1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Sema/Ownership.h"
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/AST/TypeOrdering.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallString.h"
40 #include "llvm/ADT/SmallVector.h"
41
42 using namespace clang;
43 using namespace sema;
44
ActOnExprStmt(ExprResult FE,bool DiscardedValue)45 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
46 if (FE.isInvalid())
47 return StmtError();
48
49 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
50 if (FE.isInvalid())
51 return StmtError();
52
53 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
54 // void expression for its side effects. Conversion to void allows any
55 // operand, even incomplete types.
56
57 // Same thing in for stmt first clause (when expr) and third clause.
58 return StmtResult(FE.getAs<Stmt>());
59 }
60
61
ActOnExprStmtError()62 StmtResult Sema::ActOnExprStmtError() {
63 DiscardCleanupsInEvaluationContext();
64 return StmtError();
65 }
66
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)67 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
68 bool HasLeadingEmptyMacro) {
69 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
70 }
71
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)72 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
73 SourceLocation EndLoc) {
74 DeclGroupRef DG = dg.get();
75
76 // If we have an invalid decl, just return an error.
77 if (DG.isNull()) return StmtError();
78
79 return new (Context) DeclStmt(DG, StartLoc, EndLoc);
80 }
81
ActOnForEachDeclStmt(DeclGroupPtrTy dg)82 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
83 DeclGroupRef DG = dg.get();
84
85 // If we don't have a declaration, or we have an invalid declaration,
86 // just return.
87 if (DG.isNull() || !DG.isSingleDecl())
88 return;
89
90 Decl *decl = DG.getSingleDecl();
91 if (!decl || decl->isInvalidDecl())
92 return;
93
94 // Only variable declarations are permitted.
95 VarDecl *var = dyn_cast<VarDecl>(decl);
96 if (!var) {
97 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
98 decl->setInvalidDecl();
99 return;
100 }
101
102 // foreach variables are never actually initialized in the way that
103 // the parser came up with.
104 var->setInit(nullptr);
105
106 // In ARC, we don't need to retain the iteration variable of a fast
107 // enumeration loop. Rather than actually trying to catch that
108 // during declaration processing, we remove the consequences here.
109 if (getLangOpts().ObjCAutoRefCount) {
110 QualType type = var->getType();
111
112 // Only do this if we inferred the lifetime. Inferred lifetime
113 // will show up as a local qualifier because explicit lifetime
114 // should have shown up as an AttributedType instead.
115 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
116 // Add 'const' and mark the variable as pseudo-strong.
117 var->setType(type.withConst());
118 var->setARCPseudoStrong(true);
119 }
120 }
121 }
122
123 /// Diagnose unused comparisons, both builtin and overloaded operators.
124 /// For '==' and '!=', suggest fixits for '=' or '|='.
125 ///
126 /// Adding a cast to void (or other expression wrappers) will prevent the
127 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)128 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
129 SourceLocation Loc;
130 bool CanAssign;
131 enum { Equality, Inequality, Relational, ThreeWay } Kind;
132
133 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
134 if (!Op->isComparisonOp())
135 return false;
136
137 if (Op->getOpcode() == BO_EQ)
138 Kind = Equality;
139 else if (Op->getOpcode() == BO_NE)
140 Kind = Inequality;
141 else if (Op->getOpcode() == BO_Cmp)
142 Kind = ThreeWay;
143 else {
144 assert(Op->isRelationalOp());
145 Kind = Relational;
146 }
147 Loc = Op->getOperatorLoc();
148 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
149 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
150 switch (Op->getOperator()) {
151 case OO_EqualEqual:
152 Kind = Equality;
153 break;
154 case OO_ExclaimEqual:
155 Kind = Inequality;
156 break;
157 case OO_Less:
158 case OO_Greater:
159 case OO_GreaterEqual:
160 case OO_LessEqual:
161 Kind = Relational;
162 break;
163 case OO_Spaceship:
164 Kind = ThreeWay;
165 break;
166 default:
167 return false;
168 }
169
170 Loc = Op->getOperatorLoc();
171 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
172 } else {
173 // Not a typo-prone comparison.
174 return false;
175 }
176
177 // Suppress warnings when the operator, suspicious as it may be, comes from
178 // a macro expansion.
179 if (S.SourceMgr.isMacroBodyExpansion(Loc))
180 return false;
181
182 S.Diag(Loc, diag::warn_unused_comparison)
183 << (unsigned)Kind << E->getSourceRange();
184
185 // If the LHS is a plausible entity to assign to, provide a fixit hint to
186 // correct common typos.
187 if (CanAssign) {
188 if (Kind == Inequality)
189 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
190 << FixItHint::CreateReplacement(Loc, "|=");
191 else if (Kind == Equality)
192 S.Diag(Loc, diag::note_equality_comparison_to_assign)
193 << FixItHint::CreateReplacement(Loc, "=");
194 }
195
196 return true;
197 }
198
DiagnoseNoDiscard(Sema & S,const WarnUnusedResultAttr * A,SourceLocation Loc,SourceRange R1,SourceRange R2,bool IsCtor)199 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
200 SourceLocation Loc, SourceRange R1,
201 SourceRange R2, bool IsCtor) {
202 if (!A)
203 return false;
204 StringRef Msg = A->getMessage();
205
206 if (Msg.empty()) {
207 if (IsCtor)
208 return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
209 return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
210 }
211
212 if (IsCtor)
213 return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
214 << R2;
215 return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
216 }
217
DiagnoseUnusedExprResult(const Stmt * S)218 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
219 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
220 return DiagnoseUnusedExprResult(Label->getSubStmt());
221
222 const Expr *E = dyn_cast_or_null<Expr>(S);
223 if (!E)
224 return;
225
226 // If we are in an unevaluated expression context, then there can be no unused
227 // results because the results aren't expected to be used in the first place.
228 if (isUnevaluatedContext())
229 return;
230
231 SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
232 // In most cases, we don't want to warn if the expression is written in a
233 // macro body, or if the macro comes from a system header. If the offending
234 // expression is a call to a function with the warn_unused_result attribute,
235 // we warn no matter the location. Because of the order in which the various
236 // checks need to happen, we factor out the macro-related test here.
237 bool ShouldSuppress =
238 SourceMgr.isMacroBodyExpansion(ExprLoc) ||
239 SourceMgr.isInSystemMacro(ExprLoc);
240
241 const Expr *WarnExpr;
242 SourceLocation Loc;
243 SourceRange R1, R2;
244 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
245 return;
246
247 // If this is a GNU statement expression expanded from a macro, it is probably
248 // unused because it is a function-like macro that can be used as either an
249 // expression or statement. Don't warn, because it is almost certainly a
250 // false positive.
251 if (isa<StmtExpr>(E) && Loc.isMacroID())
252 return;
253
254 // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
255 // That macro is frequently used to suppress "unused parameter" warnings,
256 // but its implementation makes clang's -Wunused-value fire. Prevent this.
257 if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
258 SourceLocation SpellLoc = Loc;
259 if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
260 return;
261 }
262
263 // Okay, we have an unused result. Depending on what the base expression is,
264 // we might want to make a more specific diagnostic. Check for one of these
265 // cases now.
266 unsigned DiagID = diag::warn_unused_expr;
267 if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
268 E = Temps->getSubExpr();
269 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
270 E = TempExpr->getSubExpr();
271
272 if (DiagnoseUnusedComparison(*this, E))
273 return;
274
275 E = WarnExpr;
276 if (const auto *Cast = dyn_cast<CastExpr>(E))
277 if (Cast->getCastKind() == CK_NoOp ||
278 Cast->getCastKind() == CK_ConstructorConversion)
279 E = Cast->getSubExpr()->IgnoreImpCasts();
280
281 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
282 if (E->getType()->isVoidType())
283 return;
284
285 if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
286 CE->getUnusedResultAttr(Context)),
287 Loc, R1, R2, /*isCtor=*/false))
288 return;
289
290 // If the callee has attribute pure, const, or warn_unused_result, warn with
291 // a more specific message to make it clear what is happening. If the call
292 // is written in a macro body, only warn if it has the warn_unused_result
293 // attribute.
294 if (const Decl *FD = CE->getCalleeDecl()) {
295 if (ShouldSuppress)
296 return;
297 if (FD->hasAttr<PureAttr>()) {
298 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
299 return;
300 }
301 if (FD->hasAttr<ConstAttr>()) {
302 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
303 return;
304 }
305 }
306 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
307 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
308 const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
309 A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
310 if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
311 return;
312 }
313 } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
314 if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
315
316 if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
317 R2, /*isCtor=*/false))
318 return;
319 }
320 } else if (ShouldSuppress)
321 return;
322
323 E = WarnExpr;
324 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
325 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
326 Diag(Loc, diag::err_arc_unused_init_message) << R1;
327 return;
328 }
329 const ObjCMethodDecl *MD = ME->getMethodDecl();
330 if (MD) {
331 if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
332 R2, /*isCtor=*/false))
333 return;
334 }
335 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
336 const Expr *Source = POE->getSyntacticForm();
337 // Handle the actually selected call of an OpenMP specialized call.
338 if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
339 POE->getNumSemanticExprs() == 1 &&
340 isa<CallExpr>(POE->getSemanticExpr(0)))
341 return DiagnoseUnusedExprResult(POE->getSemanticExpr(0));
342 if (isa<ObjCSubscriptRefExpr>(Source))
343 DiagID = diag::warn_unused_container_subscript_expr;
344 else
345 DiagID = diag::warn_unused_property_expr;
346 } else if (const CXXFunctionalCastExpr *FC
347 = dyn_cast<CXXFunctionalCastExpr>(E)) {
348 const Expr *E = FC->getSubExpr();
349 if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
350 E = TE->getSubExpr();
351 if (isa<CXXTemporaryObjectExpr>(E))
352 return;
353 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
354 if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
355 if (!RD->getAttr<WarnUnusedAttr>())
356 return;
357 }
358 // Diagnose "(void*) blah" as a typo for "(void) blah".
359 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
360 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
361 QualType T = TI->getType();
362
363 // We really do want to use the non-canonical type here.
364 if (T == Context.VoidPtrTy) {
365 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
366
367 Diag(Loc, diag::warn_unused_voidptr)
368 << FixItHint::CreateRemoval(TL.getStarLoc());
369 return;
370 }
371 }
372
373 // Tell the user to assign it into a variable to force a volatile load if this
374 // isn't an array.
375 if (E->isGLValue() && E->getType().isVolatileQualified() &&
376 !E->getType()->isArrayType()) {
377 Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
378 return;
379 }
380
381 DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
382 }
383
ActOnStartOfCompoundStmt(bool IsStmtExpr)384 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
385 PushCompoundScope(IsStmtExpr);
386 }
387
ActOnAfterCompoundStatementLeadingPragmas()388 void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
389 if (getCurFPFeatures().isFPConstrained()) {
390 FunctionScopeInfo *FSI = getCurFunction();
391 assert(FSI);
392 FSI->setUsesFPIntrin();
393 }
394 }
395
ActOnFinishOfCompoundStmt()396 void Sema::ActOnFinishOfCompoundStmt() {
397 PopCompoundScope();
398 }
399
getCurCompoundScope() const400 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
401 return getCurFunction()->CompoundScopes.back();
402 }
403
ActOnCompoundStmt(SourceLocation L,SourceLocation R,ArrayRef<Stmt * > Elts,bool isStmtExpr)404 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
405 ArrayRef<Stmt *> Elts, bool isStmtExpr) {
406 const unsigned NumElts = Elts.size();
407
408 // If we're in C89 mode, check that we don't have any decls after stmts. If
409 // so, emit an extension diagnostic.
410 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
411 // Note that __extension__ can be around a decl.
412 unsigned i = 0;
413 // Skip over all declarations.
414 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
415 /*empty*/;
416
417 // We found the end of the list or a statement. Scan for another declstmt.
418 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
419 /*empty*/;
420
421 if (i != NumElts) {
422 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
423 Diag(D->getLocation(), diag::ext_mixed_decls_code);
424 }
425 }
426
427 // Check for suspicious empty body (null statement) in `for' and `while'
428 // statements. Don't do anything for template instantiations, this just adds
429 // noise.
430 if (NumElts != 0 && !CurrentInstantiationScope &&
431 getCurCompoundScope().HasEmptyLoopBodies) {
432 for (unsigned i = 0; i != NumElts - 1; ++i)
433 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
434 }
435
436 return CompoundStmt::Create(Context, Elts, L, R);
437 }
438
439 ExprResult
ActOnCaseExpr(SourceLocation CaseLoc,ExprResult Val)440 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
441 if (!Val.get())
442 return Val;
443
444 if (DiagnoseUnexpandedParameterPack(Val.get()))
445 return ExprError();
446
447 // If we're not inside a switch, let the 'case' statement handling diagnose
448 // this. Just clean up after the expression as best we can.
449 if (getCurFunction()->SwitchStack.empty())
450 return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
451 getLangOpts().CPlusPlus11);
452
453 Expr *CondExpr =
454 getCurFunction()->SwitchStack.back().getPointer()->getCond();
455 if (!CondExpr)
456 return ExprError();
457 QualType CondType = CondExpr->getType();
458
459 auto CheckAndFinish = [&](Expr *E) {
460 if (CondType->isDependentType() || E->isTypeDependent())
461 return ExprResult(E);
462
463 if (getLangOpts().CPlusPlus11) {
464 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
465 // constant expression of the promoted type of the switch condition.
466 llvm::APSInt TempVal;
467 return CheckConvertedConstantExpression(E, CondType, TempVal,
468 CCEK_CaseValue);
469 }
470
471 ExprResult ER = E;
472 if (!E->isValueDependent())
473 ER = VerifyIntegerConstantExpression(E, AllowFold);
474 if (!ER.isInvalid())
475 ER = DefaultLvalueConversion(ER.get());
476 if (!ER.isInvalid())
477 ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
478 if (!ER.isInvalid())
479 ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
480 return ER;
481 };
482
483 ExprResult Converted = CorrectDelayedTyposInExpr(
484 Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
485 CheckAndFinish);
486 if (Converted.get() == Val.get())
487 Converted = CheckAndFinish(Val.get());
488 return Converted;
489 }
490
491 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,ExprResult LHSVal,SourceLocation DotDotDotLoc,ExprResult RHSVal,SourceLocation ColonLoc)492 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
493 SourceLocation DotDotDotLoc, ExprResult RHSVal,
494 SourceLocation ColonLoc) {
495 assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
496 assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
497 : RHSVal.isInvalid() || RHSVal.get()) &&
498 "missing RHS value");
499
500 if (getCurFunction()->SwitchStack.empty()) {
501 Diag(CaseLoc, diag::err_case_not_in_switch);
502 return StmtError();
503 }
504
505 if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
506 getCurFunction()->SwitchStack.back().setInt(true);
507 return StmtError();
508 }
509
510 auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
511 CaseLoc, DotDotDotLoc, ColonLoc);
512 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
513 return CS;
514 }
515
516 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * S,Stmt * SubStmt)517 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
518 cast<CaseStmt>(S)->setSubStmt(SubStmt);
519 }
520
521 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)522 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
523 Stmt *SubStmt, Scope *CurScope) {
524 if (getCurFunction()->SwitchStack.empty()) {
525 Diag(DefaultLoc, diag::err_default_not_in_switch);
526 return SubStmt;
527 }
528
529 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
530 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
531 return DS;
532 }
533
534 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)535 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
536 SourceLocation ColonLoc, Stmt *SubStmt) {
537 // If the label was multiply defined, reject it now.
538 if (TheDecl->getStmt()) {
539 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
540 Diag(TheDecl->getLocation(), diag::note_previous_definition);
541 return SubStmt;
542 }
543
544 // Otherwise, things are good. Fill in the declaration and return it.
545 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
546 TheDecl->setStmt(LS);
547 if (!TheDecl->isGnuLocal()) {
548 TheDecl->setLocStart(IdentLoc);
549 if (!TheDecl->isMSAsmLabel()) {
550 // Don't update the location of MS ASM labels. These will result in
551 // a diagnostic, and changing the location here will mess that up.
552 TheDecl->setLocation(IdentLoc);
553 }
554 }
555 return LS;
556 }
557
ActOnAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)558 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
559 ArrayRef<const Attr*> Attrs,
560 Stmt *SubStmt) {
561 // Fill in the declaration and return it.
562 AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
563 return LS;
564 }
565
566 namespace {
567 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
568 typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
569 Sema &SemaRef;
570 public:
CommaVisitor(Sema & SemaRef)571 CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
VisitBinaryOperator(BinaryOperator * E)572 void VisitBinaryOperator(BinaryOperator *E) {
573 if (E->getOpcode() == BO_Comma)
574 SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
575 EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
576 }
577 };
578 }
579
ActOnIfStmt(SourceLocation IfLoc,bool IsConstexpr,SourceLocation LParenLoc,Stmt * InitStmt,ConditionResult Cond,SourceLocation RParenLoc,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)580 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
581 SourceLocation LParenLoc, Stmt *InitStmt,
582 ConditionResult Cond, SourceLocation RParenLoc,
583 Stmt *thenStmt, SourceLocation ElseLoc,
584 Stmt *elseStmt) {
585 if (Cond.isInvalid())
586 Cond = ConditionResult(
587 *this, nullptr,
588 MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
589 Context.BoolTy, VK_RValue),
590 IfLoc),
591 false);
592
593 Expr *CondExpr = Cond.get().second;
594 // Only call the CommaVisitor when not C89 due to differences in scope flags.
595 if ((getLangOpts().C99 || getLangOpts().CPlusPlus) &&
596 !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
597 CommaVisitor(*this).Visit(CondExpr);
598
599 if (!elseStmt)
600 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
601 diag::warn_empty_if_body);
602
603 if (IsConstexpr) {
604 auto DiagnoseLikelihood = [&](const Stmt *S) {
605 if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
606 Diags.Report(A->getLocation(),
607 diag::warn_attribute_has_no_effect_on_if_constexpr)
608 << A << A->getRange();
609 Diags.Report(IfLoc,
610 diag::note_attribute_has_no_effect_on_if_constexpr_here)
611 << SourceRange(IfLoc, LParenLoc.getLocWithOffset(-1));
612 }
613 };
614 DiagnoseLikelihood(thenStmt);
615 DiagnoseLikelihood(elseStmt);
616 } else {
617 std::tuple<bool, const Attr *, const Attr *> LHC =
618 Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
619 if (std::get<0>(LHC)) {
620 const Attr *ThenAttr = std::get<1>(LHC);
621 const Attr *ElseAttr = std::get<2>(LHC);
622 Diags.Report(ThenAttr->getLocation(),
623 diag::warn_attributes_likelihood_ifstmt_conflict)
624 << ThenAttr << ThenAttr->getRange();
625 Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
626 << ElseAttr << ElseAttr->getRange();
627 }
628 }
629
630 return BuildIfStmt(IfLoc, IsConstexpr, LParenLoc, InitStmt, Cond, RParenLoc,
631 thenStmt, ElseLoc, elseStmt);
632 }
633
BuildIfStmt(SourceLocation IfLoc,bool IsConstexpr,SourceLocation LParenLoc,Stmt * InitStmt,ConditionResult Cond,SourceLocation RParenLoc,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)634 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
635 SourceLocation LParenLoc, Stmt *InitStmt,
636 ConditionResult Cond, SourceLocation RParenLoc,
637 Stmt *thenStmt, SourceLocation ElseLoc,
638 Stmt *elseStmt) {
639 if (Cond.isInvalid())
640 return StmtError();
641
642 if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
643 setFunctionHasBranchProtectedScope();
644
645 return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
646 Cond.get().second, LParenLoc, RParenLoc, thenStmt,
647 ElseLoc, elseStmt);
648 }
649
650 namespace {
651 struct CaseCompareFunctor {
operator ()__anoned21bd8d0511::CaseCompareFunctor652 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
653 const llvm::APSInt &RHS) {
654 return LHS.first < RHS;
655 }
operator ()__anoned21bd8d0511::CaseCompareFunctor656 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
657 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
658 return LHS.first < RHS.first;
659 }
operator ()__anoned21bd8d0511::CaseCompareFunctor660 bool operator()(const llvm::APSInt &LHS,
661 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
662 return LHS < RHS.first;
663 }
664 };
665 }
666
667 /// CmpCaseVals - Comparison predicate for sorting case values.
668 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)669 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
670 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
671 if (lhs.first < rhs.first)
672 return true;
673
674 if (lhs.first == rhs.first &&
675 lhs.second->getCaseLoc().getRawEncoding()
676 < rhs.second->getCaseLoc().getRawEncoding())
677 return true;
678 return false;
679 }
680
681 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
682 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)683 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
684 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
685 {
686 return lhs.first < rhs.first;
687 }
688
689 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
690 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)691 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
692 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
693 {
694 return lhs.first == rhs.first;
695 }
696
697 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
698 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(const Expr * & E)699 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
700 if (const auto *FE = dyn_cast<FullExpr>(E))
701 E = FE->getSubExpr();
702 while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
703 if (ImpCast->getCastKind() != CK_IntegralCast) break;
704 E = ImpCast->getSubExpr();
705 }
706 return E->getType();
707 }
708
CheckSwitchCondition(SourceLocation SwitchLoc,Expr * Cond)709 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
710 class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
711 Expr *Cond;
712
713 public:
714 SwitchConvertDiagnoser(Expr *Cond)
715 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
716 Cond(Cond) {}
717
718 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
719 QualType T) override {
720 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
721 }
722
723 SemaDiagnosticBuilder diagnoseIncomplete(
724 Sema &S, SourceLocation Loc, QualType T) override {
725 return S.Diag(Loc, diag::err_switch_incomplete_class_type)
726 << T << Cond->getSourceRange();
727 }
728
729 SemaDiagnosticBuilder diagnoseExplicitConv(
730 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
731 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
732 }
733
734 SemaDiagnosticBuilder noteExplicitConv(
735 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
736 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
737 << ConvTy->isEnumeralType() << ConvTy;
738 }
739
740 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
741 QualType T) override {
742 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
743 }
744
745 SemaDiagnosticBuilder noteAmbiguous(
746 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
747 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
748 << ConvTy->isEnumeralType() << ConvTy;
749 }
750
751 SemaDiagnosticBuilder diagnoseConversion(
752 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
753 llvm_unreachable("conversion functions are permitted");
754 }
755 } SwitchDiagnoser(Cond);
756
757 ExprResult CondResult =
758 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
759 if (CondResult.isInvalid())
760 return ExprError();
761
762 // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
763 // failed and produced a diagnostic.
764 Cond = CondResult.get();
765 if (!Cond->isTypeDependent() &&
766 !Cond->getType()->isIntegralOrEnumerationType())
767 return ExprError();
768
769 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
770 return UsualUnaryConversions(Cond);
771 }
772
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,SourceLocation LParenLoc,Stmt * InitStmt,ConditionResult Cond,SourceLocation RParenLoc)773 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
774 SourceLocation LParenLoc,
775 Stmt *InitStmt, ConditionResult Cond,
776 SourceLocation RParenLoc) {
777 Expr *CondExpr = Cond.get().second;
778 assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
779
780 if (CondExpr && !CondExpr->isTypeDependent()) {
781 // We have already converted the expression to an integral or enumeration
782 // type, when we parsed the switch condition. There are cases where we don't
783 // have an appropriate type, e.g. a typo-expr Cond was corrected to an
784 // inappropriate-type expr, we just return an error.
785 if (!CondExpr->getType()->isIntegralOrEnumerationType())
786 return StmtError();
787 if (CondExpr->isKnownToHaveBooleanValue()) {
788 // switch(bool_expr) {...} is often a programmer error, e.g.
789 // switch(n && mask) { ... } // Doh - should be "n & mask".
790 // One can always use an if statement instead of switch(bool_expr).
791 Diag(SwitchLoc, diag::warn_bool_switch_condition)
792 << CondExpr->getSourceRange();
793 }
794 }
795
796 setFunctionHasBranchIntoScope();
797
798 auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
799 LParenLoc, RParenLoc);
800 getCurFunction()->SwitchStack.push_back(
801 FunctionScopeInfo::SwitchInfo(SS, false));
802 return SS;
803 }
804
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)805 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
806 Val = Val.extOrTrunc(BitWidth);
807 Val.setIsSigned(IsSigned);
808 }
809
810 /// Check the specified case value is in range for the given unpromoted switch
811 /// type.
checkCaseValue(Sema & S,SourceLocation Loc,const llvm::APSInt & Val,unsigned UnpromotedWidth,bool UnpromotedSign)812 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
813 unsigned UnpromotedWidth, bool UnpromotedSign) {
814 // In C++11 onwards, this is checked by the language rules.
815 if (S.getLangOpts().CPlusPlus11)
816 return;
817
818 // If the case value was signed and negative and the switch expression is
819 // unsigned, don't bother to warn: this is implementation-defined behavior.
820 // FIXME: Introduce a second, default-ignored warning for this case?
821 if (UnpromotedWidth < Val.getBitWidth()) {
822 llvm::APSInt ConvVal(Val);
823 AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
824 AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
825 // FIXME: Use different diagnostics for overflow in conversion to promoted
826 // type versus "switch expression cannot have this value". Use proper
827 // IntRange checking rather than just looking at the unpromoted type here.
828 if (ConvVal != Val)
829 S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
830 << ConvVal.toString(10);
831 }
832 }
833
834 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
835
836 /// Returns true if we should emit a diagnostic about this case expression not
837 /// being a part of the enum used in the switch controlling expression.
ShouldDiagnoseSwitchCaseNotInEnum(const Sema & S,const EnumDecl * ED,const Expr * CaseExpr,EnumValsTy::iterator & EI,EnumValsTy::iterator & EIEnd,const llvm::APSInt & Val)838 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
839 const EnumDecl *ED,
840 const Expr *CaseExpr,
841 EnumValsTy::iterator &EI,
842 EnumValsTy::iterator &EIEnd,
843 const llvm::APSInt &Val) {
844 if (!ED->isClosed())
845 return false;
846
847 if (const DeclRefExpr *DRE =
848 dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
849 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
850 QualType VarType = VD->getType();
851 QualType EnumType = S.Context.getTypeDeclType(ED);
852 if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
853 S.Context.hasSameUnqualifiedType(EnumType, VarType))
854 return false;
855 }
856 }
857
858 if (ED->hasAttr<FlagEnumAttr>())
859 return !S.IsValueInFlagEnum(ED, Val, false);
860
861 while (EI != EIEnd && EI->first < Val)
862 EI++;
863
864 if (EI != EIEnd && EI->first == Val)
865 return false;
866
867 return true;
868 }
869
checkEnumTypesInSwitchStmt(Sema & S,const Expr * Cond,const Expr * Case)870 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
871 const Expr *Case) {
872 QualType CondType = Cond->getType();
873 QualType CaseType = Case->getType();
874
875 const EnumType *CondEnumType = CondType->getAs<EnumType>();
876 const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
877 if (!CondEnumType || !CaseEnumType)
878 return;
879
880 // Ignore anonymous enums.
881 if (!CondEnumType->getDecl()->getIdentifier() &&
882 !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
883 return;
884 if (!CaseEnumType->getDecl()->getIdentifier() &&
885 !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
886 return;
887
888 if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
889 return;
890
891 S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
892 << CondType << CaseType << Cond->getSourceRange()
893 << Case->getSourceRange();
894 }
895
896 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)897 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
898 Stmt *BodyStmt) {
899 SwitchStmt *SS = cast<SwitchStmt>(Switch);
900 bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
901 assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
902 "switch stack missing push/pop!");
903
904 getCurFunction()->SwitchStack.pop_back();
905
906 if (!BodyStmt) return StmtError();
907 SS->setBody(BodyStmt, SwitchLoc);
908
909 Expr *CondExpr = SS->getCond();
910 if (!CondExpr) return StmtError();
911
912 QualType CondType = CondExpr->getType();
913
914 // C++ 6.4.2.p2:
915 // Integral promotions are performed (on the switch condition).
916 //
917 // A case value unrepresentable by the original switch condition
918 // type (before the promotion) doesn't make sense, even when it can
919 // be represented by the promoted type. Therefore we need to find
920 // the pre-promotion type of the switch condition.
921 const Expr *CondExprBeforePromotion = CondExpr;
922 QualType CondTypeBeforePromotion =
923 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
924
925 // Get the bitwidth of the switched-on value after promotions. We must
926 // convert the integer case values to this width before comparison.
927 bool HasDependentValue
928 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
929 unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
930 bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
931
932 // Get the width and signedness that the condition might actually have, for
933 // warning purposes.
934 // FIXME: Grab an IntRange for the condition rather than using the unpromoted
935 // type.
936 unsigned CondWidthBeforePromotion
937 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
938 bool CondIsSignedBeforePromotion
939 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
940
941 // Accumulate all of the case values in a vector so that we can sort them
942 // and detect duplicates. This vector contains the APInt for the case after
943 // it has been converted to the condition type.
944 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
945 CaseValsTy CaseVals;
946
947 // Keep track of any GNU case ranges we see. The APSInt is the low value.
948 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
949 CaseRangesTy CaseRanges;
950
951 DefaultStmt *TheDefaultStmt = nullptr;
952
953 bool CaseListIsErroneous = false;
954
955 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
956 SC = SC->getNextSwitchCase()) {
957
958 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
959 if (TheDefaultStmt) {
960 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
961 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
962
963 // FIXME: Remove the default statement from the switch block so that
964 // we'll return a valid AST. This requires recursing down the AST and
965 // finding it, not something we are set up to do right now. For now,
966 // just lop the entire switch stmt out of the AST.
967 CaseListIsErroneous = true;
968 }
969 TheDefaultStmt = DS;
970
971 } else {
972 CaseStmt *CS = cast<CaseStmt>(SC);
973
974 Expr *Lo = CS->getLHS();
975
976 if (Lo->isValueDependent()) {
977 HasDependentValue = true;
978 break;
979 }
980
981 // We already verified that the expression has a constant value;
982 // get that value (prior to conversions).
983 const Expr *LoBeforePromotion = Lo;
984 GetTypeBeforeIntegralPromotion(LoBeforePromotion);
985 llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
986
987 // Check the unconverted value is within the range of possible values of
988 // the switch expression.
989 checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
990 CondIsSignedBeforePromotion);
991
992 // FIXME: This duplicates the check performed for warn_not_in_enum below.
993 checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
994 LoBeforePromotion);
995
996 // Convert the value to the same width/sign as the condition.
997 AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
998
999 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1000 if (CS->getRHS()) {
1001 if (CS->getRHS()->isValueDependent()) {
1002 HasDependentValue = true;
1003 break;
1004 }
1005 CaseRanges.push_back(std::make_pair(LoVal, CS));
1006 } else
1007 CaseVals.push_back(std::make_pair(LoVal, CS));
1008 }
1009 }
1010
1011 if (!HasDependentValue) {
1012 // If we don't have a default statement, check whether the
1013 // condition is constant.
1014 llvm::APSInt ConstantCondValue;
1015 bool HasConstantCond = false;
1016 if (!TheDefaultStmt) {
1017 Expr::EvalResult Result;
1018 HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1019 Expr::SE_AllowSideEffects);
1020 if (Result.Val.isInt())
1021 ConstantCondValue = Result.Val.getInt();
1022 assert(!HasConstantCond ||
1023 (ConstantCondValue.getBitWidth() == CondWidth &&
1024 ConstantCondValue.isSigned() == CondIsSigned));
1025 }
1026 bool ShouldCheckConstantCond = HasConstantCond;
1027
1028 // Sort all the scalar case values so we can easily detect duplicates.
1029 llvm::stable_sort(CaseVals, CmpCaseVals);
1030
1031 if (!CaseVals.empty()) {
1032 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1033 if (ShouldCheckConstantCond &&
1034 CaseVals[i].first == ConstantCondValue)
1035 ShouldCheckConstantCond = false;
1036
1037 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1038 // If we have a duplicate, report it.
1039 // First, determine if either case value has a name
1040 StringRef PrevString, CurrString;
1041 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1042 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1043 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1044 PrevString = DeclRef->getDecl()->getName();
1045 }
1046 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1047 CurrString = DeclRef->getDecl()->getName();
1048 }
1049 SmallString<16> CaseValStr;
1050 CaseVals[i-1].first.toString(CaseValStr);
1051
1052 if (PrevString == CurrString)
1053 Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1054 diag::err_duplicate_case)
1055 << (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
1056 else
1057 Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1058 diag::err_duplicate_case_differing_expr)
1059 << (PrevString.empty() ? StringRef(CaseValStr) : PrevString)
1060 << (CurrString.empty() ? StringRef(CaseValStr) : CurrString)
1061 << CaseValStr;
1062
1063 Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1064 diag::note_duplicate_case_prev);
1065 // FIXME: We really want to remove the bogus case stmt from the
1066 // substmt, but we have no way to do this right now.
1067 CaseListIsErroneous = true;
1068 }
1069 }
1070 }
1071
1072 // Detect duplicate case ranges, which usually don't exist at all in
1073 // the first place.
1074 if (!CaseRanges.empty()) {
1075 // Sort all the case ranges by their low value so we can easily detect
1076 // overlaps between ranges.
1077 llvm::stable_sort(CaseRanges);
1078
1079 // Scan the ranges, computing the high values and removing empty ranges.
1080 std::vector<llvm::APSInt> HiVals;
1081 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1082 llvm::APSInt &LoVal = CaseRanges[i].first;
1083 CaseStmt *CR = CaseRanges[i].second;
1084 Expr *Hi = CR->getRHS();
1085
1086 const Expr *HiBeforePromotion = Hi;
1087 GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1088 llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1089
1090 // Check the unconverted value is within the range of possible values of
1091 // the switch expression.
1092 checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1093 CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1094
1095 // Convert the value to the same width/sign as the condition.
1096 AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1097
1098 // If the low value is bigger than the high value, the case is empty.
1099 if (LoVal > HiVal) {
1100 Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1101 << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1102 CaseRanges.erase(CaseRanges.begin()+i);
1103 --i;
1104 --e;
1105 continue;
1106 }
1107
1108 if (ShouldCheckConstantCond &&
1109 LoVal <= ConstantCondValue &&
1110 ConstantCondValue <= HiVal)
1111 ShouldCheckConstantCond = false;
1112
1113 HiVals.push_back(HiVal);
1114 }
1115
1116 // Rescan the ranges, looking for overlap with singleton values and other
1117 // ranges. Since the range list is sorted, we only need to compare case
1118 // ranges with their neighbors.
1119 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1120 llvm::APSInt &CRLo = CaseRanges[i].first;
1121 llvm::APSInt &CRHi = HiVals[i];
1122 CaseStmt *CR = CaseRanges[i].second;
1123
1124 // Check to see whether the case range overlaps with any
1125 // singleton cases.
1126 CaseStmt *OverlapStmt = nullptr;
1127 llvm::APSInt OverlapVal(32);
1128
1129 // Find the smallest value >= the lower bound. If I is in the
1130 // case range, then we have overlap.
1131 CaseValsTy::iterator I =
1132 llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1133 if (I != CaseVals.end() && I->first < CRHi) {
1134 OverlapVal = I->first; // Found overlap with scalar.
1135 OverlapStmt = I->second;
1136 }
1137
1138 // Find the smallest value bigger than the upper bound.
1139 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1140 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1141 OverlapVal = (I-1)->first; // Found overlap with scalar.
1142 OverlapStmt = (I-1)->second;
1143 }
1144
1145 // Check to see if this case stmt overlaps with the subsequent
1146 // case range.
1147 if (i && CRLo <= HiVals[i-1]) {
1148 OverlapVal = HiVals[i-1]; // Found overlap with range.
1149 OverlapStmt = CaseRanges[i-1].second;
1150 }
1151
1152 if (OverlapStmt) {
1153 // If we have a duplicate, report it.
1154 Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1155 << OverlapVal.toString(10);
1156 Diag(OverlapStmt->getLHS()->getBeginLoc(),
1157 diag::note_duplicate_case_prev);
1158 // FIXME: We really want to remove the bogus case stmt from the
1159 // substmt, but we have no way to do this right now.
1160 CaseListIsErroneous = true;
1161 }
1162 }
1163 }
1164
1165 // Complain if we have a constant condition and we didn't find a match.
1166 if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1167 ShouldCheckConstantCond) {
1168 // TODO: it would be nice if we printed enums as enums, chars as
1169 // chars, etc.
1170 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1171 << ConstantCondValue.toString(10)
1172 << CondExpr->getSourceRange();
1173 }
1174
1175 // Check to see if switch is over an Enum and handles all of its
1176 // values. We only issue a warning if there is not 'default:', but
1177 // we still do the analysis to preserve this information in the AST
1178 // (which can be used by flow-based analyes).
1179 //
1180 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1181
1182 // If switch has default case, then ignore it.
1183 if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1184 ET && ET->getDecl()->isCompleteDefinition()) {
1185 const EnumDecl *ED = ET->getDecl();
1186 EnumValsTy EnumVals;
1187
1188 // Gather all enum values, set their type and sort them,
1189 // allowing easier comparison with CaseVals.
1190 for (auto *EDI : ED->enumerators()) {
1191 llvm::APSInt Val = EDI->getInitVal();
1192 AdjustAPSInt(Val, CondWidth, CondIsSigned);
1193 EnumVals.push_back(std::make_pair(Val, EDI));
1194 }
1195 llvm::stable_sort(EnumVals, CmpEnumVals);
1196 auto EI = EnumVals.begin(), EIEnd =
1197 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1198
1199 // See which case values aren't in enum.
1200 for (CaseValsTy::const_iterator CI = CaseVals.begin();
1201 CI != CaseVals.end(); CI++) {
1202 Expr *CaseExpr = CI->second->getLHS();
1203 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1204 CI->first))
1205 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1206 << CondTypeBeforePromotion;
1207 }
1208
1209 // See which of case ranges aren't in enum
1210 EI = EnumVals.begin();
1211 for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1212 RI != CaseRanges.end(); RI++) {
1213 Expr *CaseExpr = RI->second->getLHS();
1214 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1215 RI->first))
1216 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1217 << CondTypeBeforePromotion;
1218
1219 llvm::APSInt Hi =
1220 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1221 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1222
1223 CaseExpr = RI->second->getRHS();
1224 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1225 Hi))
1226 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1227 << CondTypeBeforePromotion;
1228 }
1229
1230 // Check which enum vals aren't in switch
1231 auto CI = CaseVals.begin();
1232 auto RI = CaseRanges.begin();
1233 bool hasCasesNotInSwitch = false;
1234
1235 SmallVector<DeclarationName,8> UnhandledNames;
1236
1237 for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1238 // Don't warn about omitted unavailable EnumConstantDecls.
1239 switch (EI->second->getAvailability()) {
1240 case AR_Deprecated:
1241 // Omitting a deprecated constant is ok; it should never materialize.
1242 case AR_Unavailable:
1243 continue;
1244
1245 case AR_NotYetIntroduced:
1246 // Partially available enum constants should be present. Note that we
1247 // suppress -Wunguarded-availability diagnostics for such uses.
1248 case AR_Available:
1249 break;
1250 }
1251
1252 if (EI->second->hasAttr<UnusedAttr>())
1253 continue;
1254
1255 // Drop unneeded case values
1256 while (CI != CaseVals.end() && CI->first < EI->first)
1257 CI++;
1258
1259 if (CI != CaseVals.end() && CI->first == EI->first)
1260 continue;
1261
1262 // Drop unneeded case ranges
1263 for (; RI != CaseRanges.end(); RI++) {
1264 llvm::APSInt Hi =
1265 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1266 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1267 if (EI->first <= Hi)
1268 break;
1269 }
1270
1271 if (RI == CaseRanges.end() || EI->first < RI->first) {
1272 hasCasesNotInSwitch = true;
1273 UnhandledNames.push_back(EI->second->getDeclName());
1274 }
1275 }
1276
1277 if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1278 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1279
1280 // Produce a nice diagnostic if multiple values aren't handled.
1281 if (!UnhandledNames.empty()) {
1282 auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1283 ? diag::warn_def_missing_case
1284 : diag::warn_missing_case)
1285 << (int)UnhandledNames.size();
1286
1287 for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1288 I != E; ++I)
1289 DB << UnhandledNames[I];
1290 }
1291
1292 if (!hasCasesNotInSwitch)
1293 SS->setAllEnumCasesCovered();
1294 }
1295 }
1296
1297 if (BodyStmt)
1298 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1299 diag::warn_empty_switch_body);
1300
1301 // FIXME: If the case list was broken is some way, we don't have a good system
1302 // to patch it up. Instead, just return the whole substmt as broken.
1303 if (CaseListIsErroneous)
1304 return StmtError();
1305
1306 return SS;
1307 }
1308
1309 void
DiagnoseAssignmentEnum(QualType DstType,QualType SrcType,Expr * SrcExpr)1310 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1311 Expr *SrcExpr) {
1312 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1313 return;
1314
1315 if (const EnumType *ET = DstType->getAs<EnumType>())
1316 if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1317 SrcType->isIntegerType()) {
1318 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1319 SrcExpr->isIntegerConstantExpr(Context)) {
1320 // Get the bitwidth of the enum value before promotions.
1321 unsigned DstWidth = Context.getIntWidth(DstType);
1322 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1323
1324 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1325 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1326 const EnumDecl *ED = ET->getDecl();
1327
1328 if (!ED->isClosed())
1329 return;
1330
1331 if (ED->hasAttr<FlagEnumAttr>()) {
1332 if (!IsValueInFlagEnum(ED, RhsVal, true))
1333 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1334 << DstType.getUnqualifiedType();
1335 } else {
1336 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1337 EnumValsTy;
1338 EnumValsTy EnumVals;
1339
1340 // Gather all enum values, set their type and sort them,
1341 // allowing easier comparison with rhs constant.
1342 for (auto *EDI : ED->enumerators()) {
1343 llvm::APSInt Val = EDI->getInitVal();
1344 AdjustAPSInt(Val, DstWidth, DstIsSigned);
1345 EnumVals.push_back(std::make_pair(Val, EDI));
1346 }
1347 if (EnumVals.empty())
1348 return;
1349 llvm::stable_sort(EnumVals, CmpEnumVals);
1350 EnumValsTy::iterator EIend =
1351 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1352
1353 // See which values aren't in the enum.
1354 EnumValsTy::const_iterator EI = EnumVals.begin();
1355 while (EI != EIend && EI->first < RhsVal)
1356 EI++;
1357 if (EI == EIend || EI->first != RhsVal) {
1358 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1359 << DstType.getUnqualifiedType();
1360 }
1361 }
1362 }
1363 }
1364 }
1365
ActOnWhileStmt(SourceLocation WhileLoc,SourceLocation LParenLoc,ConditionResult Cond,SourceLocation RParenLoc,Stmt * Body)1366 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1367 SourceLocation LParenLoc, ConditionResult Cond,
1368 SourceLocation RParenLoc, Stmt *Body) {
1369 if (Cond.isInvalid())
1370 return StmtError();
1371
1372 auto CondVal = Cond.get();
1373 CheckBreakContinueBinding(CondVal.second);
1374
1375 if (CondVal.second &&
1376 !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1377 CommaVisitor(*this).Visit(CondVal.second);
1378
1379 if (isa<NullStmt>(Body))
1380 getCurCompoundScope().setHasEmptyLoopBodies();
1381
1382 return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1383 WhileLoc, LParenLoc, RParenLoc);
1384 }
1385
1386 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1387 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1388 SourceLocation WhileLoc, SourceLocation CondLParen,
1389 Expr *Cond, SourceLocation CondRParen) {
1390 assert(Cond && "ActOnDoStmt(): missing expression");
1391
1392 CheckBreakContinueBinding(Cond);
1393 ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1394 if (CondResult.isInvalid())
1395 return StmtError();
1396 Cond = CondResult.get();
1397
1398 CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1399 if (CondResult.isInvalid())
1400 return StmtError();
1401 Cond = CondResult.get();
1402
1403 // Only call the CommaVisitor for C89 due to differences in scope flags.
1404 if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1405 !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1406 CommaVisitor(*this).Visit(Cond);
1407
1408 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1409 }
1410
1411 namespace {
1412 // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1413 using DeclSetVector =
1414 llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1415 llvm::SmallPtrSet<VarDecl *, 8>>;
1416
1417 // This visitor will traverse a conditional statement and store all
1418 // the evaluated decls into a vector. Simple is set to true if none
1419 // of the excluded constructs are used.
1420 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1421 DeclSetVector &Decls;
1422 SmallVectorImpl<SourceRange> &Ranges;
1423 bool Simple;
1424 public:
1425 typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1426
DeclExtractor(Sema & S,DeclSetVector & Decls,SmallVectorImpl<SourceRange> & Ranges)1427 DeclExtractor(Sema &S, DeclSetVector &Decls,
1428 SmallVectorImpl<SourceRange> &Ranges) :
1429 Inherited(S.Context),
1430 Decls(Decls),
1431 Ranges(Ranges),
1432 Simple(true) {}
1433
isSimple()1434 bool isSimple() { return Simple; }
1435
1436 // Replaces the method in EvaluatedExprVisitor.
VisitMemberExpr(MemberExpr * E)1437 void VisitMemberExpr(MemberExpr* E) {
1438 Simple = false;
1439 }
1440
1441 // Any Stmt not explicitly listed will cause the condition to be marked
1442 // complex.
VisitStmt(Stmt * S)1443 void VisitStmt(Stmt *S) { Simple = false; }
1444
VisitBinaryOperator(BinaryOperator * E)1445 void VisitBinaryOperator(BinaryOperator *E) {
1446 Visit(E->getLHS());
1447 Visit(E->getRHS());
1448 }
1449
VisitCastExpr(CastExpr * E)1450 void VisitCastExpr(CastExpr *E) {
1451 Visit(E->getSubExpr());
1452 }
1453
VisitUnaryOperator(UnaryOperator * E)1454 void VisitUnaryOperator(UnaryOperator *E) {
1455 // Skip checking conditionals with derefernces.
1456 if (E->getOpcode() == UO_Deref)
1457 Simple = false;
1458 else
1459 Visit(E->getSubExpr());
1460 }
1461
VisitConditionalOperator(ConditionalOperator * E)1462 void VisitConditionalOperator(ConditionalOperator *E) {
1463 Visit(E->getCond());
1464 Visit(E->getTrueExpr());
1465 Visit(E->getFalseExpr());
1466 }
1467
VisitParenExpr(ParenExpr * E)1468 void VisitParenExpr(ParenExpr *E) {
1469 Visit(E->getSubExpr());
1470 }
1471
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)1472 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1473 Visit(E->getOpaqueValue()->getSourceExpr());
1474 Visit(E->getFalseExpr());
1475 }
1476
VisitIntegerLiteral(IntegerLiteral * E)1477 void VisitIntegerLiteral(IntegerLiteral *E) { }
VisitFloatingLiteral(FloatingLiteral * E)1478 void VisitFloatingLiteral(FloatingLiteral *E) { }
VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)1479 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
VisitCharacterLiteral(CharacterLiteral * E)1480 void VisitCharacterLiteral(CharacterLiteral *E) { }
VisitGNUNullExpr(GNUNullExpr * E)1481 void VisitGNUNullExpr(GNUNullExpr *E) { }
VisitImaginaryLiteral(ImaginaryLiteral * E)1482 void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1483
VisitDeclRefExpr(DeclRefExpr * E)1484 void VisitDeclRefExpr(DeclRefExpr *E) {
1485 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1486 if (!VD) {
1487 // Don't allow unhandled Decl types.
1488 Simple = false;
1489 return;
1490 }
1491
1492 Ranges.push_back(E->getSourceRange());
1493
1494 Decls.insert(VD);
1495 }
1496
1497 }; // end class DeclExtractor
1498
1499 // DeclMatcher checks to see if the decls are used in a non-evaluated
1500 // context.
1501 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1502 DeclSetVector &Decls;
1503 bool FoundDecl;
1504
1505 public:
1506 typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1507
DeclMatcher(Sema & S,DeclSetVector & Decls,Stmt * Statement)1508 DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1509 Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1510 if (!Statement) return;
1511
1512 Visit(Statement);
1513 }
1514
VisitReturnStmt(ReturnStmt * S)1515 void VisitReturnStmt(ReturnStmt *S) {
1516 FoundDecl = true;
1517 }
1518
VisitBreakStmt(BreakStmt * S)1519 void VisitBreakStmt(BreakStmt *S) {
1520 FoundDecl = true;
1521 }
1522
VisitGotoStmt(GotoStmt * S)1523 void VisitGotoStmt(GotoStmt *S) {
1524 FoundDecl = true;
1525 }
1526
VisitCastExpr(CastExpr * E)1527 void VisitCastExpr(CastExpr *E) {
1528 if (E->getCastKind() == CK_LValueToRValue)
1529 CheckLValueToRValueCast(E->getSubExpr());
1530 else
1531 Visit(E->getSubExpr());
1532 }
1533
CheckLValueToRValueCast(Expr * E)1534 void CheckLValueToRValueCast(Expr *E) {
1535 E = E->IgnoreParenImpCasts();
1536
1537 if (isa<DeclRefExpr>(E)) {
1538 return;
1539 }
1540
1541 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1542 Visit(CO->getCond());
1543 CheckLValueToRValueCast(CO->getTrueExpr());
1544 CheckLValueToRValueCast(CO->getFalseExpr());
1545 return;
1546 }
1547
1548 if (BinaryConditionalOperator *BCO =
1549 dyn_cast<BinaryConditionalOperator>(E)) {
1550 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1551 CheckLValueToRValueCast(BCO->getFalseExpr());
1552 return;
1553 }
1554
1555 Visit(E);
1556 }
1557
VisitDeclRefExpr(DeclRefExpr * E)1558 void VisitDeclRefExpr(DeclRefExpr *E) {
1559 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1560 if (Decls.count(VD))
1561 FoundDecl = true;
1562 }
1563
VisitPseudoObjectExpr(PseudoObjectExpr * POE)1564 void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1565 // Only need to visit the semantics for POE.
1566 // SyntaticForm doesn't really use the Decal.
1567 for (auto *S : POE->semantics()) {
1568 if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1569 // Look past the OVE into the expression it binds.
1570 Visit(OVE->getSourceExpr());
1571 else
1572 Visit(S);
1573 }
1574 }
1575
FoundDeclInUse()1576 bool FoundDeclInUse() { return FoundDecl; }
1577
1578 }; // end class DeclMatcher
1579
CheckForLoopConditionalStatement(Sema & S,Expr * Second,Expr * Third,Stmt * Body)1580 void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1581 Expr *Third, Stmt *Body) {
1582 // Condition is empty
1583 if (!Second) return;
1584
1585 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1586 Second->getBeginLoc()))
1587 return;
1588
1589 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1590 DeclSetVector Decls;
1591 SmallVector<SourceRange, 10> Ranges;
1592 DeclExtractor DE(S, Decls, Ranges);
1593 DE.Visit(Second);
1594
1595 // Don't analyze complex conditionals.
1596 if (!DE.isSimple()) return;
1597
1598 // No decls found.
1599 if (Decls.size() == 0) return;
1600
1601 // Don't warn on volatile, static, or global variables.
1602 for (auto *VD : Decls)
1603 if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1604 return;
1605
1606 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1607 DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1608 DeclMatcher(S, Decls, Body).FoundDeclInUse())
1609 return;
1610
1611 // Load decl names into diagnostic.
1612 if (Decls.size() > 4) {
1613 PDiag << 0;
1614 } else {
1615 PDiag << (unsigned)Decls.size();
1616 for (auto *VD : Decls)
1617 PDiag << VD->getDeclName();
1618 }
1619
1620 for (auto Range : Ranges)
1621 PDiag << Range;
1622
1623 S.Diag(Ranges.begin()->getBegin(), PDiag);
1624 }
1625
1626 // If Statement is an incemement or decrement, return true and sets the
1627 // variables Increment and DRE.
ProcessIterationStmt(Sema & S,Stmt * Statement,bool & Increment,DeclRefExpr * & DRE)1628 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1629 DeclRefExpr *&DRE) {
1630 if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1631 if (!Cleanups->cleanupsHaveSideEffects())
1632 Statement = Cleanups->getSubExpr();
1633
1634 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1635 switch (UO->getOpcode()) {
1636 default: return false;
1637 case UO_PostInc:
1638 case UO_PreInc:
1639 Increment = true;
1640 break;
1641 case UO_PostDec:
1642 case UO_PreDec:
1643 Increment = false;
1644 break;
1645 }
1646 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1647 return DRE;
1648 }
1649
1650 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1651 FunctionDecl *FD = Call->getDirectCallee();
1652 if (!FD || !FD->isOverloadedOperator()) return false;
1653 switch (FD->getOverloadedOperator()) {
1654 default: return false;
1655 case OO_PlusPlus:
1656 Increment = true;
1657 break;
1658 case OO_MinusMinus:
1659 Increment = false;
1660 break;
1661 }
1662 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1663 return DRE;
1664 }
1665
1666 return false;
1667 }
1668
1669 // A visitor to determine if a continue or break statement is a
1670 // subexpression.
1671 class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1672 SourceLocation BreakLoc;
1673 SourceLocation ContinueLoc;
1674 bool InSwitch = false;
1675
1676 public:
BreakContinueFinder(Sema & S,const Stmt * Body)1677 BreakContinueFinder(Sema &S, const Stmt* Body) :
1678 Inherited(S.Context) {
1679 Visit(Body);
1680 }
1681
1682 typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
1683
VisitContinueStmt(const ContinueStmt * E)1684 void VisitContinueStmt(const ContinueStmt* E) {
1685 ContinueLoc = E->getContinueLoc();
1686 }
1687
VisitBreakStmt(const BreakStmt * E)1688 void VisitBreakStmt(const BreakStmt* E) {
1689 if (!InSwitch)
1690 BreakLoc = E->getBreakLoc();
1691 }
1692
VisitSwitchStmt(const SwitchStmt * S)1693 void VisitSwitchStmt(const SwitchStmt* S) {
1694 if (const Stmt *Init = S->getInit())
1695 Visit(Init);
1696 if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1697 Visit(CondVar);
1698 if (const Stmt *Cond = S->getCond())
1699 Visit(Cond);
1700
1701 // Don't return break statements from the body of a switch.
1702 InSwitch = true;
1703 if (const Stmt *Body = S->getBody())
1704 Visit(Body);
1705 InSwitch = false;
1706 }
1707
VisitForStmt(const ForStmt * S)1708 void VisitForStmt(const ForStmt *S) {
1709 // Only visit the init statement of a for loop; the body
1710 // has a different break/continue scope.
1711 if (const Stmt *Init = S->getInit())
1712 Visit(Init);
1713 }
1714
VisitWhileStmt(const WhileStmt *)1715 void VisitWhileStmt(const WhileStmt *) {
1716 // Do nothing; the children of a while loop have a different
1717 // break/continue scope.
1718 }
1719
VisitDoStmt(const DoStmt *)1720 void VisitDoStmt(const DoStmt *) {
1721 // Do nothing; the children of a while loop have a different
1722 // break/continue scope.
1723 }
1724
VisitCXXForRangeStmt(const CXXForRangeStmt * S)1725 void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1726 // Only visit the initialization of a for loop; the body
1727 // has a different break/continue scope.
1728 if (const Stmt *Init = S->getInit())
1729 Visit(Init);
1730 if (const Stmt *Range = S->getRangeStmt())
1731 Visit(Range);
1732 if (const Stmt *Begin = S->getBeginStmt())
1733 Visit(Begin);
1734 if (const Stmt *End = S->getEndStmt())
1735 Visit(End);
1736 }
1737
VisitObjCForCollectionStmt(const ObjCForCollectionStmt * S)1738 void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1739 // Only visit the initialization of a for loop; the body
1740 // has a different break/continue scope.
1741 if (const Stmt *Element = S->getElement())
1742 Visit(Element);
1743 if (const Stmt *Collection = S->getCollection())
1744 Visit(Collection);
1745 }
1746
ContinueFound()1747 bool ContinueFound() { return ContinueLoc.isValid(); }
BreakFound()1748 bool BreakFound() { return BreakLoc.isValid(); }
GetContinueLoc()1749 SourceLocation GetContinueLoc() { return ContinueLoc; }
GetBreakLoc()1750 SourceLocation GetBreakLoc() { return BreakLoc; }
1751
1752 }; // end class BreakContinueFinder
1753
1754 // Emit a warning when a loop increment/decrement appears twice per loop
1755 // iteration. The conditions which trigger this warning are:
1756 // 1) The last statement in the loop body and the third expression in the
1757 // for loop are both increment or both decrement of the same variable
1758 // 2) No continue statements in the loop body.
CheckForRedundantIteration(Sema & S,Expr * Third,Stmt * Body)1759 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1760 // Return when there is nothing to check.
1761 if (!Body || !Third) return;
1762
1763 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1764 Third->getBeginLoc()))
1765 return;
1766
1767 // Get the last statement from the loop body.
1768 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1769 if (!CS || CS->body_empty()) return;
1770 Stmt *LastStmt = CS->body_back();
1771 if (!LastStmt) return;
1772
1773 bool LoopIncrement, LastIncrement;
1774 DeclRefExpr *LoopDRE, *LastDRE;
1775
1776 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1777 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1778
1779 // Check that the two statements are both increments or both decrements
1780 // on the same variable.
1781 if (LoopIncrement != LastIncrement ||
1782 LoopDRE->getDecl() != LastDRE->getDecl()) return;
1783
1784 if (BreakContinueFinder(S, Body).ContinueFound()) return;
1785
1786 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1787 << LastDRE->getDecl() << LastIncrement;
1788 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1789 << LoopIncrement;
1790 }
1791
1792 } // end namespace
1793
1794
CheckBreakContinueBinding(Expr * E)1795 void Sema::CheckBreakContinueBinding(Expr *E) {
1796 if (!E || getLangOpts().CPlusPlus)
1797 return;
1798 BreakContinueFinder BCFinder(*this, E);
1799 Scope *BreakParent = CurScope->getBreakParent();
1800 if (BCFinder.BreakFound() && BreakParent) {
1801 if (BreakParent->getFlags() & Scope::SwitchScope) {
1802 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1803 } else {
1804 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1805 << "break";
1806 }
1807 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1808 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1809 << "continue";
1810 }
1811 }
1812
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,ConditionResult Second,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1813 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1814 Stmt *First, ConditionResult Second,
1815 FullExprArg third, SourceLocation RParenLoc,
1816 Stmt *Body) {
1817 if (Second.isInvalid())
1818 return StmtError();
1819
1820 if (!getLangOpts().CPlusPlus) {
1821 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1822 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1823 // declare identifiers for objects having storage class 'auto' or
1824 // 'register'.
1825 for (auto *DI : DS->decls()) {
1826 VarDecl *VD = dyn_cast<VarDecl>(DI);
1827 if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1828 VD = nullptr;
1829 if (!VD) {
1830 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1831 DI->setInvalidDecl();
1832 }
1833 }
1834 }
1835 }
1836
1837 CheckBreakContinueBinding(Second.get().second);
1838 CheckBreakContinueBinding(third.get());
1839
1840 if (!Second.get().first)
1841 CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1842 Body);
1843 CheckForRedundantIteration(*this, third.get(), Body);
1844
1845 if (Second.get().second &&
1846 !Diags.isIgnored(diag::warn_comma_operator,
1847 Second.get().second->getExprLoc()))
1848 CommaVisitor(*this).Visit(Second.get().second);
1849
1850 Expr *Third = third.release().getAs<Expr>();
1851 if (isa<NullStmt>(Body))
1852 getCurCompoundScope().setHasEmptyLoopBodies();
1853
1854 return new (Context)
1855 ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1856 Body, ForLoc, LParenLoc, RParenLoc);
1857 }
1858
1859 /// In an Objective C collection iteration statement:
1860 /// for (x in y)
1861 /// x can be an arbitrary l-value expression. Bind it up as a
1862 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1863 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1864 // Reduce placeholder expressions here. Note that this rejects the
1865 // use of pseudo-object l-values in this position.
1866 ExprResult result = CheckPlaceholderExpr(E);
1867 if (result.isInvalid()) return StmtError();
1868 E = result.get();
1869
1870 ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
1871 if (FullExpr.isInvalid())
1872 return StmtError();
1873 return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1874 }
1875
1876 ExprResult
CheckObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1877 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1878 if (!collection)
1879 return ExprError();
1880
1881 ExprResult result = CorrectDelayedTyposInExpr(collection);
1882 if (!result.isUsable())
1883 return ExprError();
1884 collection = result.get();
1885
1886 // Bail out early if we've got a type-dependent expression.
1887 if (collection->isTypeDependent()) return collection;
1888
1889 // Perform normal l-value conversion.
1890 result = DefaultFunctionArrayLvalueConversion(collection);
1891 if (result.isInvalid())
1892 return ExprError();
1893 collection = result.get();
1894
1895 // The operand needs to have object-pointer type.
1896 // TODO: should we do a contextual conversion?
1897 const ObjCObjectPointerType *pointerType =
1898 collection->getType()->getAs<ObjCObjectPointerType>();
1899 if (!pointerType)
1900 return Diag(forLoc, diag::err_collection_expr_type)
1901 << collection->getType() << collection->getSourceRange();
1902
1903 // Check that the operand provides
1904 // - countByEnumeratingWithState:objects:count:
1905 const ObjCObjectType *objectType = pointerType->getObjectType();
1906 ObjCInterfaceDecl *iface = objectType->getInterface();
1907
1908 // If we have a forward-declared type, we can't do this check.
1909 // Under ARC, it is an error not to have a forward-declared class.
1910 if (iface &&
1911 (getLangOpts().ObjCAutoRefCount
1912 ? RequireCompleteType(forLoc, QualType(objectType, 0),
1913 diag::err_arc_collection_forward, collection)
1914 : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1915 // Otherwise, if we have any useful type information, check that
1916 // the type declares the appropriate method.
1917 } else if (iface || !objectType->qual_empty()) {
1918 IdentifierInfo *selectorIdents[] = {
1919 &Context.Idents.get("countByEnumeratingWithState"),
1920 &Context.Idents.get("objects"),
1921 &Context.Idents.get("count")
1922 };
1923 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1924
1925 ObjCMethodDecl *method = nullptr;
1926
1927 // If there's an interface, look in both the public and private APIs.
1928 if (iface) {
1929 method = iface->lookupInstanceMethod(selector);
1930 if (!method) method = iface->lookupPrivateMethod(selector);
1931 }
1932
1933 // Also check protocol qualifiers.
1934 if (!method)
1935 method = LookupMethodInQualifiedType(selector, pointerType,
1936 /*instance*/ true);
1937
1938 // If we didn't find it anywhere, give up.
1939 if (!method) {
1940 Diag(forLoc, diag::warn_collection_expr_type)
1941 << collection->getType() << selector << collection->getSourceRange();
1942 }
1943
1944 // TODO: check for an incompatible signature?
1945 }
1946
1947 // Wrap up any cleanups in the expression.
1948 return collection;
1949 }
1950
1951 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,Stmt * First,Expr * collection,SourceLocation RParenLoc)1952 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1953 Stmt *First, Expr *collection,
1954 SourceLocation RParenLoc) {
1955 setFunctionHasBranchProtectedScope();
1956
1957 ExprResult CollectionExprResult =
1958 CheckObjCForCollectionOperand(ForLoc, collection);
1959
1960 if (First) {
1961 QualType FirstType;
1962 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1963 if (!DS->isSingleDecl())
1964 return StmtError(Diag((*DS->decl_begin())->getLocation(),
1965 diag::err_toomany_element_decls));
1966
1967 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1968 if (!D || D->isInvalidDecl())
1969 return StmtError();
1970
1971 FirstType = D->getType();
1972 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1973 // declare identifiers for objects having storage class 'auto' or
1974 // 'register'.
1975 if (!D->hasLocalStorage())
1976 return StmtError(Diag(D->getLocation(),
1977 diag::err_non_local_variable_decl_in_for));
1978
1979 // If the type contained 'auto', deduce the 'auto' to 'id'.
1980 if (FirstType->getContainedAutoType()) {
1981 OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1982 VK_RValue);
1983 Expr *DeducedInit = &OpaqueId;
1984 if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1985 DAR_Failed)
1986 DiagnoseAutoDeductionFailure(D, DeducedInit);
1987 if (FirstType.isNull()) {
1988 D->setInvalidDecl();
1989 return StmtError();
1990 }
1991
1992 D->setType(FirstType);
1993
1994 if (!inTemplateInstantiation()) {
1995 SourceLocation Loc =
1996 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1997 Diag(Loc, diag::warn_auto_var_is_id)
1998 << D->getDeclName();
1999 }
2000 }
2001
2002 } else {
2003 Expr *FirstE = cast<Expr>(First);
2004 if (!FirstE->isTypeDependent() && !FirstE->isLValue())
2005 return StmtError(
2006 Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
2007 << First->getSourceRange());
2008
2009 FirstType = static_cast<Expr*>(First)->getType();
2010 if (FirstType.isConstQualified())
2011 Diag(ForLoc, diag::err_selector_element_const_type)
2012 << FirstType << First->getSourceRange();
2013 }
2014 if (!FirstType->isDependentType() &&
2015 !FirstType->isObjCObjectPointerType() &&
2016 !FirstType->isBlockPointerType())
2017 return StmtError(Diag(ForLoc, diag::err_selector_element_type)
2018 << FirstType << First->getSourceRange());
2019 }
2020
2021 if (CollectionExprResult.isInvalid())
2022 return StmtError();
2023
2024 CollectionExprResult =
2025 ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
2026 if (CollectionExprResult.isInvalid())
2027 return StmtError();
2028
2029 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
2030 nullptr, ForLoc, RParenLoc);
2031 }
2032
2033 /// Finish building a variable declaration for a for-range statement.
2034 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int DiagID)2035 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2036 SourceLocation Loc, int DiagID) {
2037 if (Decl->getType()->isUndeducedType()) {
2038 ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2039 if (!Res.isUsable()) {
2040 Decl->setInvalidDecl();
2041 return true;
2042 }
2043 Init = Res.get();
2044 }
2045
2046 // Deduce the type for the iterator variable now rather than leaving it to
2047 // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2048 QualType InitType;
2049 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
2050 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
2051 Sema::DAR_Failed)
2052 SemaRef.Diag(Loc, DiagID) << Init->getType();
2053 if (InitType.isNull()) {
2054 Decl->setInvalidDecl();
2055 return true;
2056 }
2057 Decl->setType(InitType);
2058
2059 // In ARC, infer lifetime.
2060 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2061 // we're doing the equivalent of fast iteration.
2062 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2063 SemaRef.inferObjCARCLifetime(Decl))
2064 Decl->setInvalidDecl();
2065
2066 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2067 SemaRef.FinalizeDeclaration(Decl);
2068 SemaRef.CurContext->addHiddenDecl(Decl);
2069 return false;
2070 }
2071
2072 namespace {
2073 // An enum to represent whether something is dealing with a call to begin()
2074 // or a call to end() in a range-based for loop.
2075 enum BeginEndFunction {
2076 BEF_begin,
2077 BEF_end
2078 };
2079
2080 /// Produce a note indicating which begin/end function was implicitly called
2081 /// by a C++11 for-range statement. This is often not obvious from the code,
2082 /// nor from the diagnostics produced when analysing the implicit expressions
2083 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,BeginEndFunction BEF)2084 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2085 BeginEndFunction BEF) {
2086 CallExpr *CE = dyn_cast<CallExpr>(E);
2087 if (!CE)
2088 return;
2089 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2090 if (!D)
2091 return;
2092 SourceLocation Loc = D->getLocation();
2093
2094 std::string Description;
2095 bool IsTemplate = false;
2096 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2097 Description = SemaRef.getTemplateArgumentBindingsText(
2098 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2099 IsTemplate = true;
2100 }
2101
2102 SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2103 << BEF << IsTemplate << Description << E->getType();
2104 }
2105
2106 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,StringRef Name)2107 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2108 QualType Type, StringRef Name) {
2109 DeclContext *DC = SemaRef.CurContext;
2110 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2111 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2112 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2113 TInfo, SC_None);
2114 Decl->setImplicit();
2115 return Decl;
2116 }
2117
2118 }
2119
ObjCEnumerationCollection(Expr * Collection)2120 static bool ObjCEnumerationCollection(Expr *Collection) {
2121 return !Collection->isTypeDependent()
2122 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2123 }
2124
2125 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2126 ///
2127 /// C++11 [stmt.ranged]:
2128 /// A range-based for statement is equivalent to
2129 ///
2130 /// {
2131 /// auto && __range = range-init;
2132 /// for ( auto __begin = begin-expr,
2133 /// __end = end-expr;
2134 /// __begin != __end;
2135 /// ++__begin ) {
2136 /// for-range-declaration = *__begin;
2137 /// statement
2138 /// }
2139 /// }
2140 ///
2141 /// The body of the loop is not available yet, since it cannot be analysed until
2142 /// we have determined the type of the for-range-declaration.
ActOnCXXForRangeStmt(Scope * S,SourceLocation ForLoc,SourceLocation CoawaitLoc,Stmt * InitStmt,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc,BuildForRangeKind Kind)2143 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2144 SourceLocation CoawaitLoc, Stmt *InitStmt,
2145 Stmt *First, SourceLocation ColonLoc,
2146 Expr *Range, SourceLocation RParenLoc,
2147 BuildForRangeKind Kind) {
2148 if (!First)
2149 return StmtError();
2150
2151 if (Range && ObjCEnumerationCollection(Range)) {
2152 // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2153 if (InitStmt)
2154 return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2155 << InitStmt->getSourceRange();
2156 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2157 }
2158
2159 DeclStmt *DS = dyn_cast<DeclStmt>(First);
2160 assert(DS && "first part of for range not a decl stmt");
2161
2162 if (!DS->isSingleDecl()) {
2163 Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2164 return StmtError();
2165 }
2166
2167 // This function is responsible for attaching an initializer to LoopVar. We
2168 // must call ActOnInitializerError if we fail to do so.
2169 Decl *LoopVar = DS->getSingleDecl();
2170 if (LoopVar->isInvalidDecl() || !Range ||
2171 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2172 ActOnInitializerError(LoopVar);
2173 return StmtError();
2174 }
2175
2176 // Build the coroutine state immediately and not later during template
2177 // instantiation
2178 if (!CoawaitLoc.isInvalid()) {
2179 if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2180 ActOnInitializerError(LoopVar);
2181 return StmtError();
2182 }
2183 }
2184
2185 // Build auto && __range = range-init
2186 // Divide by 2, since the variables are in the inner scope (loop body).
2187 const auto DepthStr = std::to_string(S->getDepth() / 2);
2188 SourceLocation RangeLoc = Range->getBeginLoc();
2189 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2190 Context.getAutoRRefDeductType(),
2191 std::string("__range") + DepthStr);
2192 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2193 diag::err_for_range_deduction_failure)) {
2194 ActOnInitializerError(LoopVar);
2195 return StmtError();
2196 }
2197
2198 // Claim the type doesn't contain auto: we've already done the checking.
2199 DeclGroupPtrTy RangeGroup =
2200 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2201 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2202 if (RangeDecl.isInvalid()) {
2203 ActOnInitializerError(LoopVar);
2204 return StmtError();
2205 }
2206
2207 StmtResult R = BuildCXXForRangeStmt(
2208 ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2209 /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2210 /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2211 if (R.isInvalid()) {
2212 ActOnInitializerError(LoopVar);
2213 return StmtError();
2214 }
2215
2216 return R;
2217 }
2218
2219 /// Create the initialization, compare, and increment steps for
2220 /// the range-based for loop expression.
2221 /// This function does not handle array-based for loops,
2222 /// which are created in Sema::BuildCXXForRangeStmt.
2223 ///
2224 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2225 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2226 /// CandidateSet and BEF are set and some non-success value is returned on
2227 /// failure.
2228 static Sema::ForRangeStatus
BuildNonArrayForRange(Sema & SemaRef,Expr * BeginRange,Expr * EndRange,QualType RangeType,VarDecl * BeginVar,VarDecl * EndVar,SourceLocation ColonLoc,SourceLocation CoawaitLoc,OverloadCandidateSet * CandidateSet,ExprResult * BeginExpr,ExprResult * EndExpr,BeginEndFunction * BEF)2229 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2230 QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2231 SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2232 OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2233 ExprResult *EndExpr, BeginEndFunction *BEF) {
2234 DeclarationNameInfo BeginNameInfo(
2235 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2236 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2237 ColonLoc);
2238
2239 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2240 Sema::LookupMemberName);
2241 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2242
2243 auto BuildBegin = [&] {
2244 *BEF = BEF_begin;
2245 Sema::ForRangeStatus RangeStatus =
2246 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2247 BeginMemberLookup, CandidateSet,
2248 BeginRange, BeginExpr);
2249
2250 if (RangeStatus != Sema::FRS_Success) {
2251 if (RangeStatus == Sema::FRS_DiagnosticIssued)
2252 SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2253 << ColonLoc << BEF_begin << BeginRange->getType();
2254 return RangeStatus;
2255 }
2256 if (!CoawaitLoc.isInvalid()) {
2257 // FIXME: getCurScope() should not be used during template instantiation.
2258 // We should pick up the set of unqualified lookup results for operator
2259 // co_await during the initial parse.
2260 *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2261 BeginExpr->get());
2262 if (BeginExpr->isInvalid())
2263 return Sema::FRS_DiagnosticIssued;
2264 }
2265 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2266 diag::err_for_range_iter_deduction_failure)) {
2267 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2268 return Sema::FRS_DiagnosticIssued;
2269 }
2270 return Sema::FRS_Success;
2271 };
2272
2273 auto BuildEnd = [&] {
2274 *BEF = BEF_end;
2275 Sema::ForRangeStatus RangeStatus =
2276 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2277 EndMemberLookup, CandidateSet,
2278 EndRange, EndExpr);
2279 if (RangeStatus != Sema::FRS_Success) {
2280 if (RangeStatus == Sema::FRS_DiagnosticIssued)
2281 SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2282 << ColonLoc << BEF_end << EndRange->getType();
2283 return RangeStatus;
2284 }
2285 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2286 diag::err_for_range_iter_deduction_failure)) {
2287 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2288 return Sema::FRS_DiagnosticIssued;
2289 }
2290 return Sema::FRS_Success;
2291 };
2292
2293 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2294 // - if _RangeT is a class type, the unqualified-ids begin and end are
2295 // looked up in the scope of class _RangeT as if by class member access
2296 // lookup (3.4.5), and if either (or both) finds at least one
2297 // declaration, begin-expr and end-expr are __range.begin() and
2298 // __range.end(), respectively;
2299 SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2300 if (BeginMemberLookup.isAmbiguous())
2301 return Sema::FRS_DiagnosticIssued;
2302
2303 SemaRef.LookupQualifiedName(EndMemberLookup, D);
2304 if (EndMemberLookup.isAmbiguous())
2305 return Sema::FRS_DiagnosticIssued;
2306
2307 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2308 // Look up the non-member form of the member we didn't find, first.
2309 // This way we prefer a "no viable 'end'" diagnostic over a "i found
2310 // a 'begin' but ignored it because there was no member 'end'"
2311 // diagnostic.
2312 auto BuildNonmember = [&](
2313 BeginEndFunction BEFFound, LookupResult &Found,
2314 llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2315 llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2316 LookupResult OldFound = std::move(Found);
2317 Found.clear();
2318
2319 if (Sema::ForRangeStatus Result = BuildNotFound())
2320 return Result;
2321
2322 switch (BuildFound()) {
2323 case Sema::FRS_Success:
2324 return Sema::FRS_Success;
2325
2326 case Sema::FRS_NoViableFunction:
2327 CandidateSet->NoteCandidates(
2328 PartialDiagnosticAt(BeginRange->getBeginLoc(),
2329 SemaRef.PDiag(diag::err_for_range_invalid)
2330 << BeginRange->getType() << BEFFound),
2331 SemaRef, OCD_AllCandidates, BeginRange);
2332 LLVM_FALLTHROUGH;
2333
2334 case Sema::FRS_DiagnosticIssued:
2335 for (NamedDecl *D : OldFound) {
2336 SemaRef.Diag(D->getLocation(),
2337 diag::note_for_range_member_begin_end_ignored)
2338 << BeginRange->getType() << BEFFound;
2339 }
2340 return Sema::FRS_DiagnosticIssued;
2341 }
2342 llvm_unreachable("unexpected ForRangeStatus");
2343 };
2344 if (BeginMemberLookup.empty())
2345 return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2346 return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2347 }
2348 } else {
2349 // - otherwise, begin-expr and end-expr are begin(__range) and
2350 // end(__range), respectively, where begin and end are looked up with
2351 // argument-dependent lookup (3.4.2). For the purposes of this name
2352 // lookup, namespace std is an associated namespace.
2353 }
2354
2355 if (Sema::ForRangeStatus Result = BuildBegin())
2356 return Result;
2357 return BuildEnd();
2358 }
2359
2360 /// Speculatively attempt to dereference an invalid range expression.
2361 /// If the attempt fails, this function will return a valid, null StmtResult
2362 /// and emit no diagnostics.
RebuildForRangeWithDereference(Sema & SemaRef,Scope * S,SourceLocation ForLoc,SourceLocation CoawaitLoc,Stmt * InitStmt,Stmt * LoopVarDecl,SourceLocation ColonLoc,Expr * Range,SourceLocation RangeLoc,SourceLocation RParenLoc)2363 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2364 SourceLocation ForLoc,
2365 SourceLocation CoawaitLoc,
2366 Stmt *InitStmt,
2367 Stmt *LoopVarDecl,
2368 SourceLocation ColonLoc,
2369 Expr *Range,
2370 SourceLocation RangeLoc,
2371 SourceLocation RParenLoc) {
2372 // Determine whether we can rebuild the for-range statement with a
2373 // dereferenced range expression.
2374 ExprResult AdjustedRange;
2375 {
2376 Sema::SFINAETrap Trap(SemaRef);
2377
2378 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2379 if (AdjustedRange.isInvalid())
2380 return StmtResult();
2381
2382 StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2383 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2384 AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2385 if (SR.isInvalid())
2386 return StmtResult();
2387 }
2388
2389 // The attempt to dereference worked well enough that it could produce a valid
2390 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2391 // case there are any other (non-fatal) problems with it.
2392 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2393 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2394 return SemaRef.ActOnCXXForRangeStmt(
2395 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2396 AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2397 }
2398
2399 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation CoawaitLoc,Stmt * InitStmt,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * Begin,Stmt * End,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc,BuildForRangeKind Kind)2400 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2401 SourceLocation CoawaitLoc, Stmt *InitStmt,
2402 SourceLocation ColonLoc, Stmt *RangeDecl,
2403 Stmt *Begin, Stmt *End, Expr *Cond,
2404 Expr *Inc, Stmt *LoopVarDecl,
2405 SourceLocation RParenLoc,
2406 BuildForRangeKind Kind) {
2407 // FIXME: This should not be used during template instantiation. We should
2408 // pick up the set of unqualified lookup results for the != and + operators
2409 // in the initial parse.
2410 //
2411 // Testcase (accepts-invalid):
2412 // template<typename T> void f() { for (auto x : T()) {} }
2413 // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2414 // bool operator!=(N::X, N::X); void operator++(N::X);
2415 // void g() { f<N::X>(); }
2416 Scope *S = getCurScope();
2417
2418 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2419 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2420 QualType RangeVarType = RangeVar->getType();
2421
2422 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2423 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2424
2425 StmtResult BeginDeclStmt = Begin;
2426 StmtResult EndDeclStmt = End;
2427 ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2428
2429 if (RangeVarType->isDependentType()) {
2430 // The range is implicitly used as a placeholder when it is dependent.
2431 RangeVar->markUsed(Context);
2432
2433 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2434 // them in properly when we instantiate the loop.
2435 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2436 if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2437 for (auto *Binding : DD->bindings())
2438 Binding->setType(Context.DependentTy);
2439 LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2440 }
2441 } else if (!BeginDeclStmt.get()) {
2442 SourceLocation RangeLoc = RangeVar->getLocation();
2443
2444 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2445
2446 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2447 VK_LValue, ColonLoc);
2448 if (BeginRangeRef.isInvalid())
2449 return StmtError();
2450
2451 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2452 VK_LValue, ColonLoc);
2453 if (EndRangeRef.isInvalid())
2454 return StmtError();
2455
2456 QualType AutoType = Context.getAutoDeductType();
2457 Expr *Range = RangeVar->getInit();
2458 if (!Range)
2459 return StmtError();
2460 QualType RangeType = Range->getType();
2461
2462 if (RequireCompleteType(RangeLoc, RangeType,
2463 diag::err_for_range_incomplete_type))
2464 return StmtError();
2465
2466 // Build auto __begin = begin-expr, __end = end-expr.
2467 // Divide by 2, since the variables are in the inner scope (loop body).
2468 const auto DepthStr = std::to_string(S->getDepth() / 2);
2469 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2470 std::string("__begin") + DepthStr);
2471 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2472 std::string("__end") + DepthStr);
2473
2474 // Build begin-expr and end-expr and attach to __begin and __end variables.
2475 ExprResult BeginExpr, EndExpr;
2476 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2477 // - if _RangeT is an array type, begin-expr and end-expr are __range and
2478 // __range + __bound, respectively, where __bound is the array bound. If
2479 // _RangeT is an array of unknown size or an array of incomplete type,
2480 // the program is ill-formed;
2481
2482 // begin-expr is __range.
2483 BeginExpr = BeginRangeRef;
2484 if (!CoawaitLoc.isInvalid()) {
2485 BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2486 if (BeginExpr.isInvalid())
2487 return StmtError();
2488 }
2489 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2490 diag::err_for_range_iter_deduction_failure)) {
2491 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2492 return StmtError();
2493 }
2494
2495 // Find the array bound.
2496 ExprResult BoundExpr;
2497 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2498 BoundExpr = IntegerLiteral::Create(
2499 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2500 else if (const VariableArrayType *VAT =
2501 dyn_cast<VariableArrayType>(UnqAT)) {
2502 // For a variably modified type we can't just use the expression within
2503 // the array bounds, since we don't want that to be re-evaluated here.
2504 // Rather, we need to determine what it was when the array was first
2505 // created - so we resort to using sizeof(vla)/sizeof(element).
2506 // For e.g.
2507 // void f(int b) {
2508 // int vla[b];
2509 // b = -1; <-- This should not affect the num of iterations below
2510 // for (int &c : vla) { .. }
2511 // }
2512
2513 // FIXME: This results in codegen generating IR that recalculates the
2514 // run-time number of elements (as opposed to just using the IR Value
2515 // that corresponds to the run-time value of each bound that was
2516 // generated when the array was created.) If this proves too embarrassing
2517 // even for unoptimized IR, consider passing a magic-value/cookie to
2518 // codegen that then knows to simply use that initial llvm::Value (that
2519 // corresponds to the bound at time of array creation) within
2520 // getelementptr. But be prepared to pay the price of increasing a
2521 // customized form of coupling between the two components - which could
2522 // be hard to maintain as the codebase evolves.
2523
2524 ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2525 EndVar->getLocation(), UETT_SizeOf,
2526 /*IsType=*/true,
2527 CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2528 VAT->desugar(), RangeLoc))
2529 .getAsOpaquePtr(),
2530 EndVar->getSourceRange());
2531 if (SizeOfVLAExprR.isInvalid())
2532 return StmtError();
2533
2534 ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2535 EndVar->getLocation(), UETT_SizeOf,
2536 /*IsType=*/true,
2537 CreateParsedType(VAT->desugar(),
2538 Context.getTrivialTypeSourceInfo(
2539 VAT->getElementType(), RangeLoc))
2540 .getAsOpaquePtr(),
2541 EndVar->getSourceRange());
2542 if (SizeOfEachElementExprR.isInvalid())
2543 return StmtError();
2544
2545 BoundExpr =
2546 ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2547 SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2548 if (BoundExpr.isInvalid())
2549 return StmtError();
2550
2551 } else {
2552 // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2553 // UnqAT is not incomplete and Range is not type-dependent.
2554 llvm_unreachable("Unexpected array type in for-range");
2555 }
2556
2557 // end-expr is __range + __bound.
2558 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2559 BoundExpr.get());
2560 if (EndExpr.isInvalid())
2561 return StmtError();
2562 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2563 diag::err_for_range_iter_deduction_failure)) {
2564 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2565 return StmtError();
2566 }
2567 } else {
2568 OverloadCandidateSet CandidateSet(RangeLoc,
2569 OverloadCandidateSet::CSK_Normal);
2570 BeginEndFunction BEFFailure;
2571 ForRangeStatus RangeStatus = BuildNonArrayForRange(
2572 *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2573 EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2574 &BEFFailure);
2575
2576 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2577 BEFFailure == BEF_begin) {
2578 // If the range is being built from an array parameter, emit a
2579 // a diagnostic that it is being treated as a pointer.
2580 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2581 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2582 QualType ArrayTy = PVD->getOriginalType();
2583 QualType PointerTy = PVD->getType();
2584 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2585 Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2586 << RangeLoc << PVD << ArrayTy << PointerTy;
2587 Diag(PVD->getLocation(), diag::note_declared_at);
2588 return StmtError();
2589 }
2590 }
2591 }
2592
2593 // If building the range failed, try dereferencing the range expression
2594 // unless a diagnostic was issued or the end function is problematic.
2595 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2596 CoawaitLoc, InitStmt,
2597 LoopVarDecl, ColonLoc,
2598 Range, RangeLoc,
2599 RParenLoc);
2600 if (SR.isInvalid() || SR.isUsable())
2601 return SR;
2602 }
2603
2604 // Otherwise, emit diagnostics if we haven't already.
2605 if (RangeStatus == FRS_NoViableFunction) {
2606 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2607 CandidateSet.NoteCandidates(
2608 PartialDiagnosticAt(Range->getBeginLoc(),
2609 PDiag(diag::err_for_range_invalid)
2610 << RangeLoc << Range->getType()
2611 << BEFFailure),
2612 *this, OCD_AllCandidates, Range);
2613 }
2614 // Return an error if no fix was discovered.
2615 if (RangeStatus != FRS_Success)
2616 return StmtError();
2617 }
2618
2619 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2620 "invalid range expression in for loop");
2621
2622 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2623 // C++1z removes this restriction.
2624 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2625 if (!Context.hasSameType(BeginType, EndType)) {
2626 Diag(RangeLoc, getLangOpts().CPlusPlus17
2627 ? diag::warn_for_range_begin_end_types_differ
2628 : diag::ext_for_range_begin_end_types_differ)
2629 << BeginType << EndType;
2630 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2631 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2632 }
2633
2634 BeginDeclStmt =
2635 ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2636 EndDeclStmt =
2637 ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2638
2639 const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2640 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2641 VK_LValue, ColonLoc);
2642 if (BeginRef.isInvalid())
2643 return StmtError();
2644
2645 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2646 VK_LValue, ColonLoc);
2647 if (EndRef.isInvalid())
2648 return StmtError();
2649
2650 // Build and check __begin != __end expression.
2651 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2652 BeginRef.get(), EndRef.get());
2653 if (!NotEqExpr.isInvalid())
2654 NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2655 if (!NotEqExpr.isInvalid())
2656 NotEqExpr =
2657 ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2658 if (NotEqExpr.isInvalid()) {
2659 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2660 << RangeLoc << 0 << BeginRangeRef.get()->getType();
2661 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2662 if (!Context.hasSameType(BeginType, EndType))
2663 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2664 return StmtError();
2665 }
2666
2667 // Build and check ++__begin expression.
2668 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2669 VK_LValue, ColonLoc);
2670 if (BeginRef.isInvalid())
2671 return StmtError();
2672
2673 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2674 if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2675 // FIXME: getCurScope() should not be used during template instantiation.
2676 // We should pick up the set of unqualified lookup results for operator
2677 // co_await during the initial parse.
2678 IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2679 if (!IncrExpr.isInvalid())
2680 IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
2681 if (IncrExpr.isInvalid()) {
2682 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2683 << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2684 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2685 return StmtError();
2686 }
2687
2688 // Build and check *__begin expression.
2689 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2690 VK_LValue, ColonLoc);
2691 if (BeginRef.isInvalid())
2692 return StmtError();
2693
2694 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2695 if (DerefExpr.isInvalid()) {
2696 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2697 << RangeLoc << 1 << BeginRangeRef.get()->getType();
2698 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2699 return StmtError();
2700 }
2701
2702 // Attach *__begin as initializer for VD. Don't touch it if we're just
2703 // trying to determine whether this would be a valid range.
2704 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2705 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2706 if (LoopVar->isInvalidDecl() ||
2707 (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
2708 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2709 }
2710 }
2711
2712 // Don't bother to actually allocate the result if we're just trying to
2713 // determine whether it would be valid.
2714 if (Kind == BFRK_Check)
2715 return StmtResult();
2716
2717 // In OpenMP loop region loop control variable must be private. Perform
2718 // analysis of first part (if any).
2719 if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
2720 ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
2721
2722 return new (Context) CXXForRangeStmt(
2723 InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2724 cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2725 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2726 ColonLoc, RParenLoc);
2727 }
2728
2729 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2730 /// statement.
FinishObjCForCollectionStmt(Stmt * S,Stmt * B)2731 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2732 if (!S || !B)
2733 return StmtError();
2734 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2735
2736 ForStmt->setBody(B);
2737 return S;
2738 }
2739
2740 // Warn when the loop variable is a const reference that creates a copy.
2741 // Suggest using the non-reference type for copies. If a copy can be prevented
2742 // suggest the const reference type that would do so.
2743 // For instance, given "for (const &Foo : Range)", suggest
2744 // "for (const Foo : Range)" to denote a copy is made for the loop. If
2745 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2746 // the copy altogether.
DiagnoseForRangeReferenceVariableCopies(Sema & SemaRef,const VarDecl * VD,QualType RangeInitType)2747 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2748 const VarDecl *VD,
2749 QualType RangeInitType) {
2750 const Expr *InitExpr = VD->getInit();
2751 if (!InitExpr)
2752 return;
2753
2754 QualType VariableType = VD->getType();
2755
2756 if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2757 if (!Cleanups->cleanupsHaveSideEffects())
2758 InitExpr = Cleanups->getSubExpr();
2759
2760 const MaterializeTemporaryExpr *MTE =
2761 dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2762
2763 // No copy made.
2764 if (!MTE)
2765 return;
2766
2767 const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
2768
2769 // Searching for either UnaryOperator for dereference of a pointer or
2770 // CXXOperatorCallExpr for handling iterators.
2771 while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2772 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2773 E = CCE->getArg(0);
2774 } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2775 const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2776 E = ME->getBase();
2777 } else {
2778 const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2779 E = MTE->getSubExpr();
2780 }
2781 E = E->IgnoreImpCasts();
2782 }
2783
2784 QualType ReferenceReturnType;
2785 if (isa<UnaryOperator>(E)) {
2786 ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
2787 } else {
2788 const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2789 const FunctionDecl *FD = Call->getDirectCallee();
2790 QualType ReturnType = FD->getReturnType();
2791 if (ReturnType->isReferenceType())
2792 ReferenceReturnType = ReturnType;
2793 }
2794
2795 if (!ReferenceReturnType.isNull()) {
2796 // Loop variable creates a temporary. Suggest either to go with
2797 // non-reference loop variable to indicate a copy is made, or
2798 // the correct type to bind a const reference.
2799 SemaRef.Diag(VD->getLocation(),
2800 diag::warn_for_range_const_ref_binds_temp_built_from_ref)
2801 << VD << VariableType << ReferenceReturnType;
2802 QualType NonReferenceType = VariableType.getNonReferenceType();
2803 NonReferenceType.removeLocalConst();
2804 QualType NewReferenceType =
2805 SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2806 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
2807 << NonReferenceType << NewReferenceType << VD->getSourceRange()
2808 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2809 } else if (!VariableType->isRValueReferenceType()) {
2810 // The range always returns a copy, so a temporary is always created.
2811 // Suggest removing the reference from the loop variable.
2812 // If the type is a rvalue reference do not warn since that changes the
2813 // semantic of the code.
2814 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
2815 << VD << RangeInitType;
2816 QualType NonReferenceType = VariableType.getNonReferenceType();
2817 NonReferenceType.removeLocalConst();
2818 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
2819 << NonReferenceType << VD->getSourceRange()
2820 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2821 }
2822 }
2823
2824 /// Determines whether the @p VariableType's declaration is a record with the
2825 /// clang::trivial_abi attribute.
hasTrivialABIAttr(QualType VariableType)2826 static bool hasTrivialABIAttr(QualType VariableType) {
2827 if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
2828 return RD->hasAttr<TrivialABIAttr>();
2829
2830 return false;
2831 }
2832
2833 // Warns when the loop variable can be changed to a reference type to
2834 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
2835 // "for (const Foo &x : Range)" if this form does not make a copy.
DiagnoseForRangeConstVariableCopies(Sema & SemaRef,const VarDecl * VD)2836 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
2837 const VarDecl *VD) {
2838 const Expr *InitExpr = VD->getInit();
2839 if (!InitExpr)
2840 return;
2841
2842 QualType VariableType = VD->getType();
2843
2844 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2845 if (!CE->getConstructor()->isCopyConstructor())
2846 return;
2847 } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2848 if (CE->getCastKind() != CK_LValueToRValue)
2849 return;
2850 } else {
2851 return;
2852 }
2853
2854 // Small trivially copyable types are cheap to copy. Do not emit the
2855 // diagnostic for these instances. 64 bytes is a common size of a cache line.
2856 // (The function `getTypeSize` returns the size in bits.)
2857 ASTContext &Ctx = SemaRef.Context;
2858 if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
2859 (VariableType.isTriviallyCopyableType(Ctx) ||
2860 hasTrivialABIAttr(VariableType)))
2861 return;
2862
2863 // Suggest changing from a const variable to a const reference variable
2864 // if doing so will prevent a copy.
2865 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2866 << VD << VariableType;
2867 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
2868 << SemaRef.Context.getLValueReferenceType(VariableType)
2869 << VD->getSourceRange()
2870 << FixItHint::CreateInsertion(VD->getLocation(), "&");
2871 }
2872
2873 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2874 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
2875 /// using "const foo x" to show that a copy is made
2876 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
2877 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
2878 /// prevent the copy.
2879 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2880 /// Suggest "const foo &x" to prevent the copy.
DiagnoseForRangeVariableCopies(Sema & SemaRef,const CXXForRangeStmt * ForStmt)2881 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
2882 const CXXForRangeStmt *ForStmt) {
2883 if (SemaRef.inTemplateInstantiation())
2884 return;
2885
2886 if (SemaRef.Diags.isIgnored(
2887 diag::warn_for_range_const_ref_binds_temp_built_from_ref,
2888 ForStmt->getBeginLoc()) &&
2889 SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
2890 ForStmt->getBeginLoc()) &&
2891 SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2892 ForStmt->getBeginLoc())) {
2893 return;
2894 }
2895
2896 const VarDecl *VD = ForStmt->getLoopVariable();
2897 if (!VD)
2898 return;
2899
2900 QualType VariableType = VD->getType();
2901
2902 if (VariableType->isIncompleteType())
2903 return;
2904
2905 const Expr *InitExpr = VD->getInit();
2906 if (!InitExpr)
2907 return;
2908
2909 if (InitExpr->getExprLoc().isMacroID())
2910 return;
2911
2912 if (VariableType->isReferenceType()) {
2913 DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
2914 ForStmt->getRangeInit()->getType());
2915 } else if (VariableType.isConstQualified()) {
2916 DiagnoseForRangeConstVariableCopies(SemaRef, VD);
2917 }
2918 }
2919
2920 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2921 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2922 /// body cannot be performed until after the type of the range variable is
2923 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)2924 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2925 if (!S || !B)
2926 return StmtError();
2927
2928 if (isa<ObjCForCollectionStmt>(S))
2929 return FinishObjCForCollectionStmt(S, B);
2930
2931 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2932 ForStmt->setBody(B);
2933
2934 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2935 diag::warn_empty_range_based_for_body);
2936
2937 DiagnoseForRangeVariableCopies(*this, ForStmt);
2938
2939 return S;
2940 }
2941
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)2942 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2943 SourceLocation LabelLoc,
2944 LabelDecl *TheDecl) {
2945 setFunctionHasBranchIntoScope();
2946 TheDecl->markUsed(Context);
2947 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2948 }
2949
2950 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)2951 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2952 Expr *E) {
2953 // Convert operand to void*
2954 if (!E->isTypeDependent()) {
2955 QualType ETy = E->getType();
2956 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2957 ExprResult ExprRes = E;
2958 AssignConvertType ConvTy =
2959 CheckSingleAssignmentConstraints(DestTy, ExprRes);
2960 if (ExprRes.isInvalid())
2961 return StmtError();
2962 E = ExprRes.get();
2963 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2964 return StmtError();
2965 }
2966
2967 ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2968 if (ExprRes.isInvalid())
2969 return StmtError();
2970 E = ExprRes.get();
2971
2972 setFunctionHasIndirectGoto();
2973
2974 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2975 }
2976
CheckJumpOutOfSEHFinally(Sema & S,SourceLocation Loc,const Scope & DestScope)2977 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
2978 const Scope &DestScope) {
2979 if (!S.CurrentSEHFinally.empty() &&
2980 DestScope.Contains(*S.CurrentSEHFinally.back())) {
2981 S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2982 }
2983 }
2984
2985 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)2986 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2987 Scope *S = CurScope->getContinueParent();
2988 if (!S) {
2989 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2990 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2991 }
2992 CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2993
2994 return new (Context) ContinueStmt(ContinueLoc);
2995 }
2996
2997 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)2998 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2999 Scope *S = CurScope->getBreakParent();
3000 if (!S) {
3001 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3002 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3003 }
3004 if (S->isOpenMPLoopScope())
3005 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3006 << "break");
3007 CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3008
3009 return new (Context) BreakStmt(BreakLoc);
3010 }
3011
3012 /// Determine whether the given expression is a candidate for
3013 /// copy elision in either a return statement or a throw expression.
3014 ///
3015 /// \param ReturnType If we're determining the copy elision candidate for
3016 /// a return statement, this is the return type of the function. If we're
3017 /// determining the copy elision candidate for a throw expression, this will
3018 /// be a NULL type.
3019 ///
3020 /// \param E The expression being returned from the function or block, or
3021 /// being thrown.
3022 ///
3023 /// \param CESK Whether we allow function parameters or
3024 /// id-expressions that could be moved out of the function to be considered NRVO
3025 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
3026 /// determine whether we should try to move as part of a return or throw (which
3027 /// does allow function parameters).
3028 ///
3029 /// \returns The NRVO candidate variable, if the return statement may use the
3030 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,CopyElisionSemanticsKind CESK)3031 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E,
3032 CopyElisionSemanticsKind CESK) {
3033 // - in a return statement in a function [where] ...
3034 // ... the expression is the name of a non-volatile automatic object ...
3035 DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3036 if (!DR || DR->refersToEnclosingVariableOrCapture())
3037 return nullptr;
3038 VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
3039 if (!VD)
3040 return nullptr;
3041
3042 if (isCopyElisionCandidate(ReturnType, VD, CESK))
3043 return VD;
3044 return nullptr;
3045 }
3046
isCopyElisionCandidate(QualType ReturnType,const VarDecl * VD,CopyElisionSemanticsKind CESK)3047 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
3048 CopyElisionSemanticsKind CESK) {
3049 QualType VDType = VD->getType();
3050 // - in a return statement in a function with ...
3051 // ... a class return type ...
3052 if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
3053 if (!ReturnType->isRecordType())
3054 return false;
3055 // ... the same cv-unqualified type as the function return type ...
3056 // When considering moving this expression out, allow dissimilar types.
3057 if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
3058 !Context.hasSameUnqualifiedType(ReturnType, VDType))
3059 return false;
3060 }
3061
3062 // ...object (other than a function or catch-clause parameter)...
3063 if (VD->getKind() != Decl::Var &&
3064 !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
3065 return false;
3066 if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
3067 return false;
3068
3069 // ...automatic...
3070 if (!VD->hasLocalStorage()) return false;
3071
3072 // Return false if VD is a __block variable. We don't want to implicitly move
3073 // out of a __block variable during a return because we cannot assume the
3074 // variable will no longer be used.
3075 if (VD->hasAttr<BlocksAttr>()) return false;
3076
3077 // ...non-volatile...
3078 if (VD->getType().isVolatileQualified())
3079 return false;
3080
3081 if (CESK & CES_AllowDifferentTypes)
3082 return true;
3083
3084 // Variables with higher required alignment than their type's ABI
3085 // alignment cannot use NRVO.
3086 if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
3087 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
3088 return false;
3089
3090 return true;
3091 }
3092
3093 /// Try to perform the initialization of a potentially-movable value,
3094 /// which is the operand to a return or throw statement.
3095 ///
3096 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3097 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3098 /// then falls back to treating them as lvalues if that failed.
3099 ///
3100 /// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
3101 /// resolutions that find non-constructors, such as derived-to-base conversions
3102 /// or `operator T()&&` member functions. If false, do consider such
3103 /// conversion sequences.
3104 ///
3105 /// \param Res We will fill this in if move-initialization was possible.
3106 /// If move-initialization is not possible, such that we must fall back to
3107 /// treating the operand as an lvalue, we will leave Res in its original
3108 /// invalid state.
TryMoveInitialization(Sema & S,const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * & Value,bool ConvertingConstructorsOnly,ExprResult & Res)3109 static void TryMoveInitialization(Sema& S,
3110 const InitializedEntity &Entity,
3111 const VarDecl *NRVOCandidate,
3112 QualType ResultType,
3113 Expr *&Value,
3114 bool ConvertingConstructorsOnly,
3115 ExprResult &Res) {
3116 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3117 CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3118
3119 Expr *InitExpr = &AsRvalue;
3120
3121 InitializationKind Kind = InitializationKind::CreateCopy(
3122 Value->getBeginLoc(), Value->getBeginLoc());
3123
3124 InitializationSequence Seq(S, Entity, Kind, InitExpr);
3125
3126 if (!Seq)
3127 return;
3128
3129 for (const InitializationSequence::Step &Step : Seq.steps()) {
3130 if (Step.Kind != InitializationSequence::SK_ConstructorInitialization &&
3131 Step.Kind != InitializationSequence::SK_UserConversion)
3132 continue;
3133
3134 FunctionDecl *FD = Step.Function.Function;
3135 if (ConvertingConstructorsOnly) {
3136 if (isa<CXXConstructorDecl>(FD)) {
3137 // C++14 [class.copy]p32:
3138 // [...] If the first overload resolution fails or was not performed,
3139 // or if the type of the first parameter of the selected constructor
3140 // is not an rvalue reference to the object's type (possibly
3141 // cv-qualified), overload resolution is performed again, considering
3142 // the object as an lvalue.
3143 const RValueReferenceType *RRefType =
3144 FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>();
3145 if (!RRefType)
3146 break;
3147 if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
3148 NRVOCandidate->getType()))
3149 break;
3150 } else {
3151 continue;
3152 }
3153 } else {
3154 if (isa<CXXConstructorDecl>(FD)) {
3155 // Check that overload resolution selected a constructor taking an
3156 // rvalue reference. If it selected an lvalue reference, then we
3157 // didn't need to cast this thing to an rvalue in the first place.
3158 if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
3159 break;
3160 } else if (isa<CXXMethodDecl>(FD)) {
3161 // Check that overload resolution selected a conversion operator
3162 // taking an rvalue reference.
3163 if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
3164 break;
3165 } else {
3166 continue;
3167 }
3168 }
3169
3170 // Promote "AsRvalue" to the heap, since we now need this
3171 // expression node to persist.
3172 Value =
3173 ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp, Value,
3174 nullptr, VK_XValue, FPOptionsOverride());
3175
3176 // Complete type-checking the initialization of the return type
3177 // using the constructor we found.
3178 Res = Seq.Perform(S, Entity, Kind, Value);
3179 }
3180 }
3181
3182 /// Perform the initialization of a potentially-movable value, which
3183 /// is the result of return value.
3184 ///
3185 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3186 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3187 /// then falls back to treating them as lvalues if that failed.
3188 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)3189 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
3190 const VarDecl *NRVOCandidate,
3191 QualType ResultType,
3192 Expr *Value,
3193 bool AllowNRVO) {
3194 // C++14 [class.copy]p32:
3195 // When the criteria for elision of a copy/move operation are met, but not for
3196 // an exception-declaration, and the object to be copied is designated by an
3197 // lvalue, or when the expression in a return statement is a (possibly
3198 // parenthesized) id-expression that names an object with automatic storage
3199 // duration declared in the body or parameter-declaration-clause of the
3200 // innermost enclosing function or lambda-expression, overload resolution to
3201 // select the constructor for the copy is first performed as if the object
3202 // were designated by an rvalue.
3203 ExprResult Res = ExprError();
3204
3205 if (AllowNRVO) {
3206 bool AffectedByCWG1579 = false;
3207
3208 if (!NRVOCandidate) {
3209 NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
3210 if (NRVOCandidate &&
3211 !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
3212 Value->getExprLoc())) {
3213 const VarDecl *NRVOCandidateInCXX11 =
3214 getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
3215 AffectedByCWG1579 = (!NRVOCandidateInCXX11);
3216 }
3217 }
3218
3219 if (NRVOCandidate) {
3220 TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
3221 true, Res);
3222 }
3223
3224 if (!Res.isInvalid() && AffectedByCWG1579) {
3225 QualType QT = NRVOCandidate->getType();
3226 if (QT.getNonReferenceType()
3227 .getUnqualifiedType()
3228 .isTriviallyCopyableType(Context)) {
3229 // Adding 'std::move' around a trivially copyable variable is probably
3230 // pointless. Don't suggest it.
3231 } else {
3232 // Common cases for this are returning unique_ptr<Derived> from a
3233 // function of return type unique_ptr<Base>, or returning T from a
3234 // function of return type Expected<T>. This is totally fine in a
3235 // post-CWG1579 world, but was not fine before.
3236 assert(!ResultType.isNull());
3237 SmallString<32> Str;
3238 Str += "std::move(";
3239 Str += NRVOCandidate->getDeclName().getAsString();
3240 Str += ")";
3241 Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
3242 << Value->getSourceRange()
3243 << NRVOCandidate->getDeclName() << ResultType << QT;
3244 Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
3245 << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3246 }
3247 } else if (Res.isInvalid() &&
3248 !getDiagnostics().isIgnored(diag::warn_return_std_move,
3249 Value->getExprLoc())) {
3250 const VarDecl *FakeNRVOCandidate =
3251 getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
3252 if (FakeNRVOCandidate) {
3253 QualType QT = FakeNRVOCandidate->getType();
3254 if (QT->isLValueReferenceType()) {
3255 // Adding 'std::move' around an lvalue reference variable's name is
3256 // dangerous. Don't suggest it.
3257 } else if (QT.getNonReferenceType()
3258 .getUnqualifiedType()
3259 .isTriviallyCopyableType(Context)) {
3260 // Adding 'std::move' around a trivially copyable variable is probably
3261 // pointless. Don't suggest it.
3262 } else {
3263 ExprResult FakeRes = ExprError();
3264 Expr *FakeValue = Value;
3265 TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
3266 FakeValue, false, FakeRes);
3267 if (!FakeRes.isInvalid()) {
3268 bool IsThrow =
3269 (Entity.getKind() == InitializedEntity::EK_Exception);
3270 SmallString<32> Str;
3271 Str += "std::move(";
3272 Str += FakeNRVOCandidate->getDeclName().getAsString();
3273 Str += ")";
3274 Diag(Value->getExprLoc(), diag::warn_return_std_move)
3275 << Value->getSourceRange()
3276 << FakeNRVOCandidate->getDeclName() << IsThrow;
3277 Diag(Value->getExprLoc(), diag::note_add_std_move)
3278 << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3279 }
3280 }
3281 }
3282 }
3283 }
3284
3285 // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3286 // above, or overload resolution failed. Either way, we need to try
3287 // (again) now with the return value expression as written.
3288 if (Res.isInvalid())
3289 Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
3290
3291 return Res;
3292 }
3293
3294 /// Determine whether the declared return type of the specified function
3295 /// contains 'auto'.
hasDeducedReturnType(FunctionDecl * FD)3296 static bool hasDeducedReturnType(FunctionDecl *FD) {
3297 const FunctionProtoType *FPT =
3298 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3299 return FPT->getReturnType()->isUndeducedType();
3300 }
3301
3302 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3303 /// for capturing scopes.
3304 ///
3305 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)3306 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3307 // If this is the first return we've seen, infer the return type.
3308 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3309 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3310 QualType FnRetType = CurCap->ReturnType;
3311 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3312 bool HasDeducedReturnType =
3313 CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3314
3315 if (ExprEvalContexts.back().Context ==
3316 ExpressionEvaluationContext::DiscardedStatement &&
3317 (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3318 if (RetValExp) {
3319 ExprResult ER =
3320 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3321 if (ER.isInvalid())
3322 return StmtError();
3323 RetValExp = ER.get();
3324 }
3325 return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3326 /* NRVOCandidate=*/nullptr);
3327 }
3328
3329 if (HasDeducedReturnType) {
3330 FunctionDecl *FD = CurLambda->CallOperator;
3331 // If we've already decided this lambda is invalid, e.g. because
3332 // we saw a `return` whose expression had an error, don't keep
3333 // trying to deduce its return type.
3334 if (FD->isInvalidDecl())
3335 return StmtError();
3336 // In C++1y, the return type may involve 'auto'.
3337 // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3338 if (CurCap->ReturnType.isNull())
3339 CurCap->ReturnType = FD->getReturnType();
3340
3341 AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3342 assert(AT && "lost auto type from lambda return type");
3343 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3344 FD->setInvalidDecl();
3345 // FIXME: preserve the ill-formed return expression.
3346 return StmtError();
3347 }
3348 CurCap->ReturnType = FnRetType = FD->getReturnType();
3349 } else if (CurCap->HasImplicitReturnType) {
3350 // For blocks/lambdas with implicit return types, we check each return
3351 // statement individually, and deduce the common return type when the block
3352 // or lambda is completed.
3353 // FIXME: Fold this into the 'auto' codepath above.
3354 if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3355 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3356 if (Result.isInvalid())
3357 return StmtError();
3358 RetValExp = Result.get();
3359
3360 // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3361 // when deducing a return type for a lambda-expression (or by extension
3362 // for a block). These rules differ from the stated C++11 rules only in
3363 // that they remove top-level cv-qualifiers.
3364 if (!CurContext->isDependentContext())
3365 FnRetType = RetValExp->getType().getUnqualifiedType();
3366 else
3367 FnRetType = CurCap->ReturnType = Context.DependentTy;
3368 } else {
3369 if (RetValExp) {
3370 // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3371 // initializer list, because it is not an expression (even
3372 // though we represent it as one). We still deduce 'void'.
3373 Diag(ReturnLoc, diag::err_lambda_return_init_list)
3374 << RetValExp->getSourceRange();
3375 }
3376
3377 FnRetType = Context.VoidTy;
3378 }
3379
3380 // Although we'll properly infer the type of the block once it's completed,
3381 // make sure we provide a return type now for better error recovery.
3382 if (CurCap->ReturnType.isNull())
3383 CurCap->ReturnType = FnRetType;
3384 }
3385 assert(!FnRetType.isNull());
3386
3387 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3388 if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3389 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3390 return StmtError();
3391 }
3392 } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3393 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3394 return StmtError();
3395 } else {
3396 assert(CurLambda && "unknown kind of captured scope");
3397 if (CurLambda->CallOperator->getType()
3398 ->castAs<FunctionType>()
3399 ->getNoReturnAttr()) {
3400 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3401 return StmtError();
3402 }
3403 }
3404
3405 // Otherwise, verify that this result type matches the previous one. We are
3406 // pickier with blocks than for normal functions because we don't have GCC
3407 // compatibility to worry about here.
3408 const VarDecl *NRVOCandidate = nullptr;
3409 if (FnRetType->isDependentType()) {
3410 // Delay processing for now. TODO: there are lots of dependent
3411 // types we can conclusively prove aren't void.
3412 } else if (FnRetType->isVoidType()) {
3413 if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3414 !(getLangOpts().CPlusPlus &&
3415 (RetValExp->isTypeDependent() ||
3416 RetValExp->getType()->isVoidType()))) {
3417 if (!getLangOpts().CPlusPlus &&
3418 RetValExp->getType()->isVoidType())
3419 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3420 else {
3421 Diag(ReturnLoc, diag::err_return_block_has_expr);
3422 RetValExp = nullptr;
3423 }
3424 }
3425 } else if (!RetValExp) {
3426 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3427 } else if (!RetValExp->isTypeDependent()) {
3428 // we have a non-void block with an expression, continue checking
3429
3430 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3431 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3432 // function return.
3433
3434 // In C++ the return statement is handled via a copy initialization.
3435 // the C version of which boils down to CheckSingleAssignmentConstraints.
3436 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3437 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3438 FnRetType,
3439 NRVOCandidate != nullptr);
3440 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3441 FnRetType, RetValExp);
3442 if (Res.isInvalid()) {
3443 // FIXME: Cleanup temporaries here, anyway?
3444 return StmtError();
3445 }
3446 RetValExp = Res.get();
3447 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3448 } else {
3449 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3450 }
3451
3452 if (RetValExp) {
3453 ExprResult ER =
3454 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3455 if (ER.isInvalid())
3456 return StmtError();
3457 RetValExp = ER.get();
3458 }
3459 auto *Result =
3460 ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3461
3462 // If we need to check for the named return value optimization,
3463 // or if we need to infer the return type,
3464 // save the return statement in our scope for later processing.
3465 if (CurCap->HasImplicitReturnType || NRVOCandidate)
3466 FunctionScopes.back()->Returns.push_back(Result);
3467
3468 if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3469 FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3470
3471 return Result;
3472 }
3473
3474 namespace {
3475 /// Marks all typedefs in all local classes in a type referenced.
3476 ///
3477 /// In a function like
3478 /// auto f() {
3479 /// struct S { typedef int a; };
3480 /// return S();
3481 /// }
3482 ///
3483 /// the local type escapes and could be referenced in some TUs but not in
3484 /// others. Pretend that all local typedefs are always referenced, to not warn
3485 /// on this. This isn't necessary if f has internal linkage, or the typedef
3486 /// is private.
3487 class LocalTypedefNameReferencer
3488 : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3489 public:
LocalTypedefNameReferencer(Sema & S)3490 LocalTypedefNameReferencer(Sema &S) : S(S) {}
3491 bool VisitRecordType(const RecordType *RT);
3492 private:
3493 Sema &S;
3494 };
VisitRecordType(const RecordType * RT)3495 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3496 auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3497 if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3498 R->isDependentType())
3499 return true;
3500 for (auto *TmpD : R->decls())
3501 if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3502 if (T->getAccess() != AS_private || R->hasFriends())
3503 S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3504 return true;
3505 }
3506 }
3507
getReturnTypeLoc(FunctionDecl * FD) const3508 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3509 return FD->getTypeSourceInfo()
3510 ->getTypeLoc()
3511 .getAsAdjusted<FunctionProtoTypeLoc>()
3512 .getReturnLoc();
3513 }
3514
3515 /// Deduce the return type for a function from a returned expression, per
3516 /// C++1y [dcl.spec.auto]p6.
DeduceFunctionTypeFromReturnExpr(FunctionDecl * FD,SourceLocation ReturnLoc,Expr * & RetExpr,AutoType * AT)3517 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3518 SourceLocation ReturnLoc,
3519 Expr *&RetExpr,
3520 AutoType *AT) {
3521 // If this is the conversion function for a lambda, we choose to deduce it
3522 // type from the corresponding call operator, not from the synthesized return
3523 // statement within it. See Sema::DeduceReturnType.
3524 if (isLambdaConversionOperator(FD))
3525 return false;
3526
3527 TypeLoc OrigResultType = getReturnTypeLoc(FD);
3528 QualType Deduced;
3529
3530 if (RetExpr && isa<InitListExpr>(RetExpr)) {
3531 // If the deduction is for a return statement and the initializer is
3532 // a braced-init-list, the program is ill-formed.
3533 Diag(RetExpr->getExprLoc(),
3534 getCurLambda() ? diag::err_lambda_return_init_list
3535 : diag::err_auto_fn_return_init_list)
3536 << RetExpr->getSourceRange();
3537 return true;
3538 }
3539
3540 if (FD->isDependentContext()) {
3541 // C++1y [dcl.spec.auto]p12:
3542 // Return type deduction [...] occurs when the definition is
3543 // instantiated even if the function body contains a return
3544 // statement with a non-type-dependent operand.
3545 assert(AT->isDeduced() && "should have deduced to dependent type");
3546 return false;
3547 }
3548
3549 if (RetExpr) {
3550 // Otherwise, [...] deduce a value for U using the rules of template
3551 // argument deduction.
3552 DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3553
3554 if (DAR == DAR_Failed && !FD->isInvalidDecl())
3555 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3556 << OrigResultType.getType() << RetExpr->getType();
3557
3558 if (DAR != DAR_Succeeded)
3559 return true;
3560
3561 // If a local type is part of the returned type, mark its fields as
3562 // referenced.
3563 LocalTypedefNameReferencer Referencer(*this);
3564 Referencer.TraverseType(RetExpr->getType());
3565 } else {
3566 // In the case of a return with no operand, the initializer is considered
3567 // to be void().
3568 //
3569 // Deduction here can only succeed if the return type is exactly 'cv auto'
3570 // or 'decltype(auto)', so just check for that case directly.
3571 if (!OrigResultType.getType()->getAs<AutoType>()) {
3572 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3573 << OrigResultType.getType();
3574 return true;
3575 }
3576 // We always deduce U = void in this case.
3577 Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3578 if (Deduced.isNull())
3579 return true;
3580 }
3581
3582 // CUDA: Kernel function must have 'void' return type.
3583 if (getLangOpts().CUDA)
3584 if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) {
3585 Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3586 << FD->getType() << FD->getSourceRange();
3587 return true;
3588 }
3589
3590 // If a function with a declared return type that contains a placeholder type
3591 // has multiple return statements, the return type is deduced for each return
3592 // statement. [...] if the type deduced is not the same in each deduction,
3593 // the program is ill-formed.
3594 QualType DeducedT = AT->getDeducedType();
3595 if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3596 AutoType *NewAT = Deduced->getContainedAutoType();
3597 // It is possible that NewAT->getDeducedType() is null. When that happens,
3598 // we should not crash, instead we ignore this deduction.
3599 if (NewAT->getDeducedType().isNull())
3600 return false;
3601
3602 CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3603 DeducedT);
3604 CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3605 NewAT->getDeducedType());
3606 if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3607 const LambdaScopeInfo *LambdaSI = getCurLambda();
3608 if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3609 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3610 << NewAT->getDeducedType() << DeducedT
3611 << true /*IsLambda*/;
3612 } else {
3613 Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3614 << (AT->isDecltypeAuto() ? 1 : 0)
3615 << NewAT->getDeducedType() << DeducedT;
3616 }
3617 return true;
3618 }
3619 } else if (!FD->isInvalidDecl()) {
3620 // Update all declarations of the function to have the deduced return type.
3621 Context.adjustDeducedFunctionResultType(FD, Deduced);
3622 }
3623
3624 return false;
3625 }
3626
3627 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp,Scope * CurScope)3628 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3629 Scope *CurScope) {
3630 // Correct typos, in case the containing function returns 'auto' and
3631 // RetValExp should determine the deduced type.
3632 ExprResult RetVal = CorrectDelayedTyposInExpr(
3633 RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3634 if (RetVal.isInvalid())
3635 return StmtError();
3636 StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get());
3637 if (R.isInvalid() || ExprEvalContexts.back().Context ==
3638 ExpressionEvaluationContext::DiscardedStatement)
3639 return R;
3640
3641 if (VarDecl *VD =
3642 const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3643 CurScope->addNRVOCandidate(VD);
3644 } else {
3645 CurScope->setNoNRVO();
3646 }
3647
3648 CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3649
3650 return R;
3651 }
3652
BuildReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)3653 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3654 // Check for unexpanded parameter packs.
3655 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3656 return StmtError();
3657
3658 if (isa<CapturingScopeInfo>(getCurFunction()))
3659 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3660
3661 QualType FnRetType;
3662 QualType RelatedRetType;
3663 const AttrVec *Attrs = nullptr;
3664 bool isObjCMethod = false;
3665
3666 if (const FunctionDecl *FD = getCurFunctionDecl()) {
3667 FnRetType = FD->getReturnType();
3668 if (FD->hasAttrs())
3669 Attrs = &FD->getAttrs();
3670 if (FD->isNoReturn())
3671 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3672 if (FD->isMain() && RetValExp)
3673 if (isa<CXXBoolLiteralExpr>(RetValExp))
3674 Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3675 << RetValExp->getSourceRange();
3676 if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3677 if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3678 if (RT->getDecl()->isOrContainsUnion())
3679 Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3680 }
3681 }
3682 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3683 FnRetType = MD->getReturnType();
3684 isObjCMethod = true;
3685 if (MD->hasAttrs())
3686 Attrs = &MD->getAttrs();
3687 if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3688 // In the implementation of a method with a related return type, the
3689 // type used to type-check the validity of return statements within the
3690 // method body is a pointer to the type of the class being implemented.
3691 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3692 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3693 }
3694 } else // If we don't have a function/method context, bail.
3695 return StmtError();
3696
3697 // C++1z: discarded return statements are not considered when deducing a
3698 // return type.
3699 if (ExprEvalContexts.back().Context ==
3700 ExpressionEvaluationContext::DiscardedStatement &&
3701 FnRetType->getContainedAutoType()) {
3702 if (RetValExp) {
3703 ExprResult ER =
3704 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3705 if (ER.isInvalid())
3706 return StmtError();
3707 RetValExp = ER.get();
3708 }
3709 return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3710 /* NRVOCandidate=*/nullptr);
3711 }
3712
3713 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3714 // deduction.
3715 if (getLangOpts().CPlusPlus14) {
3716 if (AutoType *AT = FnRetType->getContainedAutoType()) {
3717 FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3718 // If we've already decided this function is invalid, e.g. because
3719 // we saw a `return` whose expression had an error, don't keep
3720 // trying to deduce its return type.
3721 if (FD->isInvalidDecl())
3722 return StmtError();
3723 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3724 FD->setInvalidDecl();
3725 return StmtError();
3726 } else {
3727 FnRetType = FD->getReturnType();
3728 }
3729 }
3730 }
3731
3732 bool HasDependentReturnType = FnRetType->isDependentType();
3733
3734 ReturnStmt *Result = nullptr;
3735 if (FnRetType->isVoidType()) {
3736 if (RetValExp) {
3737 if (isa<InitListExpr>(RetValExp)) {
3738 // We simply never allow init lists as the return value of void
3739 // functions. This is compatible because this was never allowed before,
3740 // so there's no legacy code to deal with.
3741 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3742 int FunctionKind = 0;
3743 if (isa<ObjCMethodDecl>(CurDecl))
3744 FunctionKind = 1;
3745 else if (isa<CXXConstructorDecl>(CurDecl))
3746 FunctionKind = 2;
3747 else if (isa<CXXDestructorDecl>(CurDecl))
3748 FunctionKind = 3;
3749
3750 Diag(ReturnLoc, diag::err_return_init_list)
3751 << CurDecl << FunctionKind << RetValExp->getSourceRange();
3752
3753 // Drop the expression.
3754 RetValExp = nullptr;
3755 } else if (!RetValExp->isTypeDependent()) {
3756 // C99 6.8.6.4p1 (ext_ since GCC warns)
3757 unsigned D = diag::ext_return_has_expr;
3758 if (RetValExp->getType()->isVoidType()) {
3759 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3760 if (isa<CXXConstructorDecl>(CurDecl) ||
3761 isa<CXXDestructorDecl>(CurDecl))
3762 D = diag::err_ctor_dtor_returns_void;
3763 else
3764 D = diag::ext_return_has_void_expr;
3765 }
3766 else {
3767 ExprResult Result = RetValExp;
3768 Result = IgnoredValueConversions(Result.get());
3769 if (Result.isInvalid())
3770 return StmtError();
3771 RetValExp = Result.get();
3772 RetValExp = ImpCastExprToType(RetValExp,
3773 Context.VoidTy, CK_ToVoid).get();
3774 }
3775 // return of void in constructor/destructor is illegal in C++.
3776 if (D == diag::err_ctor_dtor_returns_void) {
3777 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3778 Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
3779 << RetValExp->getSourceRange();
3780 }
3781 // return (some void expression); is legal in C++.
3782 else if (D != diag::ext_return_has_void_expr ||
3783 !getLangOpts().CPlusPlus) {
3784 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3785
3786 int FunctionKind = 0;
3787 if (isa<ObjCMethodDecl>(CurDecl))
3788 FunctionKind = 1;
3789 else if (isa<CXXConstructorDecl>(CurDecl))
3790 FunctionKind = 2;
3791 else if (isa<CXXDestructorDecl>(CurDecl))
3792 FunctionKind = 3;
3793
3794 Diag(ReturnLoc, D)
3795 << CurDecl << FunctionKind << RetValExp->getSourceRange();
3796 }
3797 }
3798
3799 if (RetValExp) {
3800 ExprResult ER =
3801 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3802 if (ER.isInvalid())
3803 return StmtError();
3804 RetValExp = ER.get();
3805 }
3806 }
3807
3808 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3809 /* NRVOCandidate=*/nullptr);
3810 } else if (!RetValExp && !HasDependentReturnType) {
3811 FunctionDecl *FD = getCurFunctionDecl();
3812
3813 if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3814 // C++11 [stmt.return]p2
3815 Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
3816 << FD << FD->isConsteval();
3817 FD->setInvalidDecl();
3818 } else {
3819 // C99 6.8.6.4p1 (ext_ since GCC warns)
3820 // C90 6.6.6.4p4
3821 unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
3822 : diag::warn_return_missing_expr;
3823 // Note that at this point one of getCurFunctionDecl() or
3824 // getCurMethodDecl() must be non-null (see above).
3825 assert((getCurFunctionDecl() || getCurMethodDecl()) &&
3826 "Not in a FunctionDecl or ObjCMethodDecl?");
3827 bool IsMethod = FD == nullptr;
3828 const NamedDecl *ND =
3829 IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
3830 Diag(ReturnLoc, DiagID) << ND << IsMethod;
3831 }
3832
3833 Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
3834 /* NRVOCandidate=*/nullptr);
3835 } else {
3836 assert(RetValExp || HasDependentReturnType);
3837 const VarDecl *NRVOCandidate = nullptr;
3838
3839 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3840
3841 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3842 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3843 // function return.
3844
3845 // In C++ the return statement is handled via a copy initialization,
3846 // the C version of which boils down to CheckSingleAssignmentConstraints.
3847 if (RetValExp)
3848 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3849 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3850 // we have a non-void function with an expression, continue checking
3851 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3852 RetType,
3853 NRVOCandidate != nullptr);
3854 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3855 RetType, RetValExp);
3856 if (Res.isInvalid()) {
3857 // FIXME: Clean up temporaries here anyway?
3858 return StmtError();
3859 }
3860 RetValExp = Res.getAs<Expr>();
3861
3862 // If we have a related result type, we need to implicitly
3863 // convert back to the formal result type. We can't pretend to
3864 // initialize the result again --- we might end double-retaining
3865 // --- so instead we initialize a notional temporary.
3866 if (!RelatedRetType.isNull()) {
3867 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3868 FnRetType);
3869 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3870 if (Res.isInvalid()) {
3871 // FIXME: Clean up temporaries here anyway?
3872 return StmtError();
3873 }
3874 RetValExp = Res.getAs<Expr>();
3875 }
3876
3877 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3878 getCurFunctionDecl());
3879 }
3880
3881 if (RetValExp) {
3882 ExprResult ER =
3883 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3884 if (ER.isInvalid())
3885 return StmtError();
3886 RetValExp = ER.get();
3887 }
3888 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3889 }
3890
3891 // If we need to check for the named return value optimization, save the
3892 // return statement in our scope for later processing.
3893 if (Result->getNRVOCandidate())
3894 FunctionScopes.back()->Returns.push_back(Result);
3895
3896 if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3897 FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3898
3899 return Result;
3900 }
3901
3902 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)3903 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3904 SourceLocation RParen, Decl *Parm,
3905 Stmt *Body) {
3906 VarDecl *Var = cast_or_null<VarDecl>(Parm);
3907 if (Var && Var->isInvalidDecl())
3908 return StmtError();
3909
3910 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3911 }
3912
3913 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)3914 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3915 return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3916 }
3917
3918 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)3919 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3920 MultiStmtArg CatchStmts, Stmt *Finally) {
3921 if (!getLangOpts().ObjCExceptions)
3922 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3923
3924 setFunctionHasBranchProtectedScope();
3925 unsigned NumCatchStmts = CatchStmts.size();
3926 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3927 NumCatchStmts, Finally);
3928 }
3929
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)3930 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3931 if (Throw) {
3932 ExprResult Result = DefaultLvalueConversion(Throw);
3933 if (Result.isInvalid())
3934 return StmtError();
3935
3936 Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
3937 if (Result.isInvalid())
3938 return StmtError();
3939 Throw = Result.get();
3940
3941 QualType ThrowType = Throw->getType();
3942 // Make sure the expression type is an ObjC pointer or "void *".
3943 if (!ThrowType->isDependentType() &&
3944 !ThrowType->isObjCObjectPointerType()) {
3945 const PointerType *PT = ThrowType->getAs<PointerType>();
3946 if (!PT || !PT->getPointeeType()->isVoidType())
3947 return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3948 << Throw->getType() << Throw->getSourceRange());
3949 }
3950 }
3951
3952 return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3953 }
3954
3955 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)3956 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3957 Scope *CurScope) {
3958 if (!getLangOpts().ObjCExceptions)
3959 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3960
3961 if (!Throw) {
3962 // @throw without an expression designates a rethrow (which must occur
3963 // in the context of an @catch clause).
3964 Scope *AtCatchParent = CurScope;
3965 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3966 AtCatchParent = AtCatchParent->getParent();
3967 if (!AtCatchParent)
3968 return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3969 }
3970 return BuildObjCAtThrowStmt(AtLoc, Throw);
3971 }
3972
3973 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)3974 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3975 ExprResult result = DefaultLvalueConversion(operand);
3976 if (result.isInvalid())
3977 return ExprError();
3978 operand = result.get();
3979
3980 // Make sure the expression type is an ObjC pointer or "void *".
3981 QualType type = operand->getType();
3982 if (!type->isDependentType() &&
3983 !type->isObjCObjectPointerType()) {
3984 const PointerType *pointerType = type->getAs<PointerType>();
3985 if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3986 if (getLangOpts().CPlusPlus) {
3987 if (RequireCompleteType(atLoc, type,
3988 diag::err_incomplete_receiver_type))
3989 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3990 << type << operand->getSourceRange();
3991
3992 ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3993 if (result.isInvalid())
3994 return ExprError();
3995 if (!result.isUsable())
3996 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3997 << type << operand->getSourceRange();
3998
3999 operand = result.get();
4000 } else {
4001 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4002 << type << operand->getSourceRange();
4003 }
4004 }
4005 }
4006
4007 // The operand to @synchronized is a full-expression.
4008 return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
4009 }
4010
4011 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)4012 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
4013 Stmt *SyncBody) {
4014 // We can't jump into or indirect-jump out of a @synchronized block.
4015 setFunctionHasBranchProtectedScope();
4016 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
4017 }
4018
4019 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
4020 /// and creates a proper catch handler from them.
4021 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)4022 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
4023 Stmt *HandlerBlock) {
4024 // There's nothing to test that ActOnExceptionDecl didn't already test.
4025 return new (Context)
4026 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4027 }
4028
4029 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)4030 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
4031 setFunctionHasBranchProtectedScope();
4032 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
4033 }
4034
4035 namespace {
4036 class CatchHandlerType {
4037 QualType QT;
4038 unsigned IsPointer : 1;
4039
4040 // This is a special constructor to be used only with DenseMapInfo's
4041 // getEmptyKey() and getTombstoneKey() functions.
4042 friend struct llvm::DenseMapInfo<CatchHandlerType>;
4043 enum Unique { ForDenseMap };
CatchHandlerType(QualType QT,Unique)4044 CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4045
4046 public:
4047 /// Used when creating a CatchHandlerType from a handler type; will determine
4048 /// whether the type is a pointer or reference and will strip off the top
4049 /// level pointer and cv-qualifiers.
CatchHandlerType(QualType Q)4050 CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4051 if (QT->isPointerType())
4052 IsPointer = true;
4053
4054 if (IsPointer || QT->isReferenceType())
4055 QT = QT->getPointeeType();
4056 QT = QT.getUnqualifiedType();
4057 }
4058
4059 /// Used when creating a CatchHandlerType from a base class type; pretends the
4060 /// type passed in had the pointer qualifier, does not need to get an
4061 /// unqualified type.
CatchHandlerType(QualType QT,bool IsPointer)4062 CatchHandlerType(QualType QT, bool IsPointer)
4063 : QT(QT), IsPointer(IsPointer) {}
4064
underlying() const4065 QualType underlying() const { return QT; }
isPointer() const4066 bool isPointer() const { return IsPointer; }
4067
operator ==(const CatchHandlerType & LHS,const CatchHandlerType & RHS)4068 friend bool operator==(const CatchHandlerType &LHS,
4069 const CatchHandlerType &RHS) {
4070 // If the pointer qualification does not match, we can return early.
4071 if (LHS.IsPointer != RHS.IsPointer)
4072 return false;
4073 // Otherwise, check the underlying type without cv-qualifiers.
4074 return LHS.QT == RHS.QT;
4075 }
4076 };
4077 } // namespace
4078
4079 namespace llvm {
4080 template <> struct DenseMapInfo<CatchHandlerType> {
getEmptyKeyllvm::DenseMapInfo4081 static CatchHandlerType getEmptyKey() {
4082 return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4083 CatchHandlerType::ForDenseMap);
4084 }
4085
getTombstoneKeyllvm::DenseMapInfo4086 static CatchHandlerType getTombstoneKey() {
4087 return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4088 CatchHandlerType::ForDenseMap);
4089 }
4090
getHashValuellvm::DenseMapInfo4091 static unsigned getHashValue(const CatchHandlerType &Base) {
4092 return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4093 }
4094
isEqualllvm::DenseMapInfo4095 static bool isEqual(const CatchHandlerType &LHS,
4096 const CatchHandlerType &RHS) {
4097 return LHS == RHS;
4098 }
4099 };
4100 }
4101
4102 namespace {
4103 class CatchTypePublicBases {
4104 ASTContext &Ctx;
4105 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
4106 const bool CheckAgainstPointer;
4107
4108 CXXCatchStmt *FoundHandler;
4109 CanQualType FoundHandlerType;
4110
4111 public:
CatchTypePublicBases(ASTContext & Ctx,const llvm::DenseMap<CatchHandlerType,CXXCatchStmt * > & T,bool C)4112 CatchTypePublicBases(
4113 ASTContext &Ctx,
4114 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
4115 : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
4116 FoundHandler(nullptr) {}
4117
getFoundHandler() const4118 CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
getFoundHandlerType() const4119 CanQualType getFoundHandlerType() const { return FoundHandlerType; }
4120
operator ()(const CXXBaseSpecifier * S,CXXBasePath &)4121 bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4122 if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4123 CatchHandlerType Check(S->getType(), CheckAgainstPointer);
4124 const auto &M = TypesToCheck;
4125 auto I = M.find(Check);
4126 if (I != M.end()) {
4127 FoundHandler = I->second;
4128 FoundHandlerType = Ctx.getCanonicalType(S->getType());
4129 return true;
4130 }
4131 }
4132 return false;
4133 }
4134 };
4135 }
4136
4137 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4138 /// handlers and creates a try statement from them.
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,ArrayRef<Stmt * > Handlers)4139 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4140 ArrayRef<Stmt *> Handlers) {
4141 // Don't report an error if 'try' is used in system headers.
4142 if (!getLangOpts().CXXExceptions &&
4143 !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4144 // Delay error emission for the OpenMP device code.
4145 targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4146 }
4147
4148 // Exceptions aren't allowed in CUDA device code.
4149 if (getLangOpts().CUDA)
4150 CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4151 << "try" << CurrentCUDATarget();
4152
4153 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4154 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4155
4156 sema::FunctionScopeInfo *FSI = getCurFunction();
4157
4158 // C++ try is incompatible with SEH __try.
4159 if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4160 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4161 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4162 }
4163
4164 const unsigned NumHandlers = Handlers.size();
4165 assert(!Handlers.empty() &&
4166 "The parser shouldn't call this if there are no handlers.");
4167
4168 llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4169 for (unsigned i = 0; i < NumHandlers; ++i) {
4170 CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4171
4172 // Diagnose when the handler is a catch-all handler, but it isn't the last
4173 // handler for the try block. [except.handle]p5. Also, skip exception
4174 // declarations that are invalid, since we can't usefully report on them.
4175 if (!H->getExceptionDecl()) {
4176 if (i < NumHandlers - 1)
4177 return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4178 continue;
4179 } else if (H->getExceptionDecl()->isInvalidDecl())
4180 continue;
4181
4182 // Walk the type hierarchy to diagnose when this type has already been
4183 // handled (duplication), or cannot be handled (derivation inversion). We
4184 // ignore top-level cv-qualifiers, per [except.handle]p3
4185 CatchHandlerType HandlerCHT =
4186 (QualType)Context.getCanonicalType(H->getCaughtType());
4187
4188 // We can ignore whether the type is a reference or a pointer; we need the
4189 // underlying declaration type in order to get at the underlying record
4190 // decl, if there is one.
4191 QualType Underlying = HandlerCHT.underlying();
4192 if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4193 if (!RD->hasDefinition())
4194 continue;
4195 // Check that none of the public, unambiguous base classes are in the
4196 // map ([except.handle]p1). Give the base classes the same pointer
4197 // qualification as the original type we are basing off of. This allows
4198 // comparison against the handler type using the same top-level pointer
4199 // as the original type.
4200 CXXBasePaths Paths;
4201 Paths.setOrigin(RD);
4202 CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4203 if (RD->lookupInBases(CTPB, Paths)) {
4204 const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4205 if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4206 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4207 diag::warn_exception_caught_by_earlier_handler)
4208 << H->getCaughtType();
4209 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4210 diag::note_previous_exception_handler)
4211 << Problem->getCaughtType();
4212 }
4213 }
4214 }
4215
4216 // Add the type the list of ones we have handled; diagnose if we've already
4217 // handled it.
4218 auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4219 if (!R.second) {
4220 const CXXCatchStmt *Problem = R.first->second;
4221 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4222 diag::warn_exception_caught_by_earlier_handler)
4223 << H->getCaughtType();
4224 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4225 diag::note_previous_exception_handler)
4226 << Problem->getCaughtType();
4227 }
4228 }
4229
4230 FSI->setHasCXXTry(TryLoc);
4231
4232 return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4233 }
4234
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)4235 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4236 Stmt *TryBlock, Stmt *Handler) {
4237 assert(TryBlock && Handler);
4238
4239 sema::FunctionScopeInfo *FSI = getCurFunction();
4240
4241 // SEH __try is incompatible with C++ try. Borland appears to support this,
4242 // however.
4243 if (!getLangOpts().Borland) {
4244 if (FSI->FirstCXXTryLoc.isValid()) {
4245 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4246 Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
4247 }
4248 }
4249
4250 FSI->setHasSEHTry(TryLoc);
4251
4252 // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4253 // track if they use SEH.
4254 DeclContext *DC = CurContext;
4255 while (DC && !DC->isFunctionOrMethod())
4256 DC = DC->getParent();
4257 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4258 if (FD)
4259 FD->setUsesSEHTry(true);
4260 else
4261 Diag(TryLoc, diag::err_seh_try_outside_functions);
4262
4263 // Reject __try on unsupported targets.
4264 if (!Context.getTargetInfo().isSEHTrySupported())
4265 Diag(TryLoc, diag::err_seh_try_unsupported);
4266
4267 return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4268 }
4269
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)4270 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4271 Stmt *Block) {
4272 assert(FilterExpr && Block);
4273 QualType FTy = FilterExpr->getType();
4274 if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4275 return StmtError(
4276 Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4277 << FTy);
4278 }
4279 return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4280 }
4281
ActOnStartSEHFinallyBlock()4282 void Sema::ActOnStartSEHFinallyBlock() {
4283 CurrentSEHFinally.push_back(CurScope);
4284 }
4285
ActOnAbortSEHFinallyBlock()4286 void Sema::ActOnAbortSEHFinallyBlock() {
4287 CurrentSEHFinally.pop_back();
4288 }
4289
ActOnFinishSEHFinallyBlock(SourceLocation Loc,Stmt * Block)4290 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4291 assert(Block);
4292 CurrentSEHFinally.pop_back();
4293 return SEHFinallyStmt::Create(Context, Loc, Block);
4294 }
4295
4296 StmtResult
ActOnSEHLeaveStmt(SourceLocation Loc,Scope * CurScope)4297 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4298 Scope *SEHTryParent = CurScope;
4299 while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4300 SEHTryParent = SEHTryParent->getParent();
4301 if (!SEHTryParent)
4302 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4303 CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4304
4305 return new (Context) SEHLeaveStmt(Loc);
4306 }
4307
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)4308 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4309 bool IsIfExists,
4310 NestedNameSpecifierLoc QualifierLoc,
4311 DeclarationNameInfo NameInfo,
4312 Stmt *Nested)
4313 {
4314 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4315 QualifierLoc, NameInfo,
4316 cast<CompoundStmt>(Nested));
4317 }
4318
4319
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)4320 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4321 bool IsIfExists,
4322 CXXScopeSpec &SS,
4323 UnqualifiedId &Name,
4324 Stmt *Nested) {
4325 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4326 SS.getWithLocInContext(Context),
4327 GetNameFromUnqualifiedId(Name),
4328 Nested);
4329 }
4330
4331 RecordDecl*
CreateCapturedStmtRecordDecl(CapturedDecl * & CD,SourceLocation Loc,unsigned NumParams)4332 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4333 unsigned NumParams) {
4334 DeclContext *DC = CurContext;
4335 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4336 DC = DC->getParent();
4337
4338 RecordDecl *RD = nullptr;
4339 if (getLangOpts().CPlusPlus)
4340 RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4341 /*Id=*/nullptr);
4342 else
4343 RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4344
4345 RD->setCapturedRecord();
4346 DC->addDecl(RD);
4347 RD->setImplicit();
4348 RD->startDefinition();
4349
4350 assert(NumParams > 0 && "CapturedStmt requires context parameter");
4351 CD = CapturedDecl::Create(Context, CurContext, NumParams);
4352 DC->addDecl(CD);
4353 return RD;
4354 }
4355
4356 static bool
buildCapturedStmtCaptureList(Sema & S,CapturedRegionScopeInfo * RSI,SmallVectorImpl<CapturedStmt::Capture> & Captures,SmallVectorImpl<Expr * > & CaptureInits)4357 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4358 SmallVectorImpl<CapturedStmt::Capture> &Captures,
4359 SmallVectorImpl<Expr *> &CaptureInits) {
4360 for (const sema::Capture &Cap : RSI->Captures) {
4361 if (Cap.isInvalid())
4362 continue;
4363
4364 // Form the initializer for the capture.
4365 ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4366 RSI->CapRegionKind == CR_OpenMP);
4367
4368 // FIXME: Bail out now if the capture is not used and the initializer has
4369 // no side-effects.
4370
4371 // Create a field for this capture.
4372 FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4373
4374 // Add the capture to our list of captures.
4375 if (Cap.isThisCapture()) {
4376 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4377 CapturedStmt::VCK_This));
4378 } else if (Cap.isVLATypeCapture()) {
4379 Captures.push_back(
4380 CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4381 } else {
4382 assert(Cap.isVariableCapture() && "unknown kind of capture");
4383
4384 if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4385 S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4386
4387 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4388 Cap.isReferenceCapture()
4389 ? CapturedStmt::VCK_ByRef
4390 : CapturedStmt::VCK_ByCopy,
4391 Cap.getVariable()));
4392 }
4393 CaptureInits.push_back(Init.get());
4394 }
4395 return false;
4396 }
4397
ActOnCapturedRegionStart(SourceLocation Loc,Scope * CurScope,CapturedRegionKind Kind,unsigned NumParams)4398 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4399 CapturedRegionKind Kind,
4400 unsigned NumParams) {
4401 CapturedDecl *CD = nullptr;
4402 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4403
4404 // Build the context parameter
4405 DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4406 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4407 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4408 auto *Param =
4409 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4410 ImplicitParamDecl::CapturedContext);
4411 DC->addDecl(Param);
4412
4413 CD->setContextParam(0, Param);
4414
4415 // Enter the capturing scope for this captured region.
4416 PushCapturedRegionScope(CurScope, CD, RD, Kind);
4417
4418 if (CurScope)
4419 PushDeclContext(CurScope, CD);
4420 else
4421 CurContext = CD;
4422
4423 PushExpressionEvaluationContext(
4424 ExpressionEvaluationContext::PotentiallyEvaluated);
4425 }
4426
ActOnCapturedRegionStart(SourceLocation Loc,Scope * CurScope,CapturedRegionKind Kind,ArrayRef<CapturedParamNameType> Params,unsigned OpenMPCaptureLevel)4427 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4428 CapturedRegionKind Kind,
4429 ArrayRef<CapturedParamNameType> Params,
4430 unsigned OpenMPCaptureLevel) {
4431 CapturedDecl *CD = nullptr;
4432 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4433
4434 // Build the context parameter
4435 DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4436 bool ContextIsFound = false;
4437 unsigned ParamNum = 0;
4438 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4439 E = Params.end();
4440 I != E; ++I, ++ParamNum) {
4441 if (I->second.isNull()) {
4442 assert(!ContextIsFound &&
4443 "null type has been found already for '__context' parameter");
4444 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4445 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4446 .withConst()
4447 .withRestrict();
4448 auto *Param =
4449 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4450 ImplicitParamDecl::CapturedContext);
4451 DC->addDecl(Param);
4452 CD->setContextParam(ParamNum, Param);
4453 ContextIsFound = true;
4454 } else {
4455 IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4456 auto *Param =
4457 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4458 ImplicitParamDecl::CapturedContext);
4459 DC->addDecl(Param);
4460 CD->setParam(ParamNum, Param);
4461 }
4462 }
4463 assert(ContextIsFound && "no null type for '__context' parameter");
4464 if (!ContextIsFound) {
4465 // Add __context implicitly if it is not specified.
4466 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4467 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4468 auto *Param =
4469 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4470 ImplicitParamDecl::CapturedContext);
4471 DC->addDecl(Param);
4472 CD->setContextParam(ParamNum, Param);
4473 }
4474 // Enter the capturing scope for this captured region.
4475 PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4476
4477 if (CurScope)
4478 PushDeclContext(CurScope, CD);
4479 else
4480 CurContext = CD;
4481
4482 PushExpressionEvaluationContext(
4483 ExpressionEvaluationContext::PotentiallyEvaluated);
4484 }
4485
ActOnCapturedRegionError()4486 void Sema::ActOnCapturedRegionError() {
4487 DiscardCleanupsInEvaluationContext();
4488 PopExpressionEvaluationContext();
4489 PopDeclContext();
4490 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4491 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4492
4493 RecordDecl *Record = RSI->TheRecordDecl;
4494 Record->setInvalidDecl();
4495
4496 SmallVector<Decl*, 4> Fields(Record->fields());
4497 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4498 SourceLocation(), SourceLocation(), ParsedAttributesView());
4499 }
4500
ActOnCapturedRegionEnd(Stmt * S)4501 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4502 // Leave the captured scope before we start creating captures in the
4503 // enclosing scope.
4504 DiscardCleanupsInEvaluationContext();
4505 PopExpressionEvaluationContext();
4506 PopDeclContext();
4507 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4508 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4509
4510 SmallVector<CapturedStmt::Capture, 4> Captures;
4511 SmallVector<Expr *, 4> CaptureInits;
4512 if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4513 return StmtError();
4514
4515 CapturedDecl *CD = RSI->TheCapturedDecl;
4516 RecordDecl *RD = RSI->TheRecordDecl;
4517
4518 CapturedStmt *Res = CapturedStmt::Create(
4519 getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4520 Captures, CaptureInits, CD, RD);
4521
4522 CD->setBody(Res->getCapturedStmt());
4523 RD->completeDefinition();
4524
4525 return Res;
4526 }
4527