not 9.
160 	RotAmt = TZ & ~1;
161 
162 	// If we can handle this spread, return it.
163 	if ((rotr32(Imm, RotAmt) & ~255U) == 0)
164 		return (32-RotAmt)&31;  // HW rotates right, not left.
165 
166 	// For values like 0xF000000F, we should ignore the low 6 bits, then
167 	// retry the hunt.
168 	if (Imm & 63U) {
169 		unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
170 		unsigned RotAmt2 = TZ2 & ~1;
171 		if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
172 			return (32-RotAmt2)&31;  // HW rotates right, not left.
173 	}
174 
175 	// Otherwise, we have no way to cover this span of bits with a single
176 	// shifter_op immediate.  Return a chunk of bits that will be useful to
177 	// handle.
178 	return (32-RotAmt)&31;  // HW rotates right, not left.
179 }
180 
181 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
182 /// into an shifter_operand immediate operand, return the 12-bit encoding for
183 /// it.  If not, return -1.
getSOImmVal(unsigned Arg)184 static inline int getSOImmVal(unsigned Arg)
185 {
186 	unsigned RotAmt;
187 	// 8-bit (or less) immediates are trivially shifter_operands with a rotate
188 	// of zero.
189 	if ((Arg & ~255U) == 0) return Arg;
190 
191 	RotAmt = getSOImmValRotate(Arg);
192 
193 	// If this cannot be handled with a single shifter_op, bail out.
194 	if (rotr32(~255U, RotAmt) & Arg)
195 		return -1;
196 
197 	// Encode this correctly.
198 	return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
199 }
200 
201 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
202 /// or'ing together two SOImmVal's.
isSOImmTwoPartVal(unsigned V)203 static inline bool isSOImmTwoPartVal(unsigned V)
204 {
205 	// If this can be handled with a single shifter_op, bail out.
206 	V = rotr32(~255U, getSOImmValRotate(V)) & V;
207 	if (V == 0)
208 		return false;
209 
210 	// If this can be handled with two shifter_op's, accept.
211 	V = rotr32(~255U, getSOImmValRotate(V)) & V;
212 	return V == 0;
213 }
214 
215 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
216 /// return the first chunk of it.
getSOImmTwoPartFirst(unsigned V)217 static inline unsigned getSOImmTwoPartFirst(unsigned V)
218 {
219 	return rotr32(255U, getSOImmValRotate(V)) & V;
220 }
221 
222 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
223 /// return the second chunk of it.
getSOImmTwoPartSecond(unsigned V)224 static inline unsigned getSOImmTwoPartSecond(unsigned V)
225 {
226 	// Mask out the first hunk.
227 	V = rotr32(~255U, getSOImmValRotate(V)) & V;
228 
229 	// Take what's left.
230 	//assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
231 	return V;
232 }
233 
234 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
235 /// by a left shift. Returns the shift amount to use.
getThumbImmValShift(unsigned Imm)236 static inline unsigned getThumbImmValShift(unsigned Imm)
237 {
238 	// 8-bit (or less) immediates are trivially immediate operand with a shift
239 	// of zero.
240 	if ((Imm & ~255U) == 0) return 0;
241 
242 	// Use CTZ to compute the shift amount.
243 	return CountTrailingZeros_32(Imm);
244 }
245 
246 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
247 /// by left shifting a 8-bit immediate.
isThumbImmShiftedVal(unsigned V)248 static inline bool isThumbImmShiftedVal(unsigned V)
249 {
250 	// If this can be handled with
251 	V = (~255U << getThumbImmValShift(V)) & V;
252 	return V == 0;
253 }
254 
255 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
256 /// by a left shift. Returns the shift amount to use.
getThumbImm16ValShift(unsigned Imm)257 static inline unsigned getThumbImm16ValShift(unsigned Imm)
258 {
259 	// 16-bit (or less) immediates are trivially immediate operand with a shift
260 	// of zero.
261 	if ((Imm & ~65535U) == 0) return 0;
262 
263 	// Use CTZ to compute the shift amount.
264 	return CountTrailingZeros_32(Imm);
265 }
266 
267 /// isThumbImm16ShiftedVal - Return true if the specified value can be
268 /// obtained by left shifting a 16-bit immediate.
isThumbImm16ShiftedVal(unsigned V)269 static inline bool isThumbImm16ShiftedVal(unsigned V)
270 {
271 	// If this can be handled with
272 	V = (~65535U << getThumbImm16ValShift(V)) & V;
273 	return V == 0;
274 }
275 
276 /// getThumbImmNonShiftedVal - If V is a value that satisfies
277 /// isThumbImmShiftedVal, return the non-shiftd value.
getThumbImmNonShiftedVal(unsigned V)278 static inline unsigned getThumbImmNonShiftedVal(unsigned V)
279 {
280 	return V >> getThumbImmValShift(V);
281 }
282 
283 
284 /// getT2SOImmValSplat - Return the 12-bit encoded representation
285 /// if the specified value can be obtained by splatting the low 8 bits
286 /// into every other byte or every byte of a 32-bit value. i.e.,
287 ///     00000000 00000000 00000000 abcdefgh    control = 0
288 ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
289 ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
290 ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
291 /// Return -1 if none of the above apply.
292 /// See ARM Reference Manual A6.3.2.
getT2SOImmValSplatVal(unsigned V)293 static inline int getT2SOImmValSplatVal(unsigned V)
294 {
295 	unsigned u, Vs, Imm;
296 	// control = 0
297 	if ((V & 0xffffff00) == 0)
298 		return V;
299 
300 	// If the value is zeroes in the first byte, just shift those off
301 	Vs = ((V & 0xff) == 0) ? V >> 8 : V;
302 	// Any passing value only has 8 bits of payload, splatted across the word
303 	Imm = Vs & 0xff;
304 	// Likewise, any passing values have the payload splatted into the 3rd byte
305 	u = Imm | (Imm << 16);
306 
307 	// control = 1 or 2
308 	if (Vs == u)
309 		return (((Vs == V) ? 1 : 2) << 8) | Imm;
310 
311 	// control = 3
312 	if (Vs == (u | (u << 8)))
313 		return (3 << 8) | Imm;
314 
315 	return -1;
316 }
317 
318 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
319 /// specified value is a rotated 8-bit value. Return -1 if no rotation
320 /// encoding is possible.
321 /// See ARM Reference Manual A6.3.2.
getT2SOImmValRotateVal(unsigned V)322 static inline int getT2SOImmValRotateVal(unsigned V)
323 {
324 	unsigned RotAmt = CountLeadingZeros_32(V);
325 	if (RotAmt >= 24)
326 		return -1;
327 
328 	// If 'Arg' can be handled with a single shifter_op return the value.
329 	if ((rotr32(0xff000000U, RotAmt) & V) == V)
330 		return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
331 
332 	return -1;
333 }
334 
335 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
336 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
337 /// encoding for it.  If not, return -1.
338 /// See ARM Reference Manual A6.3.2.
getT2SOImmVal(unsigned Arg)339 static inline int getT2SOImmVal(unsigned Arg)
340 {
341 	int Rot;
342 	// If 'Arg' is an 8-bit splat, then get the encoded value.
343 	int Splat = getT2SOImmValSplatVal(Arg);
344 	if (Splat != -1)
345 		return Splat;
346 
347 	// If 'Arg' can be handled with a single shifter_op return the value.
348 	Rot = getT2SOImmValRotateVal(Arg);
349 	if (Rot != -1)
350 		return Rot;
351 
352 	return -1;
353 }
354 
getT2SOImmValRotate(unsigned V)355 static inline unsigned getT2SOImmValRotate(unsigned V)
356 {
357 	unsigned RotAmt;
358 
359 	if ((V & ~255U) == 0)
360 		return 0;
361 
362 	// Use CTZ to compute the rotate amount.
363 	RotAmt = CountTrailingZeros_32(V);
364 	return (32 - RotAmt) & 31;
365 }
366 
isT2SOImmTwoPartVal(unsigned Imm)367 static inline bool isT2SOImmTwoPartVal (unsigned Imm)
368 {
369 	unsigned V = Imm;
370 	// Passing values can be any combination of splat values and shifter
371 	// values. If this can be handled with a single shifter or splat, bail
372 	// out. Those should be handled directly, not with a two-part val.
373 	if (getT2SOImmValSplatVal(V) != -1)
374 		return false;
375 	V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
376 	if (V == 0)
377 		return false;
378 
379 	// If this can be handled as an immediate, accept.
380 	if (getT2SOImmVal(V) != -1) return true;
381 
382 	// Likewise, try masking out a splat value first.
383 	V = Imm;
384 	if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
385 		V &= ~0xff00ff00U;
386 	else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
387 		V &= ~0x00ff00ffU;
388 	// If what's left can be handled as an immediate, accept.
389 	if (getT2SOImmVal(V) != -1) return true;
390 
391 	// Otherwise, do not accept.
392 	return false;
393 }
394 
getT2SOImmTwoPartFirst(unsigned Imm)395 static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm)
396 {
397 	//assert (isT2SOImmTwoPartVal(Imm) &&
398 	//        "Immedate cannot be encoded as two part immediate!");
399 	// Try a shifter operand as one part
400 	unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm;
401 	// If the rest is encodable as an immediate, then return it.
402 	if (getT2SOImmVal(V) != -1) return V;
403 
404 	// Try masking out a splat value first.
405 	if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
406 		return Imm & 0xff00ff00U;
407 
408 	// The other splat is all that's left as an option.
409 	//assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
410 	return Imm & 0x00ff00ffU;
411 }
412 
getT2SOImmTwoPartSecond(unsigned Imm)413 static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm)
414 {
415 	// Mask out the first hunk
416 	Imm ^= getT2SOImmTwoPartFirst(Imm);
417 	// Return what's left
418 	//assert (getT2SOImmVal(Imm) != -1 &&
419 	//        "Unable to encode second part of T2 two part SO immediate");
420 	return Imm;
421 }
422 
423 
424 //===--------------------------------------------------------------------===//
425 // Addressing Mode #2
426 //===--------------------------------------------------------------------===//
427 //
428 // This is used for most simple load/store instructions.
429 //
430 // addrmode2 := reg +/- reg shop imm
431 // addrmode2 := reg +/- imm12
432 //
433 // The first operand is always a Reg.  The second operand is a reg if in
434 // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
435 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
436 // fourth operand 16-17 encodes the index mode.
437 //
438 // If this addressing mode is a frame index (before prolog/epilog insertion
439 // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
440 // with no shift amount for the frame offset.
441 //
ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc,unsigned Imm12,ARM_AM_ShiftOpc SO,unsigned IdxMode)442 static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO,
443 		unsigned IdxMode)
444 {
445 	//assert(Imm12 < (1 << 12) && "Imm too large!");
446 	bool isSub = Opc == ARM_AM_sub;
447 	return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
448 }
449 
getAM2Offset(unsigned AM2Opc)450 static inline unsigned getAM2Offset(unsigned AM2Opc)
451 {
452 	return AM2Opc & ((1 << 12)-1);
453 }
454 
getAM2Op(unsigned AM2Opc)455 static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc)
456 {
457 	return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add;
458 }
459 
getAM2ShiftOpc(unsigned AM2Opc)460 static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
461 {
462 	return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7);
463 }
464 
getAM2IdxMode(unsigned AM2Opc)465 static inline unsigned getAM2IdxMode(unsigned AM2Opc)
466 {
467 	return (AM2Opc >> 16);
468 }
469 
470 //===--------------------------------------------------------------------===//
471 // Addressing Mode #3
472 //===--------------------------------------------------------------------===//
473 //
474 // This is used for sign-extending loads, and load/store-pair instructions.
475 //
476 // addrmode3 := reg +/- reg
477 // addrmode3 := reg +/- imm8
478 //
479 // The first operand is always a Reg.  The second operand is a reg if in
480 // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
481 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
482 // index mode.
483 
484 /// getAM3Opc - This function encodes the addrmode3 opc field.
getAM3Opc(ARM_AM_AddrOpc Opc,unsigned char Offset,unsigned IdxMode)485 static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset,
486 		unsigned IdxMode)
487 {
488 	bool isSub = Opc == ARM_AM_sub;
489 	return ((int)isSub << 8) | Offset | (IdxMode << 9);
490 }
491 
getAM3Offset(unsigned AM3Opc)492 static inline unsigned char getAM3Offset(unsigned AM3Opc)
493 {
494 	return AM3Opc & 0xFF;
495 }
496 
getAM3Op(unsigned AM3Opc)497 static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc)
498 {
499 	return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
500 }
501 
getAM3IdxMode(unsigned AM3Opc)502 static inline unsigned getAM3IdxMode(unsigned AM3Opc)
503 {
504 	return (AM3Opc >> 9);
505 }
506 
507 //===--------------------------------------------------------------------===//
508 // Addressing Mode #4
509 //===--------------------------------------------------------------------===//
510 //
511 // This is used for load / store multiple instructions.
512 //
513 // addrmode4 := reg, <mode>
514 //
515 // The four modes are:
516 //    IA - Increment after
517 //    IB - Increment before
518 //    DA - Decrement after
519 //    DB - Decrement before
520 // For VFP instructions, only the IA and DB modes are valid.
521 
getAM4SubMode(unsigned Mode)522 static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode)
523 {
524 	return (ARM_AM_AMSubMode)(Mode & 0x7);
525 }
526 
getAM4ModeImm(ARM_AM_AMSubMode SubMode)527 static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode)
528 {
529 	return (int)SubMode;
530 }
531 
532 //===--------------------------------------------------------------------===//
533 // Addressing Mode #5
534 //===--------------------------------------------------------------------===//
535 //
536 // This is used for coprocessor instructions, such as FP load/stores.
537 //
538 // addrmode5 := reg +/- imm8*4
539 //
540 // The first operand is always a Reg.  The second operand encodes the
541 // operation in bit 8 and the immediate in bits 0-7.
542 
543 /// getAM5Opc - This function encodes the addrmode5 opc field.
ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc,unsigned char Offset)544 static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
545 {
546 	bool isSub = Opc == ARM_AM_sub;
547 	return ((int)isSub << 8) | Offset;
548 }
ARM_AM_getAM5Offset(unsigned AM5Opc)549 static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc)
550 {
551 	return AM5Opc & 0xFF;
552 }
ARM_AM_getAM5Op(unsigned AM5Opc)553 static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc)
554 {
555 	return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
556 }
557 
558 //===--------------------------------------------------------------------===//
559 // Addressing Mode #6
560 //===--------------------------------------------------------------------===//
561 //
562 // This is used for NEON load / store instructions.
563 //
564 // addrmode6 := reg with optional alignment
565 //
566 // This is stored in two operands [regaddr, align].  The first is the
567 // address register.  The second operand is the value of the alignment
568 // specifier in bytes or zero if no explicit alignment.
569 // Valid alignments depend on the specific instruction.
570 
571 //===--------------------------------------------------------------------===//
572 // NEON Modified Immediates
573 //===--------------------------------------------------------------------===//
574 //
575 // Several NEON instructions (e.g., VMOV) take a "modified immediate"
576 // vector operand, where a small immediate encoded in the instruction
577 // specifies a full NEON vector value.  These modified immediates are
578 // represented here as encoded integers.  The low 8 bits hold the immediate
579 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
580 // the "Cmode" field of the instruction.  The interfaces below treat the
581 // Op and Cmode values as a single 5-bit value.
582 
createNEONModImm(unsigned OpCmode,unsigned Val)583 static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val)
584 {
585 	return (OpCmode << 8) | Val;
586 }
getNEONModImmOpCmode(unsigned ModImm)587 static inline unsigned getNEONModImmOpCmode(unsigned ModImm)
588 {
589 	return (ModImm >> 8) & 0x1f;
590 }
getNEONModImmVal(unsigned ModImm)591 static inline unsigned getNEONModImmVal(unsigned ModImm)
592 {
593 	return ModImm & 0xff;
594 }
595 
596 /// decodeNEONModImm - Decode a NEON modified immediate value into the
597 /// element value and the element size in bits.  (If the element size is
598 /// smaller than the vector, it is splatted into all the elements.)
ARM_AM_decodeNEONModImm(unsigned ModImm,unsigned * EltBits)599 static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits)
600 {
601 	unsigned OpCmode = getNEONModImmOpCmode(ModImm);
602 	unsigned Imm8 = getNEONModImmVal(ModImm);
603 	uint64_t Val = 0;
604 	unsigned ByteNum;
605 
606 	if (OpCmode == 0xe) {
607 		// 8-bit vector elements
608 		Val = Imm8;
609 		*EltBits = 8;
610 	} else if ((OpCmode & 0xc) == 0x8) {
611 		// 16-bit vector elements
612 		ByteNum = (OpCmode & 0x6) >> 1;
613 		Val = (uint64_t)Imm8 << (8 * ByteNum);
614 		*EltBits = 16;
615 	} else if ((OpCmode & 0x8) == 0) {
616 		// 32-bit vector elements, zero with one byte set
617 		ByteNum = (OpCmode & 0x6) >> 1;
618 		Val = (uint64_t)Imm8 << (8 * ByteNum);
619 		*EltBits = 32;
620 	} else if ((OpCmode & 0xe) == 0xc) {
621 		// 32-bit vector elements, one byte with low bits set
622 		ByteNum = 1 + (OpCmode & 0x1);
623 		Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
624 		*EltBits = 32;
625 	} else if (OpCmode == 0x1e) {
626 		// 64-bit vector elements
627 		for (ByteNum = 0; ByteNum < 8; ++ByteNum) {
628 			if ((ModImm >> ByteNum) & 1)
629 				Val |= (uint64_t)0xff << (8 * ByteNum);
630 		}
631 		*EltBits = 64;
632 	} else {
633 		//llvm_unreachable("Unsupported NEON immediate");
634 	}
635 	return Val;
636 }
637 
638 ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode);
639 
640 //===--------------------------------------------------------------------===//
641 // Floating-point Immediates
642 //
getFPImmFloat(unsigned Imm)643 static inline float getFPImmFloat(unsigned Imm)
644 {
645 	// We expect an 8-bit binary encoding of a floating-point number here.
646 	union {
647 		uint32_t I;
648 		float F;
649 	} FPUnion;
650 
651 	uint8_t Sign = (Imm >> 7) & 0x1;
652 	uint8_t Exp = (Imm >> 4) & 0x7;
653 	uint8_t Mantissa = Imm & 0xf;
654 
655 	//   8-bit FP    iEEEE Float Encoding
656 	//   abcd efgh   aBbbbbbc defgh000 00000000 00000000
657 	//
658 	// where B = NOT(b);
659 
660 	FPUnion.I = 0;
661 	FPUnion.I |= ((uint32_t) Sign) << 31;
662 	FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
663 	FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
664 	FPUnion.I |= (Exp & 0x3) << 23;
665 	FPUnion.I |= Mantissa << 19;
666 	return FPUnion.F;
667 }
668 
669 #endif
670 
671