1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclAccessPair.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/RecursiveASTVisitor.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/AST/UnresolvedSet.h"
33 #include "clang/Basic/AddressSpaces.h"
34 #include "clang/Basic/ExceptionSpecificationType.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/PartialDiagnostic.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "clang/Sema/Ownership.h"
41 #include "clang/Sema/Sema.h"
42 #include "clang/Sema/Template.h"
43 #include "llvm/ADT/APInt.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/FoldingSet.h"
48 #include "llvm/ADT/Optional.h"
49 #include "llvm/ADT/SmallBitVector.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <tuple>
58 #include <utility>
59 
60 namespace clang {
61 
62   /// Various flags that control template argument deduction.
63   ///
64   /// These flags can be bitwise-OR'd together.
65   enum TemplateDeductionFlags {
66     /// No template argument deduction flags, which indicates the
67     /// strictest results for template argument deduction (as used for, e.g.,
68     /// matching class template partial specializations).
69     TDF_None = 0,
70 
71     /// Within template argument deduction from a function call, we are
72     /// matching with a parameter type for which the original parameter was
73     /// a reference.
74     TDF_ParamWithReferenceType = 0x1,
75 
76     /// Within template argument deduction from a function call, we
77     /// are matching in a case where we ignore cv-qualifiers.
78     TDF_IgnoreQualifiers = 0x02,
79 
80     /// Within template argument deduction from a function call,
81     /// we are matching in a case where we can perform template argument
82     /// deduction from a template-id of a derived class of the argument type.
83     TDF_DerivedClass = 0x04,
84 
85     /// Allow non-dependent types to differ, e.g., when performing
86     /// template argument deduction from a function call where conversions
87     /// may apply.
88     TDF_SkipNonDependent = 0x08,
89 
90     /// Whether we are performing template argument deduction for
91     /// parameters and arguments in a top-level template argument
92     TDF_TopLevelParameterTypeList = 0x10,
93 
94     /// Within template argument deduction from overload resolution per
95     /// C++ [over.over] allow matching function types that are compatible in
96     /// terms of noreturn and default calling convention adjustments, or
97     /// similarly matching a declared template specialization against a
98     /// possible template, per C++ [temp.deduct.decl]. In either case, permit
99     /// deduction where the parameter is a function type that can be converted
100     /// to the argument type.
101     TDF_AllowCompatibleFunctionType = 0x20,
102 
103     /// Within template argument deduction for a conversion function, we are
104     /// matching with an argument type for which the original argument was
105     /// a reference.
106     TDF_ArgWithReferenceType = 0x40,
107   };
108 }
109 
110 using namespace clang;
111 using namespace sema;
112 
113 /// Compare two APSInts, extending and switching the sign as
114 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)115 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
116   if (Y.getBitWidth() > X.getBitWidth())
117     X = X.extend(Y.getBitWidth());
118   else if (Y.getBitWidth() < X.getBitWidth())
119     Y = Y.extend(X.getBitWidth());
120 
121   // If there is a signedness mismatch, correct it.
122   if (X.isSigned() != Y.isSigned()) {
123     // If the signed value is negative, then the values cannot be the same.
124     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
125       return false;
126 
127     Y.setIsSigned(true);
128     X.setIsSigned(true);
129   }
130 
131   return X == Y;
132 }
133 
134 static Sema::TemplateDeductionResult
135 DeduceTemplateArguments(Sema &S,
136                         TemplateParameterList *TemplateParams,
137                         const TemplateArgument &Param,
138                         TemplateArgument Arg,
139                         TemplateDeductionInfo &Info,
140                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
141 
142 static Sema::TemplateDeductionResult
143 DeduceTemplateArgumentsByTypeMatch(Sema &S,
144                                    TemplateParameterList *TemplateParams,
145                                    QualType Param,
146                                    QualType Arg,
147                                    TemplateDeductionInfo &Info,
148                                    SmallVectorImpl<DeducedTemplateArgument> &
149                                                       Deduced,
150                                    unsigned TDF,
151                                    bool PartialOrdering = false,
152                                    bool DeducedFromArrayBound = false);
153 
154 static Sema::TemplateDeductionResult
155 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
156                         ArrayRef<TemplateArgument> Params,
157                         ArrayRef<TemplateArgument> Args,
158                         TemplateDeductionInfo &Info,
159                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
160                         bool NumberOfArgumentsMustMatch);
161 
162 static void MarkUsedTemplateParameters(ASTContext &Ctx,
163                                        const TemplateArgument &TemplateArg,
164                                        bool OnlyDeduced, unsigned Depth,
165                                        llvm::SmallBitVector &Used);
166 
167 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
168                                        bool OnlyDeduced, unsigned Level,
169                                        llvm::SmallBitVector &Deduced);
170 
171 /// If the given expression is of a form that permits the deduction
172 /// of a non-type template parameter, return the declaration of that
173 /// non-type template parameter.
174 static const NonTypeTemplateParmDecl *
getDeducedParameterFromExpr(const Expr * E,unsigned Depth)175 getDeducedParameterFromExpr(const Expr *E, unsigned Depth) {
176   // If we are within an alias template, the expression may have undergone
177   // any number of parameter substitutions already.
178   while (true) {
179     if (const auto *IC = dyn_cast<ImplicitCastExpr>(E))
180       E = IC->getSubExpr();
181     else if (const auto *CE = dyn_cast<ConstantExpr>(E))
182       E = CE->getSubExpr();
183     else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
184       E = Subst->getReplacement();
185     else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) {
186       // Look through implicit copy construction from an lvalue of the same type.
187       if (CCE->getParenOrBraceRange().isValid())
188         break;
189       // Note, there could be default arguments.
190       assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg");
191       E = CCE->getArg(0);
192     } else
193       break;
194   }
195 
196   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
197     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
198       if (NTTP->getDepth() == Depth)
199         return NTTP;
200 
201   return nullptr;
202 }
203 
204 static const NonTypeTemplateParmDecl *
getDeducedParameterFromExpr(TemplateDeductionInfo & Info,Expr * E)205 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
206   return getDeducedParameterFromExpr(E, Info.getDeducedDepth());
207 }
208 
209 /// Determine whether two declaration pointers refer to the same
210 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)211 static bool isSameDeclaration(Decl *X, Decl *Y) {
212   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
213     X = NX->getUnderlyingDecl();
214   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
215     Y = NY->getUnderlyingDecl();
216 
217   return X->getCanonicalDecl() == Y->getCanonicalDecl();
218 }
219 
220 /// Verify that the given, deduced template arguments are compatible.
221 ///
222 /// \returns The deduced template argument, or a NULL template argument if
223 /// the deduced template arguments were incompatible.
224 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)225 checkDeducedTemplateArguments(ASTContext &Context,
226                               const DeducedTemplateArgument &X,
227                               const DeducedTemplateArgument &Y) {
228   // We have no deduction for one or both of the arguments; they're compatible.
229   if (X.isNull())
230     return Y;
231   if (Y.isNull())
232     return X;
233 
234   // If we have two non-type template argument values deduced for the same
235   // parameter, they must both match the type of the parameter, and thus must
236   // match each other's type. As we're only keeping one of them, we must check
237   // for that now. The exception is that if either was deduced from an array
238   // bound, the type is permitted to differ.
239   if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
240     QualType XType = X.getNonTypeTemplateArgumentType();
241     if (!XType.isNull()) {
242       QualType YType = Y.getNonTypeTemplateArgumentType();
243       if (YType.isNull() || !Context.hasSameType(XType, YType))
244         return DeducedTemplateArgument();
245     }
246   }
247 
248   switch (X.getKind()) {
249   case TemplateArgument::Null:
250     llvm_unreachable("Non-deduced template arguments handled above");
251 
252   case TemplateArgument::Type:
253     // If two template type arguments have the same type, they're compatible.
254     if (Y.getKind() == TemplateArgument::Type &&
255         Context.hasSameType(X.getAsType(), Y.getAsType()))
256       return X;
257 
258     // If one of the two arguments was deduced from an array bound, the other
259     // supersedes it.
260     if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
261       return X.wasDeducedFromArrayBound() ? Y : X;
262 
263     // The arguments are not compatible.
264     return DeducedTemplateArgument();
265 
266   case TemplateArgument::Integral:
267     // If we deduced a constant in one case and either a dependent expression or
268     // declaration in another case, keep the integral constant.
269     // If both are integral constants with the same value, keep that value.
270     if (Y.getKind() == TemplateArgument::Expression ||
271         Y.getKind() == TemplateArgument::Declaration ||
272         (Y.getKind() == TemplateArgument::Integral &&
273          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
274       return X.wasDeducedFromArrayBound() ? Y : X;
275 
276     // All other combinations are incompatible.
277     return DeducedTemplateArgument();
278 
279   case TemplateArgument::Template:
280     if (Y.getKind() == TemplateArgument::Template &&
281         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
282       return X;
283 
284     // All other combinations are incompatible.
285     return DeducedTemplateArgument();
286 
287   case TemplateArgument::TemplateExpansion:
288     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
289         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
290                                     Y.getAsTemplateOrTemplatePattern()))
291       return X;
292 
293     // All other combinations are incompatible.
294     return DeducedTemplateArgument();
295 
296   case TemplateArgument::Expression: {
297     if (Y.getKind() != TemplateArgument::Expression)
298       return checkDeducedTemplateArguments(Context, Y, X);
299 
300     // Compare the expressions for equality
301     llvm::FoldingSetNodeID ID1, ID2;
302     X.getAsExpr()->Profile(ID1, Context, true);
303     Y.getAsExpr()->Profile(ID2, Context, true);
304     if (ID1 == ID2)
305       return X.wasDeducedFromArrayBound() ? Y : X;
306 
307     // Differing dependent expressions are incompatible.
308     return DeducedTemplateArgument();
309   }
310 
311   case TemplateArgument::Declaration:
312     assert(!X.wasDeducedFromArrayBound());
313 
314     // If we deduced a declaration and a dependent expression, keep the
315     // declaration.
316     if (Y.getKind() == TemplateArgument::Expression)
317       return X;
318 
319     // If we deduced a declaration and an integral constant, keep the
320     // integral constant and whichever type did not come from an array
321     // bound.
322     if (Y.getKind() == TemplateArgument::Integral) {
323       if (Y.wasDeducedFromArrayBound())
324         return TemplateArgument(Context, Y.getAsIntegral(),
325                                 X.getParamTypeForDecl());
326       return Y;
327     }
328 
329     // If we deduced two declarations, make sure that they refer to the
330     // same declaration.
331     if (Y.getKind() == TemplateArgument::Declaration &&
332         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
333       return X;
334 
335     // All other combinations are incompatible.
336     return DeducedTemplateArgument();
337 
338   case TemplateArgument::NullPtr:
339     // If we deduced a null pointer and a dependent expression, keep the
340     // null pointer.
341     if (Y.getKind() == TemplateArgument::Expression)
342       return X;
343 
344     // If we deduced a null pointer and an integral constant, keep the
345     // integral constant.
346     if (Y.getKind() == TemplateArgument::Integral)
347       return Y;
348 
349     // If we deduced two null pointers, they are the same.
350     if (Y.getKind() == TemplateArgument::NullPtr)
351       return X;
352 
353     // All other combinations are incompatible.
354     return DeducedTemplateArgument();
355 
356   case TemplateArgument::Pack: {
357     if (Y.getKind() != TemplateArgument::Pack ||
358         X.pack_size() != Y.pack_size())
359       return DeducedTemplateArgument();
360 
361     llvm::SmallVector<TemplateArgument, 8> NewPack;
362     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
363                                       XAEnd = X.pack_end(),
364                                          YA = Y.pack_begin();
365          XA != XAEnd; ++XA, ++YA) {
366       TemplateArgument Merged = checkDeducedTemplateArguments(
367           Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
368           DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
369       if (Merged.isNull() && !(XA->isNull() && YA->isNull()))
370         return DeducedTemplateArgument();
371       NewPack.push_back(Merged);
372     }
373 
374     return DeducedTemplateArgument(
375         TemplateArgument::CreatePackCopy(Context, NewPack),
376         X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
377   }
378   }
379 
380   llvm_unreachable("Invalid TemplateArgument Kind!");
381 }
382 
383 /// Deduce the value of the given non-type template parameter
384 /// as the given deduced template argument. All non-type template parameter
385 /// deduction is funneled through here.
DeduceNonTypeTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,const DeducedTemplateArgument & NewDeduced,QualType ValueType,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)386 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
387     Sema &S, TemplateParameterList *TemplateParams,
388     const NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced,
389     QualType ValueType, TemplateDeductionInfo &Info,
390     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
391   assert(NTTP->getDepth() == Info.getDeducedDepth() &&
392          "deducing non-type template argument with wrong depth");
393 
394   DeducedTemplateArgument Result = checkDeducedTemplateArguments(
395       S.Context, Deduced[NTTP->getIndex()], NewDeduced);
396   if (Result.isNull()) {
397     Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP);
398     Info.FirstArg = Deduced[NTTP->getIndex()];
399     Info.SecondArg = NewDeduced;
400     return Sema::TDK_Inconsistent;
401   }
402 
403   Deduced[NTTP->getIndex()] = Result;
404   if (!S.getLangOpts().CPlusPlus17)
405     return Sema::TDK_Success;
406 
407   if (NTTP->isExpandedParameterPack())
408     // FIXME: We may still need to deduce parts of the type here! But we
409     // don't have any way to find which slice of the type to use, and the
410     // type stored on the NTTP itself is nonsense. Perhaps the type of an
411     // expanded NTTP should be a pack expansion type?
412     return Sema::TDK_Success;
413 
414   // Get the type of the parameter for deduction. If it's a (dependent) array
415   // or function type, we will not have decayed it yet, so do that now.
416   QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
417   if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
418     ParamType = Expansion->getPattern();
419 
420   // FIXME: It's not clear how deduction of a parameter of reference
421   // type from an argument (of non-reference type) should be performed.
422   // For now, we just remove reference types from both sides and let
423   // the final check for matching types sort out the mess.
424   ValueType = ValueType.getNonReferenceType();
425   if (ParamType->isReferenceType())
426     ParamType = ParamType.getNonReferenceType();
427   else
428     // Top-level cv-qualifiers are irrelevant for a non-reference type.
429     ValueType = ValueType.getUnqualifiedType();
430 
431   return DeduceTemplateArgumentsByTypeMatch(
432       S, TemplateParams, ParamType, ValueType, Info, Deduced,
433       TDF_SkipNonDependent, /*PartialOrdering=*/false,
434       /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound());
435 }
436 
437 /// Deduce the value of the given non-type template parameter
438 /// from the given integral constant.
DeduceNonTypeTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,const llvm::APSInt & Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)439 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
440     Sema &S, TemplateParameterList *TemplateParams,
441     const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
442     QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
443     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
444   return DeduceNonTypeTemplateArgument(
445       S, TemplateParams, NTTP,
446       DeducedTemplateArgument(S.Context, Value, ValueType,
447                               DeducedFromArrayBound),
448       ValueType, Info, Deduced);
449 }
450 
451 /// Deduce the value of the given non-type template parameter
452 /// from the given null pointer template argument type.
DeduceNullPtrTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,QualType NullPtrType,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)453 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument(
454     Sema &S, TemplateParameterList *TemplateParams,
455     const NonTypeTemplateParmDecl *NTTP, QualType NullPtrType,
456     TemplateDeductionInfo &Info,
457     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
458   Expr *Value =
459       S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr(
460                               S.Context.NullPtrTy, NTTP->getLocation()),
461                           NullPtrType, CK_NullToPointer)
462           .get();
463   return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
464                                        DeducedTemplateArgument(Value),
465                                        Value->getType(), Info, Deduced);
466 }
467 
468 /// Deduce the value of the given non-type template parameter
469 /// from the given type- or value-dependent expression.
470 ///
471 /// \returns true if deduction succeeded, false otherwise.
DeduceNonTypeTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)472 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
473     Sema &S, TemplateParameterList *TemplateParams,
474     const NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info,
475     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
476   return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
477                                        DeducedTemplateArgument(Value),
478                                        Value->getType(), Info, Deduced);
479 }
480 
481 /// Deduce the value of the given non-type template parameter
482 /// from the given declaration.
483 ///
484 /// \returns true if deduction succeeded, false otherwise.
DeduceNonTypeTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,ValueDecl * D,QualType T,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)485 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
486     Sema &S, TemplateParameterList *TemplateParams,
487     const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T,
488     TemplateDeductionInfo &Info,
489     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
490   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
491   TemplateArgument New(D, T);
492   return DeduceNonTypeTemplateArgument(
493       S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced);
494 }
495 
496 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)497 DeduceTemplateArguments(Sema &S,
498                         TemplateParameterList *TemplateParams,
499                         TemplateName Param,
500                         TemplateName Arg,
501                         TemplateDeductionInfo &Info,
502                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
503   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
504   if (!ParamDecl) {
505     // The parameter type is dependent and is not a template template parameter,
506     // so there is nothing that we can deduce.
507     return Sema::TDK_Success;
508   }
509 
510   if (TemplateTemplateParmDecl *TempParam
511         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
512     // If we're not deducing at this depth, there's nothing to deduce.
513     if (TempParam->getDepth() != Info.getDeducedDepth())
514       return Sema::TDK_Success;
515 
516     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
517     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
518                                                  Deduced[TempParam->getIndex()],
519                                                                    NewDeduced);
520     if (Result.isNull()) {
521       Info.Param = TempParam;
522       Info.FirstArg = Deduced[TempParam->getIndex()];
523       Info.SecondArg = NewDeduced;
524       return Sema::TDK_Inconsistent;
525     }
526 
527     Deduced[TempParam->getIndex()] = Result;
528     return Sema::TDK_Success;
529   }
530 
531   // Verify that the two template names are equivalent.
532   if (S.Context.hasSameTemplateName(Param, Arg))
533     return Sema::TDK_Success;
534 
535   // Mismatch of non-dependent template parameter to argument.
536   Info.FirstArg = TemplateArgument(Param);
537   Info.SecondArg = TemplateArgument(Arg);
538   return Sema::TDK_NonDeducedMismatch;
539 }
540 
541 /// Deduce the template arguments by comparing the template parameter
542 /// type (which is a template-id) with the template argument type.
543 ///
544 /// \param S the Sema
545 ///
546 /// \param TemplateParams the template parameters that we are deducing
547 ///
548 /// \param Param the parameter type
549 ///
550 /// \param Arg the argument type
551 ///
552 /// \param Info information about the template argument deduction itself
553 ///
554 /// \param Deduced the deduced template arguments
555 ///
556 /// \returns the result of template argument deduction so far. Note that a
557 /// "success" result means that template argument deduction has not yet failed,
558 /// but it may still fail, later, for other reasons.
559 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)560 DeduceTemplateArguments(Sema &S,
561                         TemplateParameterList *TemplateParams,
562                         const TemplateSpecializationType *Param,
563                         QualType Arg,
564                         TemplateDeductionInfo &Info,
565                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
566   assert(Arg.isCanonical() && "Argument type must be canonical");
567 
568   // Treat an injected-class-name as its underlying template-id.
569   if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg))
570     Arg = Injected->getInjectedSpecializationType();
571 
572   // Check whether the template argument is a dependent template-id.
573   if (const TemplateSpecializationType *SpecArg
574         = dyn_cast<TemplateSpecializationType>(Arg)) {
575     // Perform template argument deduction for the template name.
576     if (Sema::TemplateDeductionResult Result
577           = DeduceTemplateArguments(S, TemplateParams,
578                                     Param->getTemplateName(),
579                                     SpecArg->getTemplateName(),
580                                     Info, Deduced))
581       return Result;
582 
583 
584     // Perform template argument deduction on each template
585     // argument. Ignore any missing/extra arguments, since they could be
586     // filled in by default arguments.
587     return DeduceTemplateArguments(S, TemplateParams,
588                                    Param->template_arguments(),
589                                    SpecArg->template_arguments(), Info, Deduced,
590                                    /*NumberOfArgumentsMustMatch=*/false);
591   }
592 
593   // If the argument type is a class template specialization, we
594   // perform template argument deduction using its template
595   // arguments.
596   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
597   if (!RecordArg) {
598     Info.FirstArg = TemplateArgument(QualType(Param, 0));
599     Info.SecondArg = TemplateArgument(Arg);
600     return Sema::TDK_NonDeducedMismatch;
601   }
602 
603   ClassTemplateSpecializationDecl *SpecArg
604     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
605   if (!SpecArg) {
606     Info.FirstArg = TemplateArgument(QualType(Param, 0));
607     Info.SecondArg = TemplateArgument(Arg);
608     return Sema::TDK_NonDeducedMismatch;
609   }
610 
611   // Perform template argument deduction for the template name.
612   if (Sema::TemplateDeductionResult Result
613         = DeduceTemplateArguments(S,
614                                   TemplateParams,
615                                   Param->getTemplateName(),
616                                TemplateName(SpecArg->getSpecializedTemplate()),
617                                   Info, Deduced))
618     return Result;
619 
620   // Perform template argument deduction for the template arguments.
621   return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(),
622                                  SpecArg->getTemplateArgs().asArray(), Info,
623                                  Deduced, /*NumberOfArgumentsMustMatch=*/true);
624 }
625 
626 /// Determines whether the given type is an opaque type that
627 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)628 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
629   switch (T->getTypeClass()) {
630   case Type::TypeOfExpr:
631   case Type::TypeOf:
632   case Type::DependentName:
633   case Type::Decltype:
634   case Type::UnresolvedUsing:
635   case Type::TemplateTypeParm:
636     return true;
637 
638   case Type::ConstantArray:
639   case Type::IncompleteArray:
640   case Type::VariableArray:
641   case Type::DependentSizedArray:
642     return IsPossiblyOpaquelyQualifiedType(
643                                       cast<ArrayType>(T)->getElementType());
644 
645   default:
646     return false;
647   }
648 }
649 
650 /// Helper function to build a TemplateParameter when we don't
651 /// know its type statically.
makeTemplateParameter(Decl * D)652 static TemplateParameter makeTemplateParameter(Decl *D) {
653   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
654     return TemplateParameter(TTP);
655   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
656     return TemplateParameter(NTTP);
657 
658   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
659 }
660 
661 /// If \p Param is an expanded parameter pack, get the number of expansions.
getExpandedPackSize(NamedDecl * Param)662 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
663   if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
664     if (TTP->isExpandedParameterPack())
665       return TTP->getNumExpansionParameters();
666 
667   if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
668     if (NTTP->isExpandedParameterPack())
669       return NTTP->getNumExpansionTypes();
670 
671   if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param))
672     if (TTP->isExpandedParameterPack())
673       return TTP->getNumExpansionTemplateParameters();
674 
675   return None;
676 }
677 
678 /// A pack that we're currently deducing.
679 struct clang::DeducedPack {
680   // The index of the pack.
681   unsigned Index;
682 
683   // The old value of the pack before we started deducing it.
684   DeducedTemplateArgument Saved;
685 
686   // A deferred value of this pack from an inner deduction, that couldn't be
687   // deduced because this deduction hadn't happened yet.
688   DeducedTemplateArgument DeferredDeduction;
689 
690   // The new value of the pack.
691   SmallVector<DeducedTemplateArgument, 4> New;
692 
693   // The outer deduction for this pack, if any.
694   DeducedPack *Outer = nullptr;
695 
DeducedPackclang::DeducedPack696   DeducedPack(unsigned Index) : Index(Index) {}
697 };
698 
699 namespace {
700 
701 /// A scope in which we're performing pack deduction.
702 class PackDeductionScope {
703 public:
704   /// Prepare to deduce the packs named within Pattern.
PackDeductionScope(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info,TemplateArgument Pattern)705   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
706                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
707                      TemplateDeductionInfo &Info, TemplateArgument Pattern)
708       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
709     unsigned NumNamedPacks = addPacks(Pattern);
710     finishConstruction(NumNamedPacks);
711   }
712 
713   /// Prepare to directly deduce arguments of the parameter with index \p Index.
PackDeductionScope(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info,unsigned Index)714   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
715                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
716                      TemplateDeductionInfo &Info, unsigned Index)
717       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
718     addPack(Index);
719     finishConstruction(1);
720   }
721 
722 private:
addPack(unsigned Index)723   void addPack(unsigned Index) {
724     // Save the deduced template argument for the parameter pack expanded
725     // by this pack expansion, then clear out the deduction.
726     DeducedPack Pack(Index);
727     Pack.Saved = Deduced[Index];
728     Deduced[Index] = TemplateArgument();
729 
730     // FIXME: What if we encounter multiple packs with different numbers of
731     // pre-expanded expansions? (This should already have been diagnosed
732     // during substitution.)
733     if (Optional<unsigned> ExpandedPackExpansions =
734             getExpandedPackSize(TemplateParams->getParam(Index)))
735       FixedNumExpansions = ExpandedPackExpansions;
736 
737     Packs.push_back(Pack);
738   }
739 
addPacks(TemplateArgument Pattern)740   unsigned addPacks(TemplateArgument Pattern) {
741     // Compute the set of template parameter indices that correspond to
742     // parameter packs expanded by the pack expansion.
743     llvm::SmallBitVector SawIndices(TemplateParams->size());
744     llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
745 
746     auto AddPack = [&](unsigned Index) {
747       if (SawIndices[Index])
748         return;
749       SawIndices[Index] = true;
750       addPack(Index);
751 
752       // Deducing a parameter pack that is a pack expansion also constrains the
753       // packs appearing in that parameter to have the same deduced arity. Also,
754       // in C++17 onwards, deducing a non-type template parameter deduces its
755       // type, so we need to collect the pending deduced values for those packs.
756       if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
757               TemplateParams->getParam(Index))) {
758         if (!NTTP->isExpandedParameterPack())
759           if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType()))
760             ExtraDeductions.push_back(Expansion->getPattern());
761       }
762       // FIXME: Also collect the unexpanded packs in any type and template
763       // parameter packs that are pack expansions.
764     };
765 
766     auto Collect = [&](TemplateArgument Pattern) {
767       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
768       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
769       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
770         unsigned Depth, Index;
771         std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
772         if (Depth == Info.getDeducedDepth())
773           AddPack(Index);
774       }
775     };
776 
777     // Look for unexpanded packs in the pattern.
778     Collect(Pattern);
779     assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
780 
781     unsigned NumNamedPacks = Packs.size();
782 
783     // Also look for unexpanded packs that are indirectly deduced by deducing
784     // the sizes of the packs in this pattern.
785     while (!ExtraDeductions.empty())
786       Collect(ExtraDeductions.pop_back_val());
787 
788     return NumNamedPacks;
789   }
790 
finishConstruction(unsigned NumNamedPacks)791   void finishConstruction(unsigned NumNamedPacks) {
792     // Dig out the partially-substituted pack, if there is one.
793     const TemplateArgument *PartialPackArgs = nullptr;
794     unsigned NumPartialPackArgs = 0;
795     std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
796     if (auto *Scope = S.CurrentInstantiationScope)
797       if (auto *Partial = Scope->getPartiallySubstitutedPack(
798               &PartialPackArgs, &NumPartialPackArgs))
799         PartialPackDepthIndex = getDepthAndIndex(Partial);
800 
801     // This pack expansion will have been partially or fully expanded if
802     // it only names explicitly-specified parameter packs (including the
803     // partially-substituted one, if any).
804     bool IsExpanded = true;
805     for (unsigned I = 0; I != NumNamedPacks; ++I) {
806       if (Packs[I].Index >= Info.getNumExplicitArgs()) {
807         IsExpanded = false;
808         IsPartiallyExpanded = false;
809         break;
810       }
811       if (PartialPackDepthIndex ==
812             std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
813         IsPartiallyExpanded = true;
814       }
815     }
816 
817     // Skip over the pack elements that were expanded into separate arguments.
818     // If we partially expanded, this is the number of partial arguments.
819     if (IsPartiallyExpanded)
820       PackElements += NumPartialPackArgs;
821     else if (IsExpanded)
822       PackElements += *FixedNumExpansions;
823 
824     for (auto &Pack : Packs) {
825       if (Info.PendingDeducedPacks.size() > Pack.Index)
826         Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
827       else
828         Info.PendingDeducedPacks.resize(Pack.Index + 1);
829       Info.PendingDeducedPacks[Pack.Index] = &Pack;
830 
831       if (PartialPackDepthIndex ==
832             std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
833         Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
834         // We pre-populate the deduced value of the partially-substituted
835         // pack with the specified value. This is not entirely correct: the
836         // value is supposed to have been substituted, not deduced, but the
837         // cases where this is observable require an exact type match anyway.
838         //
839         // FIXME: If we could represent a "depth i, index j, pack elem k"
840         // parameter, we could substitute the partially-substituted pack
841         // everywhere and avoid this.
842         if (!IsPartiallyExpanded)
843           Deduced[Pack.Index] = Pack.New[PackElements];
844       }
845     }
846   }
847 
848 public:
~PackDeductionScope()849   ~PackDeductionScope() {
850     for (auto &Pack : Packs)
851       Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
852   }
853 
854   /// Determine whether this pack has already been partially expanded into a
855   /// sequence of (prior) function parameters / template arguments.
isPartiallyExpanded()856   bool isPartiallyExpanded() { return IsPartiallyExpanded; }
857 
858   /// Determine whether this pack expansion scope has a known, fixed arity.
859   /// This happens if it involves a pack from an outer template that has
860   /// (notionally) already been expanded.
hasFixedArity()861   bool hasFixedArity() { return FixedNumExpansions.hasValue(); }
862 
863   /// Determine whether the next element of the argument is still part of this
864   /// pack. This is the case unless the pack is already expanded to a fixed
865   /// length.
hasNextElement()866   bool hasNextElement() {
867     return !FixedNumExpansions || *FixedNumExpansions > PackElements;
868   }
869 
870   /// Move to deducing the next element in each pack that is being deduced.
nextPackElement()871   void nextPackElement() {
872     // Capture the deduced template arguments for each parameter pack expanded
873     // by this pack expansion, add them to the list of arguments we've deduced
874     // for that pack, then clear out the deduced argument.
875     for (auto &Pack : Packs) {
876       DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
877       if (!Pack.New.empty() || !DeducedArg.isNull()) {
878         while (Pack.New.size() < PackElements)
879           Pack.New.push_back(DeducedTemplateArgument());
880         if (Pack.New.size() == PackElements)
881           Pack.New.push_back(DeducedArg);
882         else
883           Pack.New[PackElements] = DeducedArg;
884         DeducedArg = Pack.New.size() > PackElements + 1
885                          ? Pack.New[PackElements + 1]
886                          : DeducedTemplateArgument();
887       }
888     }
889     ++PackElements;
890   }
891 
892   /// Finish template argument deduction for a set of argument packs,
893   /// producing the argument packs and checking for consistency with prior
894   /// deductions.
finish()895   Sema::TemplateDeductionResult finish() {
896     // Build argument packs for each of the parameter packs expanded by this
897     // pack expansion.
898     for (auto &Pack : Packs) {
899       // Put back the old value for this pack.
900       Deduced[Pack.Index] = Pack.Saved;
901 
902       // Always make sure the size of this pack is correct, even if we didn't
903       // deduce any values for it.
904       //
905       // FIXME: This isn't required by the normative wording, but substitution
906       // and post-substitution checking will always fail if the arity of any
907       // pack is not equal to the number of elements we processed. (Either that
908       // or something else has gone *very* wrong.) We're permitted to skip any
909       // hard errors from those follow-on steps by the intent (but not the
910       // wording) of C++ [temp.inst]p8:
911       //
912       //   If the function selected by overload resolution can be determined
913       //   without instantiating a class template definition, it is unspecified
914       //   whether that instantiation actually takes place
915       Pack.New.resize(PackElements);
916 
917       // Build or find a new value for this pack.
918       DeducedTemplateArgument NewPack;
919       if (Pack.New.empty()) {
920         // If we deduced an empty argument pack, create it now.
921         NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
922       } else {
923         TemplateArgument *ArgumentPack =
924             new (S.Context) TemplateArgument[Pack.New.size()];
925         std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
926         NewPack = DeducedTemplateArgument(
927             TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
928             // FIXME: This is wrong, it's possible that some pack elements are
929             // deduced from an array bound and others are not:
930             //   template<typename ...T, T ...V> void g(const T (&...p)[V]);
931             //   g({1, 2, 3}, {{}, {}});
932             // ... should deduce T = {int, size_t (from array bound)}.
933             Pack.New[0].wasDeducedFromArrayBound());
934       }
935 
936       // Pick where we're going to put the merged pack.
937       DeducedTemplateArgument *Loc;
938       if (Pack.Outer) {
939         if (Pack.Outer->DeferredDeduction.isNull()) {
940           // Defer checking this pack until we have a complete pack to compare
941           // it against.
942           Pack.Outer->DeferredDeduction = NewPack;
943           continue;
944         }
945         Loc = &Pack.Outer->DeferredDeduction;
946       } else {
947         Loc = &Deduced[Pack.Index];
948       }
949 
950       // Check the new pack matches any previous value.
951       DeducedTemplateArgument OldPack = *Loc;
952       DeducedTemplateArgument Result =
953           checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
954 
955       // If we deferred a deduction of this pack, check that one now too.
956       if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
957         OldPack = Result;
958         NewPack = Pack.DeferredDeduction;
959         Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
960       }
961 
962       NamedDecl *Param = TemplateParams->getParam(Pack.Index);
963       if (Result.isNull()) {
964         Info.Param = makeTemplateParameter(Param);
965         Info.FirstArg = OldPack;
966         Info.SecondArg = NewPack;
967         return Sema::TDK_Inconsistent;
968       }
969 
970       // If we have a pre-expanded pack and we didn't deduce enough elements
971       // for it, fail deduction.
972       if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) {
973         if (*Expansions != PackElements) {
974           Info.Param = makeTemplateParameter(Param);
975           Info.FirstArg = Result;
976           return Sema::TDK_IncompletePack;
977         }
978       }
979 
980       *Loc = Result;
981     }
982 
983     return Sema::TDK_Success;
984   }
985 
986 private:
987   Sema &S;
988   TemplateParameterList *TemplateParams;
989   SmallVectorImpl<DeducedTemplateArgument> &Deduced;
990   TemplateDeductionInfo &Info;
991   unsigned PackElements = 0;
992   bool IsPartiallyExpanded = false;
993   /// The number of expansions, if we have a fully-expanded pack in this scope.
994   Optional<unsigned> FixedNumExpansions;
995 
996   SmallVector<DeducedPack, 2> Packs;
997 };
998 
999 } // namespace
1000 
1001 /// Deduce the template arguments by comparing the list of parameter
1002 /// types to the list of argument types, as in the parameter-type-lists of
1003 /// function types (C++ [temp.deduct.type]p10).
1004 ///
1005 /// \param S The semantic analysis object within which we are deducing
1006 ///
1007 /// \param TemplateParams The template parameters that we are deducing
1008 ///
1009 /// \param Params The list of parameter types
1010 ///
1011 /// \param NumParams The number of types in \c Params
1012 ///
1013 /// \param Args The list of argument types
1014 ///
1015 /// \param NumArgs The number of types in \c Args
1016 ///
1017 /// \param Info information about the template argument deduction itself
1018 ///
1019 /// \param Deduced the deduced template arguments
1020 ///
1021 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1022 /// how template argument deduction is performed.
1023 ///
1024 /// \param PartialOrdering If true, we are performing template argument
1025 /// deduction for during partial ordering for a call
1026 /// (C++0x [temp.deduct.partial]).
1027 ///
1028 /// \returns the result of template argument deduction so far. Note that a
1029 /// "success" result means that template argument deduction has not yet failed,
1030 /// but it may still fail, later, for other reasons.
1031 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false)1032 DeduceTemplateArguments(Sema &S,
1033                         TemplateParameterList *TemplateParams,
1034                         const QualType *Params, unsigned NumParams,
1035                         const QualType *Args, unsigned NumArgs,
1036                         TemplateDeductionInfo &Info,
1037                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1038                         unsigned TDF,
1039                         bool PartialOrdering = false) {
1040   // C++0x [temp.deduct.type]p10:
1041   //   Similarly, if P has a form that contains (T), then each parameter type
1042   //   Pi of the respective parameter-type- list of P is compared with the
1043   //   corresponding parameter type Ai of the corresponding parameter-type-list
1044   //   of A. [...]
1045   unsigned ArgIdx = 0, ParamIdx = 0;
1046   for (; ParamIdx != NumParams; ++ParamIdx) {
1047     // Check argument types.
1048     const PackExpansionType *Expansion
1049                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
1050     if (!Expansion) {
1051       // Simple case: compare the parameter and argument types at this point.
1052 
1053       // Make sure we have an argument.
1054       if (ArgIdx >= NumArgs)
1055         return Sema::TDK_MiscellaneousDeductionFailure;
1056 
1057       if (isa<PackExpansionType>(Args[ArgIdx])) {
1058         // C++0x [temp.deduct.type]p22:
1059         //   If the original function parameter associated with A is a function
1060         //   parameter pack and the function parameter associated with P is not
1061         //   a function parameter pack, then template argument deduction fails.
1062         return Sema::TDK_MiscellaneousDeductionFailure;
1063       }
1064 
1065       if (Sema::TemplateDeductionResult Result
1066             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1067                                                  Params[ParamIdx], Args[ArgIdx],
1068                                                  Info, Deduced, TDF,
1069                                                  PartialOrdering))
1070         return Result;
1071 
1072       ++ArgIdx;
1073       continue;
1074     }
1075 
1076     // C++0x [temp.deduct.type]p10:
1077     //   If the parameter-declaration corresponding to Pi is a function
1078     //   parameter pack, then the type of its declarator- id is compared with
1079     //   each remaining parameter type in the parameter-type-list of A. Each
1080     //   comparison deduces template arguments for subsequent positions in the
1081     //   template parameter packs expanded by the function parameter pack.
1082 
1083     QualType Pattern = Expansion->getPattern();
1084     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1085 
1086     // A pack scope with fixed arity is not really a pack any more, so is not
1087     // a non-deduced context.
1088     if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) {
1089       for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) {
1090         // Deduce template arguments from the pattern.
1091         if (Sema::TemplateDeductionResult Result
1092               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
1093                                                    Args[ArgIdx], Info, Deduced,
1094                                                    TDF, PartialOrdering))
1095           return Result;
1096 
1097         PackScope.nextPackElement();
1098       }
1099     } else {
1100       // C++0x [temp.deduct.type]p5:
1101       //   The non-deduced contexts are:
1102       //     - A function parameter pack that does not occur at the end of the
1103       //       parameter-declaration-clause.
1104       //
1105       // FIXME: There is no wording to say what we should do in this case. We
1106       // choose to resolve this by applying the same rule that is applied for a
1107       // function call: that is, deduce all contained packs to their
1108       // explicitly-specified values (or to <> if there is no such value).
1109       //
1110       // This is seemingly-arbitrarily different from the case of a template-id
1111       // with a non-trailing pack-expansion in its arguments, which renders the
1112       // entire template-argument-list a non-deduced context.
1113 
1114       // If the parameter type contains an explicitly-specified pack that we
1115       // could not expand, skip the number of parameters notionally created
1116       // by the expansion.
1117       Optional<unsigned> NumExpansions = Expansion->getNumExpansions();
1118       if (NumExpansions && !PackScope.isPartiallyExpanded()) {
1119         for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs;
1120              ++I, ++ArgIdx)
1121           PackScope.nextPackElement();
1122       }
1123     }
1124 
1125     // Build argument packs for each of the parameter packs expanded by this
1126     // pack expansion.
1127     if (auto Result = PackScope.finish())
1128       return Result;
1129   }
1130 
1131   // Make sure we don't have any extra arguments.
1132   if (ArgIdx < NumArgs)
1133     return Sema::TDK_MiscellaneousDeductionFailure;
1134 
1135   return Sema::TDK_Success;
1136 }
1137 
1138 /// Determine whether the parameter has qualifiers that the argument
1139 /// lacks. Put another way, determine whether there is no way to add
1140 /// a deduced set of qualifiers to the ParamType that would result in
1141 /// its qualifiers matching those of the ArgType.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)1142 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
1143                                                   QualType ArgType) {
1144   Qualifiers ParamQs = ParamType.getQualifiers();
1145   Qualifiers ArgQs = ArgType.getQualifiers();
1146 
1147   if (ParamQs == ArgQs)
1148     return false;
1149 
1150   // Mismatched (but not missing) Objective-C GC attributes.
1151   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
1152       ParamQs.hasObjCGCAttr())
1153     return true;
1154 
1155   // Mismatched (but not missing) address spaces.
1156   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
1157       ParamQs.hasAddressSpace())
1158     return true;
1159 
1160   // Mismatched (but not missing) Objective-C lifetime qualifiers.
1161   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
1162       ParamQs.hasObjCLifetime())
1163     return true;
1164 
1165   // CVR qualifiers inconsistent or a superset.
1166   return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
1167 }
1168 
1169 /// Compare types for equality with respect to possibly compatible
1170 /// function types (noreturn adjustment, implicit calling conventions). If any
1171 /// of parameter and argument is not a function, just perform type comparison.
1172 ///
1173 /// \param Param the template parameter type.
1174 ///
1175 /// \param Arg the argument type.
isSameOrCompatibleFunctionType(CanQualType Param,CanQualType Arg)1176 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
1177                                           CanQualType Arg) {
1178   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
1179                      *ArgFunction   = Arg->getAs<FunctionType>();
1180 
1181   // Just compare if not functions.
1182   if (!ParamFunction || !ArgFunction)
1183     return Param == Arg;
1184 
1185   // Noreturn and noexcept adjustment.
1186   QualType AdjustedParam;
1187   if (IsFunctionConversion(Param, Arg, AdjustedParam))
1188     return Arg == Context.getCanonicalType(AdjustedParam);
1189 
1190   // FIXME: Compatible calling conventions.
1191 
1192   return Param == Arg;
1193 }
1194 
1195 /// Get the index of the first template parameter that was originally from the
1196 /// innermost template-parameter-list. This is 0 except when we concatenate
1197 /// the template parameter lists of a class template and a constructor template
1198 /// when forming an implicit deduction guide.
getFirstInnerIndex(FunctionTemplateDecl * FTD)1199 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
1200   auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
1201   if (!Guide || !Guide->isImplicit())
1202     return 0;
1203   return Guide->getDeducedTemplate()->getTemplateParameters()->size();
1204 }
1205 
1206 /// Determine whether a type denotes a forwarding reference.
isForwardingReference(QualType Param,unsigned FirstInnerIndex)1207 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
1208   // C++1z [temp.deduct.call]p3:
1209   //   A forwarding reference is an rvalue reference to a cv-unqualified
1210   //   template parameter that does not represent a template parameter of a
1211   //   class template.
1212   if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
1213     if (ParamRef->getPointeeType().getQualifiers())
1214       return false;
1215     auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
1216     return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
1217   }
1218   return false;
1219 }
1220 
1221 ///  Attempt to deduce the template arguments by checking the base types
1222 ///  according to (C++20 [temp.deduct.call] p4b3.
1223 ///
1224 /// \param S the semantic analysis object within which we are deducing.
1225 ///
1226 /// \param RecordT the top level record object we are deducing against.
1227 ///
1228 /// \param TemplateParams the template parameters that we are deducing.
1229 ///
1230 /// \param SpecParam the template specialization parameter type.
1231 ///
1232 /// \param Info information about the template argument deduction itself.
1233 ///
1234 /// \param Deduced the deduced template arguments.
1235 ///
1236 /// \returns the result of template argument deduction with the bases. "invalid"
1237 /// means no matches, "success" found a single item, and the
1238 /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous.
DeduceTemplateBases(Sema & S,const RecordType * RecordT,TemplateParameterList * TemplateParams,const TemplateSpecializationType * SpecParam,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1239 static Sema::TemplateDeductionResult DeduceTemplateBases(
1240     Sema &S, const RecordType *RecordT, TemplateParameterList *TemplateParams,
1241     const TemplateSpecializationType *SpecParam, TemplateDeductionInfo &Info,
1242     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1243   // C++14 [temp.deduct.call] p4b3:
1244   //   If P is a class and P has the form simple-template-id, then the
1245   //   transformed A can be a derived class of the deduced A. Likewise if
1246   //   P is a pointer to a class of the form simple-template-id, the
1247   //   transformed A can be a pointer to a derived class pointed to by the
1248   //   deduced A. However, if there is a class C that is a (direct or
1249   //   indirect) base class of D and derived (directly or indirectly) from a
1250   //   class B and that would be a valid deduced A, the deduced A cannot be
1251   //   B or pointer to B, respectively.
1252   //
1253   //   These alternatives are considered only if type deduction would
1254   //   otherwise fail. If they yield more than one possible deduced A, the
1255   //   type deduction fails.
1256 
1257   // Use a breadth-first search through the bases to collect the set of
1258   // successful matches. Visited contains the set of nodes we have already
1259   // visited, while ToVisit is our stack of records that we still need to
1260   // visit.  Matches contains a list of matches that have yet to be
1261   // disqualified.
1262   llvm::SmallPtrSet<const RecordType *, 8> Visited;
1263   SmallVector<const RecordType *, 8> ToVisit;
1264   // We iterate over this later, so we have to use MapVector to ensure
1265   // determinism.
1266   llvm::MapVector<const RecordType *, SmallVector<DeducedTemplateArgument, 8>>
1267       Matches;
1268 
1269   auto AddBases = [&Visited, &ToVisit](const RecordType *RT) {
1270     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1271     for (const auto &Base : RD->bases()) {
1272       assert(Base.getType()->isRecordType() &&
1273              "Base class that isn't a record?");
1274       const RecordType *RT = Base.getType()->getAs<RecordType>();
1275       if (Visited.insert(RT).second)
1276         ToVisit.push_back(Base.getType()->getAs<RecordType>());
1277     }
1278   };
1279 
1280   // Set up the loop by adding all the bases.
1281   AddBases(RecordT);
1282 
1283   // Search each path of bases until we either run into a successful match
1284   // (where all bases of it are invalid), or we run out of bases.
1285   while (!ToVisit.empty()) {
1286     const RecordType *NextT = ToVisit.pop_back_val();
1287 
1288     SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(),
1289                                                         Deduced.end());
1290     TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info);
1291     Sema::TemplateDeductionResult BaseResult =
1292         DeduceTemplateArguments(S, TemplateParams, SpecParam,
1293                                 QualType(NextT, 0), BaseInfo, DeducedCopy);
1294 
1295     // If this was a successful deduction, add it to the list of matches,
1296     // otherwise we need to continue searching its bases.
1297     if (BaseResult == Sema::TDK_Success)
1298       Matches.insert({NextT, DeducedCopy});
1299     else
1300       AddBases(NextT);
1301   }
1302 
1303   // At this point, 'Matches' contains a list of seemingly valid bases, however
1304   // in the event that we have more than 1 match, it is possible that the base
1305   // of one of the matches might be disqualified for being a base of another
1306   // valid match. We can count on cyclical instantiations being invalid to
1307   // simplify the disqualifications.  That is, if A & B are both matches, and B
1308   // inherits from A (disqualifying A), we know that A cannot inherit from B.
1309   if (Matches.size() > 1) {
1310     Visited.clear();
1311     for (const auto &Match : Matches)
1312       AddBases(Match.first);
1313 
1314     // We can give up once we have a single item (or have run out of things to
1315     // search) since cyclical inheritence isn't valid.
1316     while (Matches.size() > 1 && !ToVisit.empty()) {
1317       const RecordType *NextT = ToVisit.pop_back_val();
1318       Matches.erase(NextT);
1319 
1320       // Always add all bases, since the inheritence tree can contain
1321       // disqualifications for multiple matches.
1322       AddBases(NextT);
1323     }
1324   }
1325 
1326   if (Matches.empty())
1327     return Sema::TDK_Invalid;
1328   if (Matches.size() > 1)
1329     return Sema::TDK_MiscellaneousDeductionFailure;
1330 
1331   std::swap(Matches.front().second, Deduced);
1332   return Sema::TDK_Success;
1333 }
1334 
1335 /// Deduce the template arguments by comparing the parameter type and
1336 /// the argument type (C++ [temp.deduct.type]).
1337 ///
1338 /// \param S the semantic analysis object within which we are deducing
1339 ///
1340 /// \param TemplateParams the template parameters that we are deducing
1341 ///
1342 /// \param ParamIn the parameter type
1343 ///
1344 /// \param ArgIn the argument type
1345 ///
1346 /// \param Info information about the template argument deduction itself
1347 ///
1348 /// \param Deduced the deduced template arguments
1349 ///
1350 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1351 /// how template argument deduction is performed.
1352 ///
1353 /// \param PartialOrdering Whether we're performing template argument deduction
1354 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
1355 ///
1356 /// \returns the result of template argument deduction so far. Note that a
1357 /// "success" result means that template argument deduction has not yet failed,
1358 /// but it may still fail, later, for other reasons.
1359 static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,bool DeducedFromArrayBound)1360 DeduceTemplateArgumentsByTypeMatch(Sema &S,
1361                                    TemplateParameterList *TemplateParams,
1362                                    QualType ParamIn, QualType ArgIn,
1363                                    TemplateDeductionInfo &Info,
1364                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1365                                    unsigned TDF,
1366                                    bool PartialOrdering,
1367                                    bool DeducedFromArrayBound) {
1368   // We only want to look at the canonical types, since typedefs and
1369   // sugar are not part of template argument deduction.
1370   QualType Param = S.Context.getCanonicalType(ParamIn);
1371   QualType Arg = S.Context.getCanonicalType(ArgIn);
1372 
1373   // If the argument type is a pack expansion, look at its pattern.
1374   // This isn't explicitly called out
1375   if (const PackExpansionType *ArgExpansion
1376                                             = dyn_cast<PackExpansionType>(Arg))
1377     Arg = ArgExpansion->getPattern();
1378 
1379   if (PartialOrdering) {
1380     // C++11 [temp.deduct.partial]p5:
1381     //   Before the partial ordering is done, certain transformations are
1382     //   performed on the types used for partial ordering:
1383     //     - If P is a reference type, P is replaced by the type referred to.
1384     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
1385     if (ParamRef)
1386       Param = ParamRef->getPointeeType();
1387 
1388     //     - If A is a reference type, A is replaced by the type referred to.
1389     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
1390     if (ArgRef)
1391       Arg = ArgRef->getPointeeType();
1392 
1393     if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
1394       // C++11 [temp.deduct.partial]p9:
1395       //   If, for a given type, deduction succeeds in both directions (i.e.,
1396       //   the types are identical after the transformations above) and both
1397       //   P and A were reference types [...]:
1398       //     - if [one type] was an lvalue reference and [the other type] was
1399       //       not, [the other type] is not considered to be at least as
1400       //       specialized as [the first type]
1401       //     - if [one type] is more cv-qualified than [the other type],
1402       //       [the other type] is not considered to be at least as specialized
1403       //       as [the first type]
1404       // Objective-C ARC adds:
1405       //     - [one type] has non-trivial lifetime, [the other type] has
1406       //       __unsafe_unretained lifetime, and the types are otherwise
1407       //       identical
1408       //
1409       // A is "considered to be at least as specialized" as P iff deduction
1410       // succeeds, so we model this as a deduction failure. Note that
1411       // [the first type] is P and [the other type] is A here; the standard
1412       // gets this backwards.
1413       Qualifiers ParamQuals = Param.getQualifiers();
1414       Qualifiers ArgQuals = Arg.getQualifiers();
1415       if ((ParamRef->isLValueReferenceType() &&
1416            !ArgRef->isLValueReferenceType()) ||
1417           ParamQuals.isStrictSupersetOf(ArgQuals) ||
1418           (ParamQuals.hasNonTrivialObjCLifetime() &&
1419            ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1420            ParamQuals.withoutObjCLifetime() ==
1421                ArgQuals.withoutObjCLifetime())) {
1422         Info.FirstArg = TemplateArgument(ParamIn);
1423         Info.SecondArg = TemplateArgument(ArgIn);
1424         return Sema::TDK_NonDeducedMismatch;
1425       }
1426     }
1427 
1428     // C++11 [temp.deduct.partial]p7:
1429     //   Remove any top-level cv-qualifiers:
1430     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
1431     //       version of P.
1432     Param = Param.getUnqualifiedType();
1433     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
1434     //       version of A.
1435     Arg = Arg.getUnqualifiedType();
1436   } else {
1437     // C++0x [temp.deduct.call]p4 bullet 1:
1438     //   - If the original P is a reference type, the deduced A (i.e., the type
1439     //     referred to by the reference) can be more cv-qualified than the
1440     //     transformed A.
1441     if (TDF & TDF_ParamWithReferenceType) {
1442       Qualifiers Quals;
1443       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1444       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1445                              Arg.getCVRQualifiers());
1446       Param = S.Context.getQualifiedType(UnqualParam, Quals);
1447     }
1448 
1449     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1450       // C++0x [temp.deduct.type]p10:
1451       //   If P and A are function types that originated from deduction when
1452       //   taking the address of a function template (14.8.2.2) or when deducing
1453       //   template arguments from a function declaration (14.8.2.6) and Pi and
1454       //   Ai are parameters of the top-level parameter-type-list of P and A,
1455       //   respectively, Pi is adjusted if it is a forwarding reference and Ai
1456       //   is an lvalue reference, in
1457       //   which case the type of Pi is changed to be the template parameter
1458       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1459       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1460       //   deduced as X&. - end note ]
1461       TDF &= ~TDF_TopLevelParameterTypeList;
1462       if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType())
1463         Param = Param->getPointeeType();
1464     }
1465   }
1466 
1467   // C++ [temp.deduct.type]p9:
1468   //   A template type argument T, a template template argument TT or a
1469   //   template non-type argument i can be deduced if P and A have one of
1470   //   the following forms:
1471   //
1472   //     T
1473   //     cv-list T
1474   if (const TemplateTypeParmType *TemplateTypeParm
1475         = Param->getAs<TemplateTypeParmType>()) {
1476     // Just skip any attempts to deduce from a placeholder type or a parameter
1477     // at a different depth.
1478     if (Arg->isPlaceholderType() ||
1479         Info.getDeducedDepth() != TemplateTypeParm->getDepth())
1480       return Sema::TDK_Success;
1481 
1482     unsigned Index = TemplateTypeParm->getIndex();
1483     bool RecanonicalizeArg = false;
1484 
1485     // If the argument type is an array type, move the qualifiers up to the
1486     // top level, so they can be matched with the qualifiers on the parameter.
1487     if (isa<ArrayType>(Arg)) {
1488       Qualifiers Quals;
1489       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1490       if (Quals) {
1491         Arg = S.Context.getQualifiedType(Arg, Quals);
1492         RecanonicalizeArg = true;
1493       }
1494     }
1495 
1496     // The argument type can not be less qualified than the parameter
1497     // type.
1498     if (!(TDF & TDF_IgnoreQualifiers) &&
1499         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1500       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1501       Info.FirstArg = TemplateArgument(Param);
1502       Info.SecondArg = TemplateArgument(Arg);
1503       return Sema::TDK_Underqualified;
1504     }
1505 
1506     // Do not match a function type with a cv-qualified type.
1507     // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
1508     if (Arg->isFunctionType() && Param.hasQualifiers()) {
1509       return Sema::TDK_NonDeducedMismatch;
1510     }
1511 
1512     assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() &&
1513            "saw template type parameter with wrong depth");
1514     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1515     QualType DeducedType = Arg;
1516 
1517     // Remove any qualifiers on the parameter from the deduced type.
1518     // We checked the qualifiers for consistency above.
1519     Qualifiers DeducedQs = DeducedType.getQualifiers();
1520     Qualifiers ParamQs = Param.getQualifiers();
1521     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1522     if (ParamQs.hasObjCGCAttr())
1523       DeducedQs.removeObjCGCAttr();
1524     if (ParamQs.hasAddressSpace())
1525       DeducedQs.removeAddressSpace();
1526     if (ParamQs.hasObjCLifetime())
1527       DeducedQs.removeObjCLifetime();
1528 
1529     // Objective-C ARC:
1530     //   If template deduction would produce a lifetime qualifier on a type
1531     //   that is not a lifetime type, template argument deduction fails.
1532     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1533         !DeducedType->isDependentType()) {
1534       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1535       Info.FirstArg = TemplateArgument(Param);
1536       Info.SecondArg = TemplateArgument(Arg);
1537       return Sema::TDK_Underqualified;
1538     }
1539 
1540     // Objective-C ARC:
1541     //   If template deduction would produce an argument type with lifetime type
1542     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1543     if (S.getLangOpts().ObjCAutoRefCount &&
1544         DeducedType->isObjCLifetimeType() &&
1545         !DeducedQs.hasObjCLifetime())
1546       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1547 
1548     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1549                                              DeducedQs);
1550 
1551     if (RecanonicalizeArg)
1552       DeducedType = S.Context.getCanonicalType(DeducedType);
1553 
1554     DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
1555     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1556                                                                  Deduced[Index],
1557                                                                    NewDeduced);
1558     if (Result.isNull()) {
1559       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1560       Info.FirstArg = Deduced[Index];
1561       Info.SecondArg = NewDeduced;
1562       return Sema::TDK_Inconsistent;
1563     }
1564 
1565     Deduced[Index] = Result;
1566     return Sema::TDK_Success;
1567   }
1568 
1569   // Set up the template argument deduction information for a failure.
1570   Info.FirstArg = TemplateArgument(ParamIn);
1571   Info.SecondArg = TemplateArgument(ArgIn);
1572 
1573   // If the parameter is an already-substituted template parameter
1574   // pack, do nothing: we don't know which of its arguments to look
1575   // at, so we have to wait until all of the parameter packs in this
1576   // expansion have arguments.
1577   if (isa<SubstTemplateTypeParmPackType>(Param))
1578     return Sema::TDK_Success;
1579 
1580   // Check the cv-qualifiers on the parameter and argument types.
1581   CanQualType CanParam = S.Context.getCanonicalType(Param);
1582   CanQualType CanArg = S.Context.getCanonicalType(Arg);
1583   if (!(TDF & TDF_IgnoreQualifiers)) {
1584     if (TDF & TDF_ParamWithReferenceType) {
1585       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1586         return Sema::TDK_NonDeducedMismatch;
1587     } else if (TDF & TDF_ArgWithReferenceType) {
1588       // C++ [temp.deduct.conv]p4:
1589       //   If the original A is a reference type, A can be more cv-qualified
1590       //   than the deduced A
1591       if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers()))
1592         return Sema::TDK_NonDeducedMismatch;
1593 
1594       // Strip out all extra qualifiers from the argument to figure out the
1595       // type we're converting to, prior to the qualification conversion.
1596       Qualifiers Quals;
1597       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1598       Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers());
1599     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1600       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1601         return Sema::TDK_NonDeducedMismatch;
1602     }
1603 
1604     // If the parameter type is not dependent, there is nothing to deduce.
1605     if (!Param->isDependentType()) {
1606       if (!(TDF & TDF_SkipNonDependent)) {
1607         bool NonDeduced =
1608             (TDF & TDF_AllowCompatibleFunctionType)
1609                 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg)
1610                 : Param != Arg;
1611         if (NonDeduced) {
1612           return Sema::TDK_NonDeducedMismatch;
1613         }
1614       }
1615       return Sema::TDK_Success;
1616     }
1617   } else if (!Param->isDependentType()) {
1618     if (!(TDF & TDF_SkipNonDependent)) {
1619       CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1620                   ArgUnqualType = CanArg.getUnqualifiedType();
1621       bool Success =
1622           (TDF & TDF_AllowCompatibleFunctionType)
1623               ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType)
1624               : ParamUnqualType == ArgUnqualType;
1625       if (Success)
1626         return Sema::TDK_Success;
1627     } else {
1628       return Sema::TDK_Success;
1629     }
1630   }
1631 
1632   switch (Param->getTypeClass()) {
1633     // Non-canonical types cannot appear here.
1634 #define NON_CANONICAL_TYPE(Class, Base) \
1635   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1636 #define TYPE(Class, Base)
1637 #include "clang/AST/TypeNodes.inc"
1638 
1639     case Type::TemplateTypeParm:
1640     case Type::SubstTemplateTypeParmPack:
1641       llvm_unreachable("Type nodes handled above");
1642 
1643     // These types cannot be dependent, so simply check whether the types are
1644     // the same.
1645     case Type::Builtin:
1646     case Type::VariableArray:
1647     case Type::Vector:
1648     case Type::FunctionNoProto:
1649     case Type::Record:
1650     case Type::Enum:
1651     case Type::ObjCObject:
1652     case Type::ObjCInterface:
1653     case Type::ObjCObjectPointer:
1654     case Type::ExtInt:
1655       if (TDF & TDF_SkipNonDependent)
1656         return Sema::TDK_Success;
1657 
1658       if (TDF & TDF_IgnoreQualifiers) {
1659         Param = Param.getUnqualifiedType();
1660         Arg = Arg.getUnqualifiedType();
1661       }
1662 
1663       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1664 
1665     //     _Complex T   [placeholder extension]
1666     case Type::Complex:
1667       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1668         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1669                                     cast<ComplexType>(Param)->getElementType(),
1670                                     ComplexArg->getElementType(),
1671                                     Info, Deduced, TDF);
1672 
1673       return Sema::TDK_NonDeducedMismatch;
1674 
1675     //     _Atomic T   [extension]
1676     case Type::Atomic:
1677       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1678         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1679                                        cast<AtomicType>(Param)->getValueType(),
1680                                        AtomicArg->getValueType(),
1681                                        Info, Deduced, TDF);
1682 
1683       return Sema::TDK_NonDeducedMismatch;
1684 
1685     //     T *
1686     case Type::Pointer: {
1687       QualType PointeeType;
1688       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1689         PointeeType = PointerArg->getPointeeType();
1690       } else if (const ObjCObjectPointerType *PointerArg
1691                    = Arg->getAs<ObjCObjectPointerType>()) {
1692         PointeeType = PointerArg->getPointeeType();
1693       } else {
1694         return Sema::TDK_NonDeducedMismatch;
1695       }
1696 
1697       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1698       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1699                                      cast<PointerType>(Param)->getPointeeType(),
1700                                      PointeeType,
1701                                      Info, Deduced, SubTDF);
1702     }
1703 
1704     //     T &
1705     case Type::LValueReference: {
1706       const LValueReferenceType *ReferenceArg =
1707           Arg->getAs<LValueReferenceType>();
1708       if (!ReferenceArg)
1709         return Sema::TDK_NonDeducedMismatch;
1710 
1711       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1712                            cast<LValueReferenceType>(Param)->getPointeeType(),
1713                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
1714     }
1715 
1716     //     T && [C++0x]
1717     case Type::RValueReference: {
1718       const RValueReferenceType *ReferenceArg =
1719           Arg->getAs<RValueReferenceType>();
1720       if (!ReferenceArg)
1721         return Sema::TDK_NonDeducedMismatch;
1722 
1723       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1724                              cast<RValueReferenceType>(Param)->getPointeeType(),
1725                              ReferenceArg->getPointeeType(),
1726                              Info, Deduced, 0);
1727     }
1728 
1729     //     T [] (implied, but not stated explicitly)
1730     case Type::IncompleteArray: {
1731       const IncompleteArrayType *IncompleteArrayArg =
1732         S.Context.getAsIncompleteArrayType(Arg);
1733       if (!IncompleteArrayArg)
1734         return Sema::TDK_NonDeducedMismatch;
1735 
1736       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1737       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1738                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1739                     IncompleteArrayArg->getElementType(),
1740                     Info, Deduced, SubTDF);
1741     }
1742 
1743     //     T [integer-constant]
1744     case Type::ConstantArray: {
1745       const ConstantArrayType *ConstantArrayArg =
1746         S.Context.getAsConstantArrayType(Arg);
1747       if (!ConstantArrayArg)
1748         return Sema::TDK_NonDeducedMismatch;
1749 
1750       const ConstantArrayType *ConstantArrayParm =
1751         S.Context.getAsConstantArrayType(Param);
1752       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1753         return Sema::TDK_NonDeducedMismatch;
1754 
1755       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1756       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1757                                            ConstantArrayParm->getElementType(),
1758                                            ConstantArrayArg->getElementType(),
1759                                            Info, Deduced, SubTDF);
1760     }
1761 
1762     //     type [i]
1763     case Type::DependentSizedArray: {
1764       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1765       if (!ArrayArg)
1766         return Sema::TDK_NonDeducedMismatch;
1767 
1768       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1769 
1770       // Check the element type of the arrays
1771       const DependentSizedArrayType *DependentArrayParm
1772         = S.Context.getAsDependentSizedArrayType(Param);
1773       if (Sema::TemplateDeductionResult Result
1774             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1775                                           DependentArrayParm->getElementType(),
1776                                           ArrayArg->getElementType(),
1777                                           Info, Deduced, SubTDF))
1778         return Result;
1779 
1780       // Determine the array bound is something we can deduce.
1781       const NonTypeTemplateParmDecl *NTTP
1782         = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr());
1783       if (!NTTP)
1784         return Sema::TDK_Success;
1785 
1786       // We can perform template argument deduction for the given non-type
1787       // template parameter.
1788       assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1789              "saw non-type template parameter with wrong depth");
1790       if (const ConstantArrayType *ConstantArrayArg
1791             = dyn_cast<ConstantArrayType>(ArrayArg)) {
1792         llvm::APSInt Size(ConstantArrayArg->getSize());
1793         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size,
1794                                              S.Context.getSizeType(),
1795                                              /*ArrayBound=*/true,
1796                                              Info, Deduced);
1797       }
1798       if (const DependentSizedArrayType *DependentArrayArg
1799             = dyn_cast<DependentSizedArrayType>(ArrayArg))
1800         if (DependentArrayArg->getSizeExpr())
1801           return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
1802                                                DependentArrayArg->getSizeExpr(),
1803                                                Info, Deduced);
1804 
1805       // Incomplete type does not match a dependently-sized array type
1806       return Sema::TDK_NonDeducedMismatch;
1807     }
1808 
1809     //     type(*)(T)
1810     //     T(*)()
1811     //     T(*)(T)
1812     case Type::FunctionProto: {
1813       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1814       const FunctionProtoType *FunctionProtoArg =
1815         dyn_cast<FunctionProtoType>(Arg);
1816       if (!FunctionProtoArg)
1817         return Sema::TDK_NonDeducedMismatch;
1818 
1819       const FunctionProtoType *FunctionProtoParam =
1820         cast<FunctionProtoType>(Param);
1821 
1822       if (FunctionProtoParam->getMethodQuals()
1823             != FunctionProtoArg->getMethodQuals() ||
1824           FunctionProtoParam->getRefQualifier()
1825             != FunctionProtoArg->getRefQualifier() ||
1826           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1827         return Sema::TDK_NonDeducedMismatch;
1828 
1829       // Check return types.
1830       if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1831               S, TemplateParams, FunctionProtoParam->getReturnType(),
1832               FunctionProtoArg->getReturnType(), Info, Deduced, 0))
1833         return Result;
1834 
1835       // Check parameter types.
1836       if (auto Result = DeduceTemplateArguments(
1837               S, TemplateParams, FunctionProtoParam->param_type_begin(),
1838               FunctionProtoParam->getNumParams(),
1839               FunctionProtoArg->param_type_begin(),
1840               FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF))
1841         return Result;
1842 
1843       if (TDF & TDF_AllowCompatibleFunctionType)
1844         return Sema::TDK_Success;
1845 
1846       // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
1847       // deducing through the noexcept-specifier if it's part of the canonical
1848       // type. libstdc++ relies on this.
1849       Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr();
1850       if (const NonTypeTemplateParmDecl *NTTP =
1851           NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
1852                        : nullptr) {
1853         assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1854                "saw non-type template parameter with wrong depth");
1855 
1856         llvm::APSInt Noexcept(1);
1857         switch (FunctionProtoArg->canThrow()) {
1858         case CT_Cannot:
1859           Noexcept = 1;
1860           LLVM_FALLTHROUGH;
1861 
1862         case CT_Can:
1863           // We give E in noexcept(E) the "deduced from array bound" treatment.
1864           // FIXME: Should we?
1865           return DeduceNonTypeTemplateArgument(
1866               S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
1867               /*ArrayBound*/true, Info, Deduced);
1868 
1869         case CT_Dependent:
1870           if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr())
1871             return DeduceNonTypeTemplateArgument(
1872                 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced);
1873           // Can't deduce anything from throw(T...).
1874           break;
1875         }
1876       }
1877       // FIXME: Detect non-deduced exception specification mismatches?
1878       //
1879       // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
1880       // top-level differences in noexcept-specifications.
1881 
1882       return Sema::TDK_Success;
1883     }
1884 
1885     case Type::InjectedClassName:
1886       // Treat a template's injected-class-name as if the template
1887       // specialization type had been used.
1888       Param = cast<InjectedClassNameType>(Param)
1889         ->getInjectedSpecializationType();
1890       assert(isa<TemplateSpecializationType>(Param) &&
1891              "injected class name is not a template specialization type");
1892       LLVM_FALLTHROUGH;
1893 
1894     //     template-name<T> (where template-name refers to a class template)
1895     //     template-name<i>
1896     //     TT<T>
1897     //     TT<i>
1898     //     TT<>
1899     case Type::TemplateSpecialization: {
1900       const TemplateSpecializationType *SpecParam =
1901           cast<TemplateSpecializationType>(Param);
1902 
1903       // When Arg cannot be a derived class, we can just try to deduce template
1904       // arguments from the template-id.
1905       const RecordType *RecordT = Arg->getAs<RecordType>();
1906       if (!(TDF & TDF_DerivedClass) || !RecordT)
1907         return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info,
1908                                        Deduced);
1909 
1910       SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1911                                                           Deduced.end());
1912 
1913       Sema::TemplateDeductionResult Result = DeduceTemplateArguments(
1914           S, TemplateParams, SpecParam, Arg, Info, Deduced);
1915 
1916       if (Result == Sema::TDK_Success)
1917         return Result;
1918 
1919       // We cannot inspect base classes as part of deduction when the type
1920       // is incomplete, so either instantiate any templates necessary to
1921       // complete the type, or skip over it if it cannot be completed.
1922       if (!S.isCompleteType(Info.getLocation(), Arg))
1923         return Result;
1924 
1925       // Reset the incorrectly deduced argument from above.
1926       Deduced = DeducedOrig;
1927 
1928       // Check bases according to C++14 [temp.deduct.call] p4b3:
1929       Sema::TemplateDeductionResult BaseResult = DeduceTemplateBases(
1930           S, RecordT, TemplateParams, SpecParam, Info, Deduced);
1931 
1932       if (BaseResult != Sema::TDK_Invalid)
1933         return BaseResult;
1934       return Result;
1935     }
1936 
1937     //     T type::*
1938     //     T T::*
1939     //     T (type::*)()
1940     //     type (T::*)()
1941     //     type (type::*)(T)
1942     //     type (T::*)(T)
1943     //     T (type::*)(T)
1944     //     T (T::*)()
1945     //     T (T::*)(T)
1946     case Type::MemberPointer: {
1947       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1948       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1949       if (!MemPtrArg)
1950         return Sema::TDK_NonDeducedMismatch;
1951 
1952       QualType ParamPointeeType = MemPtrParam->getPointeeType();
1953       if (ParamPointeeType->isFunctionType())
1954         S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
1955                                  /*IsCtorOrDtor=*/false, Info.getLocation());
1956       QualType ArgPointeeType = MemPtrArg->getPointeeType();
1957       if (ArgPointeeType->isFunctionType())
1958         S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
1959                                  /*IsCtorOrDtor=*/false, Info.getLocation());
1960 
1961       if (Sema::TemplateDeductionResult Result
1962             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1963                                                  ParamPointeeType,
1964                                                  ArgPointeeType,
1965                                                  Info, Deduced,
1966                                                  TDF & TDF_IgnoreQualifiers))
1967         return Result;
1968 
1969       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1970                                            QualType(MemPtrParam->getClass(), 0),
1971                                            QualType(MemPtrArg->getClass(), 0),
1972                                            Info, Deduced,
1973                                            TDF & TDF_IgnoreQualifiers);
1974     }
1975 
1976     //     (clang extension)
1977     //
1978     //     type(^)(T)
1979     //     T(^)()
1980     //     T(^)(T)
1981     case Type::BlockPointer: {
1982       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1983       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1984 
1985       if (!BlockPtrArg)
1986         return Sema::TDK_NonDeducedMismatch;
1987 
1988       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1989                                                 BlockPtrParam->getPointeeType(),
1990                                                 BlockPtrArg->getPointeeType(),
1991                                                 Info, Deduced, 0);
1992     }
1993 
1994     //     (clang extension)
1995     //
1996     //     T __attribute__(((ext_vector_type(<integral constant>))))
1997     case Type::ExtVector: {
1998       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1999       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
2000         // Make sure that the vectors have the same number of elements.
2001         if (VectorParam->getNumElements() != VectorArg->getNumElements())
2002           return Sema::TDK_NonDeducedMismatch;
2003 
2004         // Perform deduction on the element types.
2005         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2006                                                   VectorParam->getElementType(),
2007                                                   VectorArg->getElementType(),
2008                                                   Info, Deduced, TDF);
2009       }
2010 
2011       if (const DependentSizedExtVectorType *VectorArg
2012                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
2013         // We can't check the number of elements, since the argument has a
2014         // dependent number of elements. This can only occur during partial
2015         // ordering.
2016 
2017         // Perform deduction on the element types.
2018         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2019                                                   VectorParam->getElementType(),
2020                                                   VectorArg->getElementType(),
2021                                                   Info, Deduced, TDF);
2022       }
2023 
2024       return Sema::TDK_NonDeducedMismatch;
2025     }
2026 
2027     case Type::DependentVector: {
2028       const auto *VectorParam = cast<DependentVectorType>(Param);
2029 
2030       if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) {
2031         // Perform deduction on the element types.
2032         if (Sema::TemplateDeductionResult Result =
2033                 DeduceTemplateArgumentsByTypeMatch(
2034                     S, TemplateParams, VectorParam->getElementType(),
2035                     VectorArg->getElementType(), Info, Deduced, TDF))
2036           return Result;
2037 
2038         // Perform deduction on the vector size, if we can.
2039         const NonTypeTemplateParmDecl *NTTP =
2040             getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2041         if (!NTTP)
2042           return Sema::TDK_Success;
2043 
2044         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2045         ArgSize = VectorArg->getNumElements();
2046         // Note that we use the "array bound" rules here; just like in that
2047         // case, we don't have any particular type for the vector size, but
2048         // we can provide one if necessary.
2049         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2050                                              S.Context.UnsignedIntTy, true,
2051                                              Info, Deduced);
2052       }
2053 
2054       if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) {
2055         // Perform deduction on the element types.
2056         if (Sema::TemplateDeductionResult Result =
2057                 DeduceTemplateArgumentsByTypeMatch(
2058                     S, TemplateParams, VectorParam->getElementType(),
2059                     VectorArg->getElementType(), Info, Deduced, TDF))
2060           return Result;
2061 
2062         // Perform deduction on the vector size, if we can.
2063         const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2064             Info, VectorParam->getSizeExpr());
2065         if (!NTTP)
2066           return Sema::TDK_Success;
2067 
2068         return DeduceNonTypeTemplateArgument(
2069             S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced);
2070       }
2071 
2072       return Sema::TDK_NonDeducedMismatch;
2073     }
2074 
2075     //     (clang extension)
2076     //
2077     //     T __attribute__(((ext_vector_type(N))))
2078     case Type::DependentSizedExtVector: {
2079       const DependentSizedExtVectorType *VectorParam
2080         = cast<DependentSizedExtVectorType>(Param);
2081 
2082       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
2083         // Perform deduction on the element types.
2084         if (Sema::TemplateDeductionResult Result
2085               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2086                                                   VectorParam->getElementType(),
2087                                                    VectorArg->getElementType(),
2088                                                    Info, Deduced, TDF))
2089           return Result;
2090 
2091         // Perform deduction on the vector size, if we can.
2092         const NonTypeTemplateParmDecl *NTTP =
2093             getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2094         if (!NTTP)
2095           return Sema::TDK_Success;
2096 
2097         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2098         ArgSize = VectorArg->getNumElements();
2099         // Note that we use the "array bound" rules here; just like in that
2100         // case, we don't have any particular type for the vector size, but
2101         // we can provide one if necessary.
2102         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2103                                              S.Context.IntTy, true, Info,
2104                                              Deduced);
2105       }
2106 
2107       if (const DependentSizedExtVectorType *VectorArg
2108                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
2109         // Perform deduction on the element types.
2110         if (Sema::TemplateDeductionResult Result
2111             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2112                                                  VectorParam->getElementType(),
2113                                                  VectorArg->getElementType(),
2114                                                  Info, Deduced, TDF))
2115           return Result;
2116 
2117         // Perform deduction on the vector size, if we can.
2118         const NonTypeTemplateParmDecl *NTTP =
2119             getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2120         if (!NTTP)
2121           return Sema::TDK_Success;
2122 
2123         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2124                                              VectorArg->getSizeExpr(),
2125                                              Info, Deduced);
2126       }
2127 
2128       return Sema::TDK_NonDeducedMismatch;
2129     }
2130 
2131     //     (clang extension)
2132     //
2133     //     T __attribute__((matrix_type(<integral constant>,
2134     //                                  <integral constant>)))
2135     case Type::ConstantMatrix: {
2136       const ConstantMatrixType *MatrixArg = dyn_cast<ConstantMatrixType>(Arg);
2137       if (!MatrixArg)
2138         return Sema::TDK_NonDeducedMismatch;
2139 
2140       const ConstantMatrixType *MatrixParam = cast<ConstantMatrixType>(Param);
2141       // Check that the dimensions are the same
2142       if (MatrixParam->getNumRows() != MatrixArg->getNumRows() ||
2143           MatrixParam->getNumColumns() != MatrixArg->getNumColumns()) {
2144         return Sema::TDK_NonDeducedMismatch;
2145       }
2146       // Perform deduction on element types.
2147       return DeduceTemplateArgumentsByTypeMatch(
2148           S, TemplateParams, MatrixParam->getElementType(),
2149           MatrixArg->getElementType(), Info, Deduced, TDF);
2150     }
2151 
2152     case Type::DependentSizedMatrix: {
2153       const MatrixType *MatrixArg = dyn_cast<MatrixType>(Arg);
2154       if (!MatrixArg)
2155         return Sema::TDK_NonDeducedMismatch;
2156 
2157       // Check the element type of the matrixes.
2158       const DependentSizedMatrixType *MatrixParam =
2159           cast<DependentSizedMatrixType>(Param);
2160       if (Sema::TemplateDeductionResult Result =
2161               DeduceTemplateArgumentsByTypeMatch(
2162                   S, TemplateParams, MatrixParam->getElementType(),
2163                   MatrixArg->getElementType(), Info, Deduced, TDF))
2164         return Result;
2165 
2166       // Try to deduce a matrix dimension.
2167       auto DeduceMatrixArg =
2168           [&S, &Info, &Deduced, &TemplateParams](
2169               Expr *ParamExpr, const MatrixType *Arg,
2170               unsigned (ConstantMatrixType::*GetArgDimension)() const,
2171               Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) {
2172             const auto *ArgConstMatrix = dyn_cast<ConstantMatrixType>(Arg);
2173             const auto *ArgDepMatrix = dyn_cast<DependentSizedMatrixType>(Arg);
2174             if (!ParamExpr->isValueDependent()) {
2175               Optional<llvm::APSInt> ParamConst =
2176                   ParamExpr->getIntegerConstantExpr(S.Context);
2177               if (!ParamConst)
2178                 return Sema::TDK_NonDeducedMismatch;
2179 
2180               if (ArgConstMatrix) {
2181                 if ((ArgConstMatrix->*GetArgDimension)() == *ParamConst)
2182                   return Sema::TDK_Success;
2183                 return Sema::TDK_NonDeducedMismatch;
2184               }
2185 
2186               Expr *ArgExpr = (ArgDepMatrix->*GetArgDimensionExpr)();
2187               if (!ArgExpr->isValueDependent())
2188                 if (Optional<llvm::APSInt> ArgConst =
2189                         ArgExpr->getIntegerConstantExpr(S.Context))
2190                   if (*ArgConst == *ParamConst)
2191                     return Sema::TDK_Success;
2192               return Sema::TDK_NonDeducedMismatch;
2193             }
2194 
2195             const NonTypeTemplateParmDecl *NTTP =
2196                 getDeducedParameterFromExpr(Info, ParamExpr);
2197             if (!NTTP)
2198               return Sema::TDK_Success;
2199 
2200             if (ArgConstMatrix) {
2201               llvm::APSInt ArgConst(
2202                   S.Context.getTypeSize(S.Context.getSizeType()));
2203               ArgConst = (ArgConstMatrix->*GetArgDimension)();
2204               return DeduceNonTypeTemplateArgument(
2205                   S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(),
2206                   /*ArrayBound=*/true, Info, Deduced);
2207             }
2208 
2209             return DeduceNonTypeTemplateArgument(
2210                 S, TemplateParams, NTTP, (ArgDepMatrix->*GetArgDimensionExpr)(),
2211                 Info, Deduced);
2212           };
2213 
2214       auto Result = DeduceMatrixArg(MatrixParam->getRowExpr(), MatrixArg,
2215                                     &ConstantMatrixType::getNumRows,
2216                                     &DependentSizedMatrixType::getRowExpr);
2217       if (Result)
2218         return Result;
2219 
2220       return DeduceMatrixArg(MatrixParam->getColumnExpr(), MatrixArg,
2221                              &ConstantMatrixType::getNumColumns,
2222                              &DependentSizedMatrixType::getColumnExpr);
2223     }
2224 
2225     //     (clang extension)
2226     //
2227     //     T __attribute__(((address_space(N))))
2228     case Type::DependentAddressSpace: {
2229       const DependentAddressSpaceType *AddressSpaceParam =
2230           cast<DependentAddressSpaceType>(Param);
2231 
2232       if (const DependentAddressSpaceType *AddressSpaceArg =
2233               dyn_cast<DependentAddressSpaceType>(Arg)) {
2234         // Perform deduction on the pointer type.
2235         if (Sema::TemplateDeductionResult Result =
2236                 DeduceTemplateArgumentsByTypeMatch(
2237                     S, TemplateParams, AddressSpaceParam->getPointeeType(),
2238                     AddressSpaceArg->getPointeeType(), Info, Deduced, TDF))
2239           return Result;
2240 
2241         // Perform deduction on the address space, if we can.
2242         const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2243             Info, AddressSpaceParam->getAddrSpaceExpr());
2244         if (!NTTP)
2245           return Sema::TDK_Success;
2246 
2247         return DeduceNonTypeTemplateArgument(
2248             S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info,
2249             Deduced);
2250       }
2251 
2252       if (isTargetAddressSpace(Arg.getAddressSpace())) {
2253         llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
2254                                      false);
2255         ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace());
2256 
2257         // Perform deduction on the pointer types.
2258         if (Sema::TemplateDeductionResult Result =
2259                 DeduceTemplateArgumentsByTypeMatch(
2260                     S, TemplateParams, AddressSpaceParam->getPointeeType(),
2261                     S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF))
2262           return Result;
2263 
2264         // Perform deduction on the address space, if we can.
2265         const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2266             Info, AddressSpaceParam->getAddrSpaceExpr());
2267         if (!NTTP)
2268           return Sema::TDK_Success;
2269 
2270         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2271                                              ArgAddressSpace, S.Context.IntTy,
2272                                              true, Info, Deduced);
2273       }
2274 
2275       return Sema::TDK_NonDeducedMismatch;
2276     }
2277     case Type::DependentExtInt: {
2278       const auto *IntParam = cast<DependentExtIntType>(Param);
2279 
2280       if (const auto *IntArg = dyn_cast<ExtIntType>(Arg)){
2281         if (IntParam->isUnsigned() != IntArg->isUnsigned())
2282           return Sema::TDK_NonDeducedMismatch;
2283 
2284         const NonTypeTemplateParmDecl *NTTP =
2285             getDeducedParameterFromExpr(Info, IntParam->getNumBitsExpr());
2286         if (!NTTP)
2287           return Sema::TDK_Success;
2288 
2289         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2290         ArgSize = IntArg->getNumBits();
2291 
2292         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2293                                              S.Context.IntTy, true, Info,
2294                                              Deduced);
2295       }
2296 
2297       if (const auto *IntArg = dyn_cast<DependentExtIntType>(Arg)) {
2298         if (IntParam->isUnsigned() != IntArg->isUnsigned())
2299           return Sema::TDK_NonDeducedMismatch;
2300         return Sema::TDK_Success;
2301       }
2302       return Sema::TDK_NonDeducedMismatch;
2303     }
2304 
2305     case Type::TypeOfExpr:
2306     case Type::TypeOf:
2307     case Type::DependentName:
2308     case Type::UnresolvedUsing:
2309     case Type::Decltype:
2310     case Type::UnaryTransform:
2311     case Type::Auto:
2312     case Type::DeducedTemplateSpecialization:
2313     case Type::DependentTemplateSpecialization:
2314     case Type::PackExpansion:
2315     case Type::Pipe:
2316       // No template argument deduction for these types
2317       return Sema::TDK_Success;
2318   }
2319 
2320   llvm_unreachable("Invalid Type Class!");
2321 }
2322 
2323 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)2324 DeduceTemplateArguments(Sema &S,
2325                         TemplateParameterList *TemplateParams,
2326                         const TemplateArgument &Param,
2327                         TemplateArgument Arg,
2328                         TemplateDeductionInfo &Info,
2329                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2330   // If the template argument is a pack expansion, perform template argument
2331   // deduction against the pattern of that expansion. This only occurs during
2332   // partial ordering.
2333   if (Arg.isPackExpansion())
2334     Arg = Arg.getPackExpansionPattern();
2335 
2336   switch (Param.getKind()) {
2337   case TemplateArgument::Null:
2338     llvm_unreachable("Null template argument in parameter list");
2339 
2340   case TemplateArgument::Type:
2341     if (Arg.getKind() == TemplateArgument::Type)
2342       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2343                                                 Param.getAsType(),
2344                                                 Arg.getAsType(),
2345                                                 Info, Deduced, 0);
2346     Info.FirstArg = Param;
2347     Info.SecondArg = Arg;
2348     return Sema::TDK_NonDeducedMismatch;
2349 
2350   case TemplateArgument::Template:
2351     if (Arg.getKind() == TemplateArgument::Template)
2352       return DeduceTemplateArguments(S, TemplateParams,
2353                                      Param.getAsTemplate(),
2354                                      Arg.getAsTemplate(), Info, Deduced);
2355     Info.FirstArg = Param;
2356     Info.SecondArg = Arg;
2357     return Sema::TDK_NonDeducedMismatch;
2358 
2359   case TemplateArgument::TemplateExpansion:
2360     llvm_unreachable("caller should handle pack expansions");
2361 
2362   case TemplateArgument::Declaration:
2363     if (Arg.getKind() == TemplateArgument::Declaration &&
2364         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
2365       return Sema::TDK_Success;
2366 
2367     Info.FirstArg = Param;
2368     Info.SecondArg = Arg;
2369     return Sema::TDK_NonDeducedMismatch;
2370 
2371   case TemplateArgument::NullPtr:
2372     if (Arg.getKind() == TemplateArgument::NullPtr &&
2373         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
2374       return Sema::TDK_Success;
2375 
2376     Info.FirstArg = Param;
2377     Info.SecondArg = Arg;
2378     return Sema::TDK_NonDeducedMismatch;
2379 
2380   case TemplateArgument::Integral:
2381     if (Arg.getKind() == TemplateArgument::Integral) {
2382       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
2383         return Sema::TDK_Success;
2384 
2385       Info.FirstArg = Param;
2386       Info.SecondArg = Arg;
2387       return Sema::TDK_NonDeducedMismatch;
2388     }
2389 
2390     if (Arg.getKind() == TemplateArgument::Expression) {
2391       Info.FirstArg = Param;
2392       Info.SecondArg = Arg;
2393       return Sema::TDK_NonDeducedMismatch;
2394     }
2395 
2396     Info.FirstArg = Param;
2397     Info.SecondArg = Arg;
2398     return Sema::TDK_NonDeducedMismatch;
2399 
2400   case TemplateArgument::Expression:
2401     if (const NonTypeTemplateParmDecl *NTTP =
2402             getDeducedParameterFromExpr(Info, Param.getAsExpr())) {
2403       if (Arg.getKind() == TemplateArgument::Integral)
2404         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2405                                              Arg.getAsIntegral(),
2406                                              Arg.getIntegralType(),
2407                                              /*ArrayBound=*/false,
2408                                              Info, Deduced);
2409       if (Arg.getKind() == TemplateArgument::NullPtr)
2410         return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP,
2411                                              Arg.getNullPtrType(),
2412                                              Info, Deduced);
2413       if (Arg.getKind() == TemplateArgument::Expression)
2414         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2415                                              Arg.getAsExpr(), Info, Deduced);
2416       if (Arg.getKind() == TemplateArgument::Declaration)
2417         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2418                                              Arg.getAsDecl(),
2419                                              Arg.getParamTypeForDecl(),
2420                                              Info, Deduced);
2421 
2422       Info.FirstArg = Param;
2423       Info.SecondArg = Arg;
2424       return Sema::TDK_NonDeducedMismatch;
2425     }
2426 
2427     // Can't deduce anything, but that's okay.
2428     return Sema::TDK_Success;
2429 
2430   case TemplateArgument::Pack:
2431     llvm_unreachable("Argument packs should be expanded by the caller!");
2432   }
2433 
2434   llvm_unreachable("Invalid TemplateArgument Kind!");
2435 }
2436 
2437 /// Determine whether there is a template argument to be used for
2438 /// deduction.
2439 ///
2440 /// This routine "expands" argument packs in-place, overriding its input
2441 /// parameters so that \c Args[ArgIdx] will be the available template argument.
2442 ///
2443 /// \returns true if there is another template argument (which will be at
2444 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> & Args,unsigned & ArgIdx)2445 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
2446                                             unsigned &ArgIdx) {
2447   if (ArgIdx == Args.size())
2448     return false;
2449 
2450   const TemplateArgument &Arg = Args[ArgIdx];
2451   if (Arg.getKind() != TemplateArgument::Pack)
2452     return true;
2453 
2454   assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
2455   Args = Arg.pack_elements();
2456   ArgIdx = 0;
2457   return ArgIdx < Args.size();
2458 }
2459 
2460 /// Determine whether the given set of template arguments has a pack
2461 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args)2462 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
2463   bool FoundPackExpansion = false;
2464   for (const auto &A : Args) {
2465     if (FoundPackExpansion)
2466       return true;
2467 
2468     if (A.getKind() == TemplateArgument::Pack)
2469       return hasPackExpansionBeforeEnd(A.pack_elements());
2470 
2471     // FIXME: If this is a fixed-arity pack expansion from an outer level of
2472     // templates, it should not be treated as a pack expansion.
2473     if (A.isPackExpansion())
2474       FoundPackExpansion = true;
2475   }
2476 
2477   return false;
2478 }
2479 
2480 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,ArrayRef<TemplateArgument> Params,ArrayRef<TemplateArgument> Args,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,bool NumberOfArgumentsMustMatch)2481 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
2482                         ArrayRef<TemplateArgument> Params,
2483                         ArrayRef<TemplateArgument> Args,
2484                         TemplateDeductionInfo &Info,
2485                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2486                         bool NumberOfArgumentsMustMatch) {
2487   // C++0x [temp.deduct.type]p9:
2488   //   If the template argument list of P contains a pack expansion that is not
2489   //   the last template argument, the entire template argument list is a
2490   //   non-deduced context.
2491   if (hasPackExpansionBeforeEnd(Params))
2492     return Sema::TDK_Success;
2493 
2494   // C++0x [temp.deduct.type]p9:
2495   //   If P has a form that contains <T> or <i>, then each argument Pi of the
2496   //   respective template argument list P is compared with the corresponding
2497   //   argument Ai of the corresponding template argument list of A.
2498   unsigned ArgIdx = 0, ParamIdx = 0;
2499   for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) {
2500     if (!Params[ParamIdx].isPackExpansion()) {
2501       // The simple case: deduce template arguments by matching Pi and Ai.
2502 
2503       // Check whether we have enough arguments.
2504       if (!hasTemplateArgumentForDeduction(Args, ArgIdx))
2505         return NumberOfArgumentsMustMatch
2506                    ? Sema::TDK_MiscellaneousDeductionFailure
2507                    : Sema::TDK_Success;
2508 
2509       // C++1z [temp.deduct.type]p9:
2510       //   During partial ordering, if Ai was originally a pack expansion [and]
2511       //   Pi is not a pack expansion, template argument deduction fails.
2512       if (Args[ArgIdx].isPackExpansion())
2513         return Sema::TDK_MiscellaneousDeductionFailure;
2514 
2515       // Perform deduction for this Pi/Ai pair.
2516       if (Sema::TemplateDeductionResult Result
2517             = DeduceTemplateArguments(S, TemplateParams,
2518                                       Params[ParamIdx], Args[ArgIdx],
2519                                       Info, Deduced))
2520         return Result;
2521 
2522       // Move to the next argument.
2523       ++ArgIdx;
2524       continue;
2525     }
2526 
2527     // The parameter is a pack expansion.
2528 
2529     // C++0x [temp.deduct.type]p9:
2530     //   If Pi is a pack expansion, then the pattern of Pi is compared with
2531     //   each remaining argument in the template argument list of A. Each
2532     //   comparison deduces template arguments for subsequent positions in the
2533     //   template parameter packs expanded by Pi.
2534     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
2535 
2536     // Prepare to deduce the packs within the pattern.
2537     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
2538 
2539     // Keep track of the deduced template arguments for each parameter pack
2540     // expanded by this pack expansion (the outer index) and for each
2541     // template argument (the inner SmallVectors).
2542     for (; hasTemplateArgumentForDeduction(Args, ArgIdx) &&
2543            PackScope.hasNextElement();
2544          ++ArgIdx) {
2545       // Deduce template arguments from the pattern.
2546       if (Sema::TemplateDeductionResult Result
2547             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
2548                                       Info, Deduced))
2549         return Result;
2550 
2551       PackScope.nextPackElement();
2552     }
2553 
2554     // Build argument packs for each of the parameter packs expanded by this
2555     // pack expansion.
2556     if (auto Result = PackScope.finish())
2557       return Result;
2558   }
2559 
2560   return Sema::TDK_Success;
2561 }
2562 
2563 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)2564 DeduceTemplateArguments(Sema &S,
2565                         TemplateParameterList *TemplateParams,
2566                         const TemplateArgumentList &ParamList,
2567                         const TemplateArgumentList &ArgList,
2568                         TemplateDeductionInfo &Info,
2569                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2570   return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(),
2571                                  ArgList.asArray(), Info, Deduced,
2572                                  /*NumberOfArgumentsMustMatch*/false);
2573 }
2574 
2575 /// Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,TemplateArgument X,const TemplateArgument & Y,bool PackExpansionMatchesPack=false)2576 static bool isSameTemplateArg(ASTContext &Context,
2577                               TemplateArgument X,
2578                               const TemplateArgument &Y,
2579                               bool PackExpansionMatchesPack = false) {
2580   // If we're checking deduced arguments (X) against original arguments (Y),
2581   // we will have flattened packs to non-expansions in X.
2582   if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
2583     X = X.getPackExpansionPattern();
2584 
2585   if (X.getKind() != Y.getKind())
2586     return false;
2587 
2588   switch (X.getKind()) {
2589     case TemplateArgument::Null:
2590       llvm_unreachable("Comparing NULL template argument");
2591 
2592     case TemplateArgument::Type:
2593       return Context.getCanonicalType(X.getAsType()) ==
2594              Context.getCanonicalType(Y.getAsType());
2595 
2596     case TemplateArgument::Declaration:
2597       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
2598 
2599     case TemplateArgument::NullPtr:
2600       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
2601 
2602     case TemplateArgument::Template:
2603     case TemplateArgument::TemplateExpansion:
2604       return Context.getCanonicalTemplateName(
2605                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
2606              Context.getCanonicalTemplateName(
2607                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
2608 
2609     case TemplateArgument::Integral:
2610       return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
2611 
2612     case TemplateArgument::Expression: {
2613       llvm::FoldingSetNodeID XID, YID;
2614       X.getAsExpr()->Profile(XID, Context, true);
2615       Y.getAsExpr()->Profile(YID, Context, true);
2616       return XID == YID;
2617     }
2618 
2619     case TemplateArgument::Pack:
2620       if (X.pack_size() != Y.pack_size())
2621         return false;
2622 
2623       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
2624                                         XPEnd = X.pack_end(),
2625                                            YP = Y.pack_begin();
2626            XP != XPEnd; ++XP, ++YP)
2627         if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack))
2628           return false;
2629 
2630       return true;
2631   }
2632 
2633   llvm_unreachable("Invalid TemplateArgument Kind!");
2634 }
2635 
2636 /// Allocate a TemplateArgumentLoc where all locations have
2637 /// been initialized to the given location.
2638 ///
2639 /// \param Arg The template argument we are producing template argument
2640 /// location information for.
2641 ///
2642 /// \param NTTPType For a declaration template argument, the type of
2643 /// the non-type template parameter that corresponds to this template
2644 /// argument. Can be null if no type sugar is available to add to the
2645 /// type from the template argument.
2646 ///
2647 /// \param Loc The source location to use for the resulting template
2648 /// argument.
2649 TemplateArgumentLoc
getTrivialTemplateArgumentLoc(const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)2650 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
2651                                     QualType NTTPType, SourceLocation Loc) {
2652   switch (Arg.getKind()) {
2653   case TemplateArgument::Null:
2654     llvm_unreachable("Can't get a NULL template argument here");
2655 
2656   case TemplateArgument::Type:
2657     return TemplateArgumentLoc(
2658         Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2659 
2660   case TemplateArgument::Declaration: {
2661     if (NTTPType.isNull())
2662       NTTPType = Arg.getParamTypeForDecl();
2663     Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2664                   .getAs<Expr>();
2665     return TemplateArgumentLoc(TemplateArgument(E), E);
2666   }
2667 
2668   case TemplateArgument::NullPtr: {
2669     if (NTTPType.isNull())
2670       NTTPType = Arg.getNullPtrType();
2671     Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2672                   .getAs<Expr>();
2673     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2674                                E);
2675   }
2676 
2677   case TemplateArgument::Integral: {
2678     Expr *E =
2679         BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2680     return TemplateArgumentLoc(TemplateArgument(E), E);
2681   }
2682 
2683     case TemplateArgument::Template:
2684     case TemplateArgument::TemplateExpansion: {
2685       NestedNameSpecifierLocBuilder Builder;
2686       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2687       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2688         Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
2689       else if (QualifiedTemplateName *QTN =
2690                    Template.getAsQualifiedTemplateName())
2691         Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
2692 
2693       if (Arg.getKind() == TemplateArgument::Template)
2694         return TemplateArgumentLoc(Context, Arg,
2695                                    Builder.getWithLocInContext(Context), Loc);
2696 
2697       return TemplateArgumentLoc(
2698           Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc);
2699     }
2700 
2701   case TemplateArgument::Expression:
2702     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2703 
2704   case TemplateArgument::Pack:
2705     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2706   }
2707 
2708   llvm_unreachable("Invalid TemplateArgument Kind!");
2709 }
2710 
2711 TemplateArgumentLoc
getIdentityTemplateArgumentLoc(NamedDecl * TemplateParm,SourceLocation Location)2712 Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm,
2713                                      SourceLocation Location) {
2714   return getTrivialTemplateArgumentLoc(
2715       Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
2716 }
2717 
2718 /// Convert the given deduced template argument and add it to the set of
2719 /// fully-converted template arguments.
2720 static bool
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,TemplateDeductionInfo & Info,bool IsDeduced,SmallVectorImpl<TemplateArgument> & Output)2721 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2722                                DeducedTemplateArgument Arg,
2723                                NamedDecl *Template,
2724                                TemplateDeductionInfo &Info,
2725                                bool IsDeduced,
2726                                SmallVectorImpl<TemplateArgument> &Output) {
2727   auto ConvertArg = [&](DeducedTemplateArgument Arg,
2728                         unsigned ArgumentPackIndex) {
2729     // Convert the deduced template argument into a template
2730     // argument that we can check, almost as if the user had written
2731     // the template argument explicitly.
2732     TemplateArgumentLoc ArgLoc =
2733         S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation());
2734 
2735     // Check the template argument, converting it as necessary.
2736     return S.CheckTemplateArgument(
2737         Param, ArgLoc, Template, Template->getLocation(),
2738         Template->getSourceRange().getEnd(), ArgumentPackIndex, Output,
2739         IsDeduced
2740             ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
2741                                               : Sema::CTAK_Deduced)
2742             : Sema::CTAK_Specified);
2743   };
2744 
2745   if (Arg.getKind() == TemplateArgument::Pack) {
2746     // This is a template argument pack, so check each of its arguments against
2747     // the template parameter.
2748     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2749     for (const auto &P : Arg.pack_elements()) {
2750       // When converting the deduced template argument, append it to the
2751       // general output list. We need to do this so that the template argument
2752       // checking logic has all of the prior template arguments available.
2753       DeducedTemplateArgument InnerArg(P);
2754       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2755       assert(InnerArg.getKind() != TemplateArgument::Pack &&
2756              "deduced nested pack");
2757       if (P.isNull()) {
2758         // We deduced arguments for some elements of this pack, but not for
2759         // all of them. This happens if we get a conditionally-non-deduced
2760         // context in a pack expansion (such as an overload set in one of the
2761         // arguments).
2762         S.Diag(Param->getLocation(),
2763                diag::err_template_arg_deduced_incomplete_pack)
2764           << Arg << Param;
2765         return true;
2766       }
2767       if (ConvertArg(InnerArg, PackedArgsBuilder.size()))
2768         return true;
2769 
2770       // Move the converted template argument into our argument pack.
2771       PackedArgsBuilder.push_back(Output.pop_back_val());
2772     }
2773 
2774     // If the pack is empty, we still need to substitute into the parameter
2775     // itself, in case that substitution fails.
2776     if (PackedArgsBuilder.empty()) {
2777       LocalInstantiationScope Scope(S);
2778       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output);
2779       MultiLevelTemplateArgumentList Args(TemplateArgs);
2780 
2781       if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2782         Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2783                                          NTTP, Output,
2784                                          Template->getSourceRange());
2785         if (Inst.isInvalid() ||
2786             S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
2787                         NTTP->getDeclName()).isNull())
2788           return true;
2789       } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
2790         Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2791                                          TTP, Output,
2792                                          Template->getSourceRange());
2793         if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
2794           return true;
2795       }
2796       // For type parameters, no substitution is ever required.
2797     }
2798 
2799     // Create the resulting argument pack.
2800     Output.push_back(
2801         TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
2802     return false;
2803   }
2804 
2805   return ConvertArg(Arg, 0);
2806 }
2807 
2808 // FIXME: This should not be a template, but
2809 // ClassTemplatePartialSpecializationDecl sadly does not derive from
2810 // TemplateDecl.
2811 template<typename TemplateDeclT>
ConvertDeducedTemplateArguments(Sema & S,TemplateDeclT * Template,bool IsDeduced,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info,SmallVectorImpl<TemplateArgument> & Builder,LocalInstantiationScope * CurrentInstantiationScope=nullptr,unsigned NumAlreadyConverted=0,bool PartialOverloading=false)2812 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments(
2813     Sema &S, TemplateDeclT *Template, bool IsDeduced,
2814     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2815     TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder,
2816     LocalInstantiationScope *CurrentInstantiationScope = nullptr,
2817     unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) {
2818   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2819 
2820   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2821     NamedDecl *Param = TemplateParams->getParam(I);
2822 
2823     // C++0x [temp.arg.explicit]p3:
2824     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2825     //    be deduced to an empty sequence of template arguments.
2826     // FIXME: Where did the word "trailing" come from?
2827     if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
2828       if (auto Result =
2829               PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish())
2830         return Result;
2831     }
2832 
2833     if (!Deduced[I].isNull()) {
2834       if (I < NumAlreadyConverted) {
2835         // We may have had explicitly-specified template arguments for a
2836         // template parameter pack (that may or may not have been extended
2837         // via additional deduced arguments).
2838         if (Param->isParameterPack() && CurrentInstantiationScope &&
2839             CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
2840           // Forget the partially-substituted pack; its substitution is now
2841           // complete.
2842           CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2843           // We still need to check the argument in case it was extended by
2844           // deduction.
2845         } else {
2846           // We have already fully type-checked and converted this
2847           // argument, because it was explicitly-specified. Just record the
2848           // presence of this argument.
2849           Builder.push_back(Deduced[I]);
2850           continue;
2851         }
2852       }
2853 
2854       // We may have deduced this argument, so it still needs to be
2855       // checked and converted.
2856       if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
2857                                          IsDeduced, Builder)) {
2858         Info.Param = makeTemplateParameter(Param);
2859         // FIXME: These template arguments are temporary. Free them!
2860         Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2861         return Sema::TDK_SubstitutionFailure;
2862       }
2863 
2864       continue;
2865     }
2866 
2867     // Substitute into the default template argument, if available.
2868     bool HasDefaultArg = false;
2869     TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
2870     if (!TD) {
2871       assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
2872              isa<VarTemplatePartialSpecializationDecl>(Template));
2873       return Sema::TDK_Incomplete;
2874     }
2875 
2876     TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
2877         TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder,
2878         HasDefaultArg);
2879 
2880     // If there was no default argument, deduction is incomplete.
2881     if (DefArg.getArgument().isNull()) {
2882       Info.Param = makeTemplateParameter(
2883           const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2884       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2885       if (PartialOverloading) break;
2886 
2887       return HasDefaultArg ? Sema::TDK_SubstitutionFailure
2888                            : Sema::TDK_Incomplete;
2889     }
2890 
2891     // Check whether we can actually use the default argument.
2892     if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(),
2893                                 TD->getSourceRange().getEnd(), 0, Builder,
2894                                 Sema::CTAK_Specified)) {
2895       Info.Param = makeTemplateParameter(
2896                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2897       // FIXME: These template arguments are temporary. Free them!
2898       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2899       return Sema::TDK_SubstitutionFailure;
2900     }
2901 
2902     // If we get here, we successfully used the default template argument.
2903   }
2904 
2905   return Sema::TDK_Success;
2906 }
2907 
getAsDeclContextOrEnclosing(Decl * D)2908 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
2909   if (auto *DC = dyn_cast<DeclContext>(D))
2910     return DC;
2911   return D->getDeclContext();
2912 }
2913 
2914 template<typename T> struct IsPartialSpecialization {
2915   static constexpr bool value = false;
2916 };
2917 template<>
2918 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
2919   static constexpr bool value = true;
2920 };
2921 template<>
2922 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
2923   static constexpr bool value = true;
2924 };
2925 
2926 template<typename TemplateDeclT>
2927 static Sema::TemplateDeductionResult
CheckDeducedArgumentConstraints(Sema & S,TemplateDeclT * Template,ArrayRef<TemplateArgument> DeducedArgs,TemplateDeductionInfo & Info)2928 CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template,
2929                                 ArrayRef<TemplateArgument> DeducedArgs,
2930                                 TemplateDeductionInfo& Info) {
2931   llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
2932   Template->getAssociatedConstraints(AssociatedConstraints);
2933   if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints,
2934                                     DeducedArgs, Info.getLocation(),
2935                                     Info.AssociatedConstraintsSatisfaction) ||
2936       !Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
2937     Info.reset(TemplateArgumentList::CreateCopy(S.Context, DeducedArgs));
2938     return Sema::TDK_ConstraintsNotSatisfied;
2939   }
2940   return Sema::TDK_Success;
2941 }
2942 
2943 /// Complete template argument deduction for a partial specialization.
2944 template <typename T>
2945 static std::enable_if_t<IsPartialSpecialization<T>::value,
2946                         Sema::TemplateDeductionResult>
FinishTemplateArgumentDeduction(Sema & S,T * Partial,bool IsPartialOrdering,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2947 FinishTemplateArgumentDeduction(
2948     Sema &S, T *Partial, bool IsPartialOrdering,
2949     const TemplateArgumentList &TemplateArgs,
2950     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2951     TemplateDeductionInfo &Info) {
2952   // Unevaluated SFINAE context.
2953   EnterExpressionEvaluationContext Unevaluated(
2954       S, Sema::ExpressionEvaluationContext::Unevaluated);
2955   Sema::SFINAETrap Trap(S);
2956 
2957   Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));
2958 
2959   // C++ [temp.deduct.type]p2:
2960   //   [...] or if any template argument remains neither deduced nor
2961   //   explicitly specified, template argument deduction fails.
2962   SmallVector<TemplateArgument, 4> Builder;
2963   if (auto Result = ConvertDeducedTemplateArguments(
2964           S, Partial, IsPartialOrdering, Deduced, Info, Builder))
2965     return Result;
2966 
2967   // Form the template argument list from the deduced template arguments.
2968   TemplateArgumentList *DeducedArgumentList
2969     = TemplateArgumentList::CreateCopy(S.Context, Builder);
2970 
2971   Info.reset(DeducedArgumentList);
2972 
2973   // Substitute the deduced template arguments into the template
2974   // arguments of the class template partial specialization, and
2975   // verify that the instantiated template arguments are both valid
2976   // and are equivalent to the template arguments originally provided
2977   // to the class template.
2978   LocalInstantiationScope InstScope(S);
2979   auto *Template = Partial->getSpecializedTemplate();
2980   const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
2981       Partial->getTemplateArgsAsWritten();
2982   const TemplateArgumentLoc *PartialTemplateArgs =
2983       PartialTemplArgInfo->getTemplateArgs();
2984 
2985   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2986                                     PartialTemplArgInfo->RAngleLoc);
2987 
2988   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2989               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2990     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2991     if (ParamIdx >= Partial->getTemplateParameters()->size())
2992       ParamIdx = Partial->getTemplateParameters()->size() - 1;
2993 
2994     Decl *Param = const_cast<NamedDecl *>(
2995         Partial->getTemplateParameters()->getParam(ParamIdx));
2996     Info.Param = makeTemplateParameter(Param);
2997     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2998     return Sema::TDK_SubstitutionFailure;
2999   }
3000 
3001   bool ConstraintsNotSatisfied;
3002   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
3003   if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs,
3004                                   false, ConvertedInstArgs,
3005                                   /*UpdateArgsWithConversions=*/true,
3006                                   &ConstraintsNotSatisfied))
3007     return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied :
3008                                      Sema::TDK_SubstitutionFailure;
3009 
3010   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
3011   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
3012     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
3013     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
3014       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
3015       Info.FirstArg = TemplateArgs[I];
3016       Info.SecondArg = InstArg;
3017       return Sema::TDK_NonDeducedMismatch;
3018     }
3019   }
3020 
3021   if (Trap.hasErrorOccurred())
3022     return Sema::TDK_SubstitutionFailure;
3023 
3024   if (auto Result = CheckDeducedArgumentConstraints(S, Partial, Builder, Info))
3025     return Result;
3026 
3027   return Sema::TDK_Success;
3028 }
3029 
3030 /// Complete template argument deduction for a class or variable template,
3031 /// when partial ordering against a partial specialization.
3032 // FIXME: Factor out duplication with partial specialization version above.
FinishTemplateArgumentDeduction(Sema & S,TemplateDecl * Template,bool PartialOrdering,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)3033 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
3034     Sema &S, TemplateDecl *Template, bool PartialOrdering,
3035     const TemplateArgumentList &TemplateArgs,
3036     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3037     TemplateDeductionInfo &Info) {
3038   // Unevaluated SFINAE context.
3039   EnterExpressionEvaluationContext Unevaluated(
3040       S, Sema::ExpressionEvaluationContext::Unevaluated);
3041   Sema::SFINAETrap Trap(S);
3042 
3043   Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));
3044 
3045   // C++ [temp.deduct.type]p2:
3046   //   [...] or if any template argument remains neither deduced nor
3047   //   explicitly specified, template argument deduction fails.
3048   SmallVector<TemplateArgument, 4> Builder;
3049   if (auto Result = ConvertDeducedTemplateArguments(
3050           S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder))
3051     return Result;
3052 
3053   // Check that we produced the correct argument list.
3054   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
3055   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
3056     TemplateArgument InstArg = Builder[I];
3057     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
3058                            /*PackExpansionMatchesPack*/true)) {
3059       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
3060       Info.FirstArg = TemplateArgs[I];
3061       Info.SecondArg = InstArg;
3062       return Sema::TDK_NonDeducedMismatch;
3063     }
3064   }
3065 
3066   if (Trap.hasErrorOccurred())
3067     return Sema::TDK_SubstitutionFailure;
3068 
3069   if (auto Result = CheckDeducedArgumentConstraints(S, Template, Builder,
3070                                                     Info))
3071     return Result;
3072 
3073   return Sema::TDK_Success;
3074 }
3075 
3076 /// Perform template argument deduction to determine whether
3077 /// the given template arguments match the given class template
3078 /// partial specialization per C++ [temp.class.spec.match].
3079 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)3080 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
3081                               const TemplateArgumentList &TemplateArgs,
3082                               TemplateDeductionInfo &Info) {
3083   if (Partial->isInvalidDecl())
3084     return TDK_Invalid;
3085 
3086   // C++ [temp.class.spec.match]p2:
3087   //   A partial specialization matches a given actual template
3088   //   argument list if the template arguments of the partial
3089   //   specialization can be deduced from the actual template argument
3090   //   list (14.8.2).
3091 
3092   // Unevaluated SFINAE context.
3093   EnterExpressionEvaluationContext Unevaluated(
3094       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3095   SFINAETrap Trap(*this);
3096 
3097   SmallVector<DeducedTemplateArgument, 4> Deduced;
3098   Deduced.resize(Partial->getTemplateParameters()->size());
3099   if (TemplateDeductionResult Result
3100         = ::DeduceTemplateArguments(*this,
3101                                     Partial->getTemplateParameters(),
3102                                     Partial->getTemplateArgs(),
3103                                     TemplateArgs, Info, Deduced))
3104     return Result;
3105 
3106   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3107   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
3108                              Info);
3109   if (Inst.isInvalid())
3110     return TDK_InstantiationDepth;
3111 
3112   if (Trap.hasErrorOccurred())
3113     return Sema::TDK_SubstitutionFailure;
3114 
3115   TemplateDeductionResult Result;
3116   runWithSufficientStackSpace(Info.getLocation(), [&] {
3117     Result = ::FinishTemplateArgumentDeduction(*this, Partial,
3118                                                /*IsPartialOrdering=*/false,
3119                                                TemplateArgs, Deduced, Info);
3120   });
3121   return Result;
3122 }
3123 
3124 /// Perform template argument deduction to determine whether
3125 /// the given template arguments match the given variable template
3126 /// partial specialization per C++ [temp.class.spec.match].
3127 Sema::TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)3128 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
3129                               const TemplateArgumentList &TemplateArgs,
3130                               TemplateDeductionInfo &Info) {
3131   if (Partial->isInvalidDecl())
3132     return TDK_Invalid;
3133 
3134   // C++ [temp.class.spec.match]p2:
3135   //   A partial specialization matches a given actual template
3136   //   argument list if the template arguments of the partial
3137   //   specialization can be deduced from the actual template argument
3138   //   list (14.8.2).
3139 
3140   // Unevaluated SFINAE context.
3141   EnterExpressionEvaluationContext Unevaluated(
3142       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3143   SFINAETrap Trap(*this);
3144 
3145   SmallVector<DeducedTemplateArgument, 4> Deduced;
3146   Deduced.resize(Partial->getTemplateParameters()->size());
3147   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
3148           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
3149           TemplateArgs, Info, Deduced))
3150     return Result;
3151 
3152   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3153   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
3154                              Info);
3155   if (Inst.isInvalid())
3156     return TDK_InstantiationDepth;
3157 
3158   if (Trap.hasErrorOccurred())
3159     return Sema::TDK_SubstitutionFailure;
3160 
3161   TemplateDeductionResult Result;
3162   runWithSufficientStackSpace(Info.getLocation(), [&] {
3163     Result = ::FinishTemplateArgumentDeduction(*this, Partial,
3164                                                /*IsPartialOrdering=*/false,
3165                                                TemplateArgs, Deduced, Info);
3166   });
3167   return Result;
3168 }
3169 
3170 /// Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)3171 static bool isSimpleTemplateIdType(QualType T) {
3172   if (const TemplateSpecializationType *Spec
3173         = T->getAs<TemplateSpecializationType>())
3174     return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
3175 
3176   // C++17 [temp.local]p2:
3177   //   the injected-class-name [...] is equivalent to the template-name followed
3178   //   by the template-arguments of the class template specialization or partial
3179   //   specialization enclosed in <>
3180   // ... which means it's equivalent to a simple-template-id.
3181   //
3182   // This only arises during class template argument deduction for a copy
3183   // deduction candidate, where it permits slicing.
3184   if (T->getAs<InjectedClassNameType>())
3185     return true;
3186 
3187   return false;
3188 }
3189 
3190 /// Substitute the explicitly-provided template arguments into the
3191 /// given function template according to C++ [temp.arg.explicit].
3192 ///
3193 /// \param FunctionTemplate the function template into which the explicit
3194 /// template arguments will be substituted.
3195 ///
3196 /// \param ExplicitTemplateArgs the explicitly-specified template
3197 /// arguments.
3198 ///
3199 /// \param Deduced the deduced template arguments, which will be populated
3200 /// with the converted and checked explicit template arguments.
3201 ///
3202 /// \param ParamTypes will be populated with the instantiated function
3203 /// parameters.
3204 ///
3205 /// \param FunctionType if non-NULL, the result type of the function template
3206 /// will also be instantiated and the pointed-to value will be updated with
3207 /// the instantiated function type.
3208 ///
3209 /// \param Info if substitution fails for any reason, this object will be
3210 /// populated with more information about the failure.
3211 ///
3212 /// \returns TDK_Success if substitution was successful, or some failure
3213 /// condition.
3214 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)3215 Sema::SubstituteExplicitTemplateArguments(
3216                                       FunctionTemplateDecl *FunctionTemplate,
3217                                TemplateArgumentListInfo &ExplicitTemplateArgs,
3218                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3219                                  SmallVectorImpl<QualType> &ParamTypes,
3220                                           QualType *FunctionType,
3221                                           TemplateDeductionInfo &Info) {
3222   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3223   TemplateParameterList *TemplateParams
3224     = FunctionTemplate->getTemplateParameters();
3225 
3226   if (ExplicitTemplateArgs.size() == 0) {
3227     // No arguments to substitute; just copy over the parameter types and
3228     // fill in the function type.
3229     for (auto P : Function->parameters())
3230       ParamTypes.push_back(P->getType());
3231 
3232     if (FunctionType)
3233       *FunctionType = Function->getType();
3234     return TDK_Success;
3235   }
3236 
3237   // Unevaluated SFINAE context.
3238   EnterExpressionEvaluationContext Unevaluated(
3239       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3240   SFINAETrap Trap(*this);
3241 
3242   // C++ [temp.arg.explicit]p3:
3243   //   Template arguments that are present shall be specified in the
3244   //   declaration order of their corresponding template-parameters. The
3245   //   template argument list shall not specify more template-arguments than
3246   //   there are corresponding template-parameters.
3247   SmallVector<TemplateArgument, 4> Builder;
3248 
3249   // Enter a new template instantiation context where we check the
3250   // explicitly-specified template arguments against this function template,
3251   // and then substitute them into the function parameter types.
3252   SmallVector<TemplateArgument, 4> DeducedArgs;
3253   InstantiatingTemplate Inst(
3254       *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3255       CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
3256   if (Inst.isInvalid())
3257     return TDK_InstantiationDepth;
3258 
3259   if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
3260                                 ExplicitTemplateArgs, true, Builder, false) ||
3261       Trap.hasErrorOccurred()) {
3262     unsigned Index = Builder.size();
3263     if (Index >= TemplateParams->size())
3264       return TDK_SubstitutionFailure;
3265     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
3266     return TDK_InvalidExplicitArguments;
3267   }
3268 
3269   // Form the template argument list from the explicitly-specified
3270   // template arguments.
3271   TemplateArgumentList *ExplicitArgumentList
3272     = TemplateArgumentList::CreateCopy(Context, Builder);
3273   Info.setExplicitArgs(ExplicitArgumentList);
3274 
3275   // Template argument deduction and the final substitution should be
3276   // done in the context of the templated declaration.  Explicit
3277   // argument substitution, on the other hand, needs to happen in the
3278   // calling context.
3279   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3280 
3281   // If we deduced template arguments for a template parameter pack,
3282   // note that the template argument pack is partially substituted and record
3283   // the explicit template arguments. They'll be used as part of deduction
3284   // for this template parameter pack.
3285   unsigned PartiallySubstitutedPackIndex = -1u;
3286   if (!Builder.empty()) {
3287     const TemplateArgument &Arg = Builder.back();
3288     if (Arg.getKind() == TemplateArgument::Pack) {
3289       auto *Param = TemplateParams->getParam(Builder.size() - 1);
3290       // If this is a fully-saturated fixed-size pack, it should be
3291       // fully-substituted, not partially-substituted.
3292       Optional<unsigned> Expansions = getExpandedPackSize(Param);
3293       if (!Expansions || Arg.pack_size() < *Expansions) {
3294         PartiallySubstitutedPackIndex = Builder.size() - 1;
3295         CurrentInstantiationScope->SetPartiallySubstitutedPack(
3296             Param, Arg.pack_begin(), Arg.pack_size());
3297       }
3298     }
3299   }
3300 
3301   const FunctionProtoType *Proto
3302     = Function->getType()->getAs<FunctionProtoType>();
3303   assert(Proto && "Function template does not have a prototype?");
3304 
3305   // Isolate our substituted parameters from our caller.
3306   LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
3307 
3308   ExtParameterInfoBuilder ExtParamInfos;
3309 
3310   // Instantiate the types of each of the function parameters given the
3311   // explicitly-specified template arguments. If the function has a trailing
3312   // return type, substitute it after the arguments to ensure we substitute
3313   // in lexical order.
3314   if (Proto->hasTrailingReturn()) {
3315     if (SubstParmTypes(Function->getLocation(), Function->parameters(),
3316                        Proto->getExtParameterInfosOrNull(),
3317                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3318                        ParamTypes, /*params*/ nullptr, ExtParamInfos))
3319       return TDK_SubstitutionFailure;
3320   }
3321 
3322   // Instantiate the return type.
3323   QualType ResultType;
3324   {
3325     // C++11 [expr.prim.general]p3:
3326     //   If a declaration declares a member function or member function
3327     //   template of a class X, the expression this is a prvalue of type
3328     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
3329     //   and the end of the function-definition, member-declarator, or
3330     //   declarator.
3331     Qualifiers ThisTypeQuals;
3332     CXXRecordDecl *ThisContext = nullptr;
3333     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3334       ThisContext = Method->getParent();
3335       ThisTypeQuals = Method->getMethodQualifiers();
3336     }
3337 
3338     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
3339                                getLangOpts().CPlusPlus11);
3340 
3341     ResultType =
3342         SubstType(Proto->getReturnType(),
3343                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3344                   Function->getTypeSpecStartLoc(), Function->getDeclName());
3345     if (ResultType.isNull() || Trap.hasErrorOccurred())
3346       return TDK_SubstitutionFailure;
3347     // CUDA: Kernel function must have 'void' return type.
3348     if (getLangOpts().CUDA)
3349       if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
3350         Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
3351             << Function->getType() << Function->getSourceRange();
3352         return TDK_SubstitutionFailure;
3353       }
3354   }
3355 
3356   // Instantiate the types of each of the function parameters given the
3357   // explicitly-specified template arguments if we didn't do so earlier.
3358   if (!Proto->hasTrailingReturn() &&
3359       SubstParmTypes(Function->getLocation(), Function->parameters(),
3360                      Proto->getExtParameterInfosOrNull(),
3361                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3362                      ParamTypes, /*params*/ nullptr, ExtParamInfos))
3363     return TDK_SubstitutionFailure;
3364 
3365   if (FunctionType) {
3366     auto EPI = Proto->getExtProtoInfo();
3367     EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
3368 
3369     // In C++1z onwards, exception specifications are part of the function type,
3370     // so substitution into the type must also substitute into the exception
3371     // specification.
3372     SmallVector<QualType, 4> ExceptionStorage;
3373     if (getLangOpts().CPlusPlus17 &&
3374         SubstExceptionSpec(
3375             Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage,
3376             MultiLevelTemplateArgumentList(*ExplicitArgumentList)))
3377       return TDK_SubstitutionFailure;
3378 
3379     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
3380                                       Function->getLocation(),
3381                                       Function->getDeclName(),
3382                                       EPI);
3383     if (FunctionType->isNull() || Trap.hasErrorOccurred())
3384       return TDK_SubstitutionFailure;
3385   }
3386 
3387   // C++ [temp.arg.explicit]p2:
3388   //   Trailing template arguments that can be deduced (14.8.2) may be
3389   //   omitted from the list of explicit template-arguments. If all of the
3390   //   template arguments can be deduced, they may all be omitted; in this
3391   //   case, the empty template argument list <> itself may also be omitted.
3392   //
3393   // Take all of the explicitly-specified arguments and put them into
3394   // the set of deduced template arguments. The partially-substituted
3395   // parameter pack, however, will be set to NULL since the deduction
3396   // mechanism handles the partially-substituted argument pack directly.
3397   Deduced.reserve(TemplateParams->size());
3398   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
3399     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
3400     if (I == PartiallySubstitutedPackIndex)
3401       Deduced.push_back(DeducedTemplateArgument());
3402     else
3403       Deduced.push_back(Arg);
3404   }
3405 
3406   return TDK_Success;
3407 }
3408 
3409 /// Check whether the deduced argument type for a call to a function
3410 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
3411 static Sema::TemplateDeductionResult
CheckOriginalCallArgDeduction(Sema & S,TemplateDeductionInfo & Info,Sema::OriginalCallArg OriginalArg,QualType DeducedA)3412 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
3413                               Sema::OriginalCallArg OriginalArg,
3414                               QualType DeducedA) {
3415   ASTContext &Context = S.Context;
3416 
3417   auto Failed = [&]() -> Sema::TemplateDeductionResult {
3418     Info.FirstArg = TemplateArgument(DeducedA);
3419     Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
3420     Info.CallArgIndex = OriginalArg.ArgIdx;
3421     return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested
3422                                        : Sema::TDK_DeducedMismatch;
3423   };
3424 
3425   QualType A = OriginalArg.OriginalArgType;
3426   QualType OriginalParamType = OriginalArg.OriginalParamType;
3427 
3428   // Check for type equality (top-level cv-qualifiers are ignored).
3429   if (Context.hasSameUnqualifiedType(A, DeducedA))
3430     return Sema::TDK_Success;
3431 
3432   // Strip off references on the argument types; they aren't needed for
3433   // the following checks.
3434   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
3435     DeducedA = DeducedARef->getPointeeType();
3436   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3437     A = ARef->getPointeeType();
3438 
3439   // C++ [temp.deduct.call]p4:
3440   //   [...] However, there are three cases that allow a difference:
3441   //     - If the original P is a reference type, the deduced A (i.e., the
3442   //       type referred to by the reference) can be more cv-qualified than
3443   //       the transformed A.
3444   if (const ReferenceType *OriginalParamRef
3445       = OriginalParamType->getAs<ReferenceType>()) {
3446     // We don't want to keep the reference around any more.
3447     OriginalParamType = OriginalParamRef->getPointeeType();
3448 
3449     // FIXME: Resolve core issue (no number yet): if the original P is a
3450     // reference type and the transformed A is function type "noexcept F",
3451     // the deduced A can be F.
3452     QualType Tmp;
3453     if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
3454       return Sema::TDK_Success;
3455 
3456     Qualifiers AQuals = A.getQualifiers();
3457     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
3458 
3459     // Under Objective-C++ ARC, the deduced type may have implicitly
3460     // been given strong or (when dealing with a const reference)
3461     // unsafe_unretained lifetime. If so, update the original
3462     // qualifiers to include this lifetime.
3463     if (S.getLangOpts().ObjCAutoRefCount &&
3464         ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
3465           AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
3466          (DeducedAQuals.hasConst() &&
3467           DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
3468       AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
3469     }
3470 
3471     if (AQuals == DeducedAQuals) {
3472       // Qualifiers match; there's nothing to do.
3473     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
3474       return Failed();
3475     } else {
3476       // Qualifiers are compatible, so have the argument type adopt the
3477       // deduced argument type's qualifiers as if we had performed the
3478       // qualification conversion.
3479       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
3480     }
3481   }
3482 
3483   //    - The transformed A can be another pointer or pointer to member
3484   //      type that can be converted to the deduced A via a function pointer
3485   //      conversion and/or a qualification conversion.
3486   //
3487   // Also allow conversions which merely strip __attribute__((noreturn)) from
3488   // function types (recursively).
3489   bool ObjCLifetimeConversion = false;
3490   QualType ResultTy;
3491   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
3492       (S.IsQualificationConversion(A, DeducedA, false,
3493                                    ObjCLifetimeConversion) ||
3494        S.IsFunctionConversion(A, DeducedA, ResultTy)))
3495     return Sema::TDK_Success;
3496 
3497   //    - If P is a class and P has the form simple-template-id, then the
3498   //      transformed A can be a derived class of the deduced A. [...]
3499   //     [...] Likewise, if P is a pointer to a class of the form
3500   //      simple-template-id, the transformed A can be a pointer to a
3501   //      derived class pointed to by the deduced A.
3502   if (const PointerType *OriginalParamPtr
3503       = OriginalParamType->getAs<PointerType>()) {
3504     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
3505       if (const PointerType *APtr = A->getAs<PointerType>()) {
3506         if (A->getPointeeType()->isRecordType()) {
3507           OriginalParamType = OriginalParamPtr->getPointeeType();
3508           DeducedA = DeducedAPtr->getPointeeType();
3509           A = APtr->getPointeeType();
3510         }
3511       }
3512     }
3513   }
3514 
3515   if (Context.hasSameUnqualifiedType(A, DeducedA))
3516     return Sema::TDK_Success;
3517 
3518   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
3519       S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
3520     return Sema::TDK_Success;
3521 
3522   return Failed();
3523 }
3524 
3525 /// Find the pack index for a particular parameter index in an instantiation of
3526 /// a function template with specific arguments.
3527 ///
3528 /// \return The pack index for whichever pack produced this parameter, or -1
3529 ///         if this was not produced by a parameter. Intended to be used as the
3530 ///         ArgumentPackSubstitutionIndex for further substitutions.
3531 // FIXME: We should track this in OriginalCallArgs so we don't need to
3532 // reconstruct it here.
getPackIndexForParam(Sema & S,FunctionTemplateDecl * FunctionTemplate,const MultiLevelTemplateArgumentList & Args,unsigned ParamIdx)3533 static unsigned getPackIndexForParam(Sema &S,
3534                                      FunctionTemplateDecl *FunctionTemplate,
3535                                      const MultiLevelTemplateArgumentList &Args,
3536                                      unsigned ParamIdx) {
3537   unsigned Idx = 0;
3538   for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
3539     if (PD->isParameterPack()) {
3540       unsigned NumExpansions =
3541           S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1);
3542       if (Idx + NumExpansions > ParamIdx)
3543         return ParamIdx - Idx;
3544       Idx += NumExpansions;
3545     } else {
3546       if (Idx == ParamIdx)
3547         return -1; // Not a pack expansion
3548       ++Idx;
3549     }
3550   }
3551 
3552   llvm_unreachable("parameter index would not be produced from template");
3553 }
3554 
3555 /// Finish template argument deduction for a function template,
3556 /// checking the deduced template arguments for completeness and forming
3557 /// the function template specialization.
3558 ///
3559 /// \param OriginalCallArgs If non-NULL, the original call arguments against
3560 /// which the deduced argument types should be compared.
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs,bool PartialOverloading,llvm::function_ref<bool ()> CheckNonDependent)3561 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
3562     FunctionTemplateDecl *FunctionTemplate,
3563     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3564     unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
3565     TemplateDeductionInfo &Info,
3566     SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
3567     bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) {
3568   // Unevaluated SFINAE context.
3569   EnterExpressionEvaluationContext Unevaluated(
3570       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3571   SFINAETrap Trap(*this);
3572 
3573   // Enter a new template instantiation context while we instantiate the
3574   // actual function declaration.
3575   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3576   InstantiatingTemplate Inst(
3577       *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3578       CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
3579   if (Inst.isInvalid())
3580     return TDK_InstantiationDepth;
3581 
3582   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3583 
3584   // C++ [temp.deduct.type]p2:
3585   //   [...] or if any template argument remains neither deduced nor
3586   //   explicitly specified, template argument deduction fails.
3587   SmallVector<TemplateArgument, 4> Builder;
3588   if (auto Result = ConvertDeducedTemplateArguments(
3589           *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder,
3590           CurrentInstantiationScope, NumExplicitlySpecified,
3591           PartialOverloading))
3592     return Result;
3593 
3594   // C++ [temp.deduct.call]p10: [DR1391]
3595   //   If deduction succeeds for all parameters that contain
3596   //   template-parameters that participate in template argument deduction,
3597   //   and all template arguments are explicitly specified, deduced, or
3598   //   obtained from default template arguments, remaining parameters are then
3599   //   compared with the corresponding arguments. For each remaining parameter
3600   //   P with a type that was non-dependent before substitution of any
3601   //   explicitly-specified template arguments, if the corresponding argument
3602   //   A cannot be implicitly converted to P, deduction fails.
3603   if (CheckNonDependent())
3604     return TDK_NonDependentConversionFailure;
3605 
3606   // Form the template argument list from the deduced template arguments.
3607   TemplateArgumentList *DeducedArgumentList
3608     = TemplateArgumentList::CreateCopy(Context, Builder);
3609   Info.reset(DeducedArgumentList);
3610 
3611   // Substitute the deduced template arguments into the function template
3612   // declaration to produce the function template specialization.
3613   DeclContext *Owner = FunctionTemplate->getDeclContext();
3614   if (FunctionTemplate->getFriendObjectKind())
3615     Owner = FunctionTemplate->getLexicalDeclContext();
3616   MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList);
3617   Specialization = cast_or_null<FunctionDecl>(
3618       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs));
3619   if (!Specialization || Specialization->isInvalidDecl())
3620     return TDK_SubstitutionFailure;
3621 
3622   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
3623          FunctionTemplate->getCanonicalDecl());
3624 
3625   // If the template argument list is owned by the function template
3626   // specialization, release it.
3627   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
3628       !Trap.hasErrorOccurred())
3629     Info.take();
3630 
3631   // There may have been an error that did not prevent us from constructing a
3632   // declaration. Mark the declaration invalid and return with a substitution
3633   // failure.
3634   if (Trap.hasErrorOccurred()) {
3635     Specialization->setInvalidDecl(true);
3636     return TDK_SubstitutionFailure;
3637   }
3638 
3639   // C++2a [temp.deduct]p5
3640   //   [...] When all template arguments have been deduced [...] all uses of
3641   //   template parameters [...] are replaced with the corresponding deduced
3642   //   or default argument values.
3643   //   [...] If the function template has associated constraints
3644   //   ([temp.constr.decl]), those constraints are checked for satisfaction
3645   //   ([temp.constr.constr]). If the constraints are not satisfied, type
3646   //   deduction fails.
3647   if (!PartialOverloading ||
3648       (Builder.size() == FunctionTemplate->getTemplateParameters()->size())) {
3649     if (CheckInstantiatedFunctionTemplateConstraints(Info.getLocation(),
3650             Specialization, Builder, Info.AssociatedConstraintsSatisfaction))
3651       return TDK_MiscellaneousDeductionFailure;
3652 
3653     if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
3654       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder));
3655       return TDK_ConstraintsNotSatisfied;
3656     }
3657   }
3658 
3659   if (OriginalCallArgs) {
3660     // C++ [temp.deduct.call]p4:
3661     //   In general, the deduction process attempts to find template argument
3662     //   values that will make the deduced A identical to A (after the type A
3663     //   is transformed as described above). [...]
3664     llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
3665     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
3666       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
3667 
3668       auto ParamIdx = OriginalArg.ArgIdx;
3669       if (ParamIdx >= Specialization->getNumParams())
3670         // FIXME: This presumably means a pack ended up smaller than we
3671         // expected while deducing. Should this not result in deduction
3672         // failure? Can it even happen?
3673         continue;
3674 
3675       QualType DeducedA;
3676       if (!OriginalArg.DecomposedParam) {
3677         // P is one of the function parameters, just look up its substituted
3678         // type.
3679         DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
3680       } else {
3681         // P is a decomposed element of a parameter corresponding to a
3682         // braced-init-list argument. Substitute back into P to find the
3683         // deduced A.
3684         QualType &CacheEntry =
3685             DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
3686         if (CacheEntry.isNull()) {
3687           ArgumentPackSubstitutionIndexRAII PackIndex(
3688               *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
3689                                           ParamIdx));
3690           CacheEntry =
3691               SubstType(OriginalArg.OriginalParamType, SubstArgs,
3692                         Specialization->getTypeSpecStartLoc(),
3693                         Specialization->getDeclName());
3694         }
3695         DeducedA = CacheEntry;
3696       }
3697 
3698       if (auto TDK =
3699               CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA))
3700         return TDK;
3701     }
3702   }
3703 
3704   // If we suppressed any diagnostics while performing template argument
3705   // deduction, and if we haven't already instantiated this declaration,
3706   // keep track of these diagnostics. They'll be emitted if this specialization
3707   // is actually used.
3708   if (Info.diag_begin() != Info.diag_end()) {
3709     SuppressedDiagnosticsMap::iterator
3710       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
3711     if (Pos == SuppressedDiagnostics.end())
3712         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
3713           .append(Info.diag_begin(), Info.diag_end());
3714   }
3715 
3716   return TDK_Success;
3717 }
3718 
3719 /// Gets the type of a function for template-argument-deducton
3720 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(Sema & S,const OverloadExpr::FindResult & R,FunctionDecl * Fn)3721 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
3722                                   FunctionDecl *Fn) {
3723   // We may need to deduce the return type of the function now.
3724   if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
3725       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
3726     return {};
3727 
3728   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
3729     if (Method->isInstance()) {
3730       // An instance method that's referenced in a form that doesn't
3731       // look like a member pointer is just invalid.
3732       if (!R.HasFormOfMemberPointer)
3733         return {};
3734 
3735       return S.Context.getMemberPointerType(Fn->getType(),
3736                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
3737     }
3738 
3739   if (!R.IsAddressOfOperand) return Fn->getType();
3740   return S.Context.getPointerType(Fn->getType());
3741 }
3742 
3743 /// Apply the deduction rules for overload sets.
3744 ///
3745 /// \return the null type if this argument should be treated as an
3746 /// undeduced context
3747 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)3748 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
3749                             Expr *Arg, QualType ParamType,
3750                             bool ParamWasReference) {
3751 
3752   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3753 
3754   OverloadExpr *Ovl = R.Expression;
3755 
3756   // C++0x [temp.deduct.call]p4
3757   unsigned TDF = 0;
3758   if (ParamWasReference)
3759     TDF |= TDF_ParamWithReferenceType;
3760   if (R.IsAddressOfOperand)
3761     TDF |= TDF_IgnoreQualifiers;
3762 
3763   // C++0x [temp.deduct.call]p6:
3764   //   When P is a function type, pointer to function type, or pointer
3765   //   to member function type:
3766 
3767   if (!ParamType->isFunctionType() &&
3768       !ParamType->isFunctionPointerType() &&
3769       !ParamType->isMemberFunctionPointerType()) {
3770     if (Ovl->hasExplicitTemplateArgs()) {
3771       // But we can still look for an explicit specialization.
3772       if (FunctionDecl *ExplicitSpec
3773             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3774         return GetTypeOfFunction(S, R, ExplicitSpec);
3775     }
3776 
3777     DeclAccessPair DAP;
3778     if (FunctionDecl *Viable =
3779             S.resolveAddressOfSingleOverloadCandidate(Arg, DAP))
3780       return GetTypeOfFunction(S, R, Viable);
3781 
3782     return {};
3783   }
3784 
3785   // Gather the explicit template arguments, if any.
3786   TemplateArgumentListInfo ExplicitTemplateArgs;
3787   if (Ovl->hasExplicitTemplateArgs())
3788     Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
3789   QualType Match;
3790   for (UnresolvedSetIterator I = Ovl->decls_begin(),
3791          E = Ovl->decls_end(); I != E; ++I) {
3792     NamedDecl *D = (*I)->getUnderlyingDecl();
3793 
3794     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3795       //   - If the argument is an overload set containing one or more
3796       //     function templates, the parameter is treated as a
3797       //     non-deduced context.
3798       if (!Ovl->hasExplicitTemplateArgs())
3799         return {};
3800 
3801       // Otherwise, see if we can resolve a function type
3802       FunctionDecl *Specialization = nullptr;
3803       TemplateDeductionInfo Info(Ovl->getNameLoc());
3804       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3805                                     Specialization, Info))
3806         continue;
3807 
3808       D = Specialization;
3809     }
3810 
3811     FunctionDecl *Fn = cast<FunctionDecl>(D);
3812     QualType ArgType = GetTypeOfFunction(S, R, Fn);
3813     if (ArgType.isNull()) continue;
3814 
3815     // Function-to-pointer conversion.
3816     if (!ParamWasReference && ParamType->isPointerType() &&
3817         ArgType->isFunctionType())
3818       ArgType = S.Context.getPointerType(ArgType);
3819 
3820     //   - If the argument is an overload set (not containing function
3821     //     templates), trial argument deduction is attempted using each
3822     //     of the members of the set. If deduction succeeds for only one
3823     //     of the overload set members, that member is used as the
3824     //     argument value for the deduction. If deduction succeeds for
3825     //     more than one member of the overload set the parameter is
3826     //     treated as a non-deduced context.
3827 
3828     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3829     //   Type deduction is done independently for each P/A pair, and
3830     //   the deduced template argument values are then combined.
3831     // So we do not reject deductions which were made elsewhere.
3832     SmallVector<DeducedTemplateArgument, 8>
3833       Deduced(TemplateParams->size());
3834     TemplateDeductionInfo Info(Ovl->getNameLoc());
3835     Sema::TemplateDeductionResult Result
3836       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3837                                            ArgType, Info, Deduced, TDF);
3838     if (Result) continue;
3839     if (!Match.isNull())
3840       return {};
3841     Match = ArgType;
3842   }
3843 
3844   return Match;
3845 }
3846 
3847 /// Perform the adjustments to the parameter and argument types
3848 /// described in C++ [temp.deduct.call].
3849 ///
3850 /// \returns true if the caller should not attempt to perform any template
3851 /// argument deduction based on this P/A pair because the argument is an
3852 /// overloaded function set that could not be resolved.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,unsigned FirstInnerIndex,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)3853 static bool AdjustFunctionParmAndArgTypesForDeduction(
3854     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3855     QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) {
3856   // C++0x [temp.deduct.call]p3:
3857   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
3858   //   are ignored for type deduction.
3859   if (ParamType.hasQualifiers())
3860     ParamType = ParamType.getUnqualifiedType();
3861 
3862   //   [...] If P is a reference type, the type referred to by P is
3863   //   used for type deduction.
3864   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3865   if (ParamRefType)
3866     ParamType = ParamRefType->getPointeeType();
3867 
3868   // Overload sets usually make this parameter an undeduced context,
3869   // but there are sometimes special circumstances.  Typically
3870   // involving a template-id-expr.
3871   if (ArgType == S.Context.OverloadTy) {
3872     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3873                                           Arg, ParamType,
3874                                           ParamRefType != nullptr);
3875     if (ArgType.isNull())
3876       return true;
3877   }
3878 
3879   if (ParamRefType) {
3880     // If the argument has incomplete array type, try to complete its type.
3881     if (ArgType->isIncompleteArrayType()) {
3882       S.completeExprArrayBound(Arg);
3883       ArgType = Arg->getType();
3884     }
3885 
3886     // C++1z [temp.deduct.call]p3:
3887     //   If P is a forwarding reference and the argument is an lvalue, the type
3888     //   "lvalue reference to A" is used in place of A for type deduction.
3889     if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
3890         Arg->isLValue()) {
3891       if (S.getLangOpts().OpenCL)
3892         ArgType = S.Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic);
3893       ArgType = S.Context.getLValueReferenceType(ArgType);
3894     }
3895   } else {
3896     // C++ [temp.deduct.call]p2:
3897     //   If P is not a reference type:
3898     //   - If A is an array type, the pointer type produced by the
3899     //     array-to-pointer standard conversion (4.2) is used in place of
3900     //     A for type deduction; otherwise,
3901     if (ArgType->isArrayType())
3902       ArgType = S.Context.getArrayDecayedType(ArgType);
3903     //   - If A is a function type, the pointer type produced by the
3904     //     function-to-pointer standard conversion (4.3) is used in place
3905     //     of A for type deduction; otherwise,
3906     else if (ArgType->isFunctionType())
3907       ArgType = S.Context.getPointerType(ArgType);
3908     else {
3909       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3910       //   type are ignored for type deduction.
3911       ArgType = ArgType.getUnqualifiedType();
3912     }
3913   }
3914 
3915   // C++0x [temp.deduct.call]p4:
3916   //   In general, the deduction process attempts to find template argument
3917   //   values that will make the deduced A identical to A (after the type A
3918   //   is transformed as described above). [...]
3919   TDF = TDF_SkipNonDependent;
3920 
3921   //     - If the original P is a reference type, the deduced A (i.e., the
3922   //       type referred to by the reference) can be more cv-qualified than
3923   //       the transformed A.
3924   if (ParamRefType)
3925     TDF |= TDF_ParamWithReferenceType;
3926   //     - The transformed A can be another pointer or pointer to member
3927   //       type that can be converted to the deduced A via a qualification
3928   //       conversion (4.4).
3929   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3930       ArgType->isObjCObjectPointerType())
3931     TDF |= TDF_IgnoreQualifiers;
3932   //     - If P is a class and P has the form simple-template-id, then the
3933   //       transformed A can be a derived class of the deduced A. Likewise,
3934   //       if P is a pointer to a class of the form simple-template-id, the
3935   //       transformed A can be a pointer to a derived class pointed to by
3936   //       the deduced A.
3937   if (isSimpleTemplateIdType(ParamType) ||
3938       (isa<PointerType>(ParamType) &&
3939        isSimpleTemplateIdType(
3940                               ParamType->getAs<PointerType>()->getPointeeType())))
3941     TDF |= TDF_DerivedClass;
3942 
3943   return false;
3944 }
3945 
3946 static bool
3947 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
3948                                QualType T);
3949 
3950 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3951     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3952     QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3953     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3954     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3955     bool DecomposedParam, unsigned ArgIdx, unsigned TDF);
3956 
3957 /// Attempt template argument deduction from an initializer list
3958 ///        deemed to be an argument in a function call.
DeduceFromInitializerList(Sema & S,TemplateParameterList * TemplateParams,QualType AdjustedParamType,InitListExpr * ILE,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<Sema::OriginalCallArg> & OriginalCallArgs,unsigned ArgIdx,unsigned TDF)3959 static Sema::TemplateDeductionResult DeduceFromInitializerList(
3960     Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
3961     InitListExpr *ILE, TemplateDeductionInfo &Info,
3962     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3963     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
3964     unsigned TDF) {
3965   // C++ [temp.deduct.call]p1: (CWG 1591)
3966   //   If removing references and cv-qualifiers from P gives
3967   //   std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
3968   //   a non-empty initializer list, then deduction is performed instead for
3969   //   each element of the initializer list, taking P0 as a function template
3970   //   parameter type and the initializer element as its argument
3971   //
3972   // We've already removed references and cv-qualifiers here.
3973   if (!ILE->getNumInits())
3974     return Sema::TDK_Success;
3975 
3976   QualType ElTy;
3977   auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
3978   if (ArrTy)
3979     ElTy = ArrTy->getElementType();
3980   else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
3981     //   Otherwise, an initializer list argument causes the parameter to be
3982     //   considered a non-deduced context
3983     return Sema::TDK_Success;
3984   }
3985 
3986   // Resolving a core issue: a braced-init-list containing any designators is
3987   // a non-deduced context.
3988   for (Expr *E : ILE->inits())
3989     if (isa<DesignatedInitExpr>(E))
3990       return Sema::TDK_Success;
3991 
3992   // Deduction only needs to be done for dependent types.
3993   if (ElTy->isDependentType()) {
3994     for (Expr *E : ILE->inits()) {
3995       if (auto Result = DeduceTemplateArgumentsFromCallArgument(
3996               S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true,
3997               ArgIdx, TDF))
3998         return Result;
3999     }
4000   }
4001 
4002   //   in the P0[N] case, if N is a non-type template parameter, N is deduced
4003   //   from the length of the initializer list.
4004   if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
4005     // Determine the array bound is something we can deduce.
4006     if (const NonTypeTemplateParmDecl *NTTP =
4007             getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
4008       // We can perform template argument deduction for the given non-type
4009       // template parameter.
4010       // C++ [temp.deduct.type]p13:
4011       //   The type of N in the type T[N] is std::size_t.
4012       QualType T = S.Context.getSizeType();
4013       llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits());
4014       if (auto Result = DeduceNonTypeTemplateArgument(
4015               S, TemplateParams, NTTP, llvm::APSInt(Size), T,
4016               /*ArrayBound=*/true, Info, Deduced))
4017         return Result;
4018     }
4019   }
4020 
4021   return Sema::TDK_Success;
4022 }
4023 
4024 /// Perform template argument deduction per [temp.deduct.call] for a
4025 ///        single parameter / argument pair.
DeduceTemplateArgumentsFromCallArgument(Sema & S,TemplateParameterList * TemplateParams,unsigned FirstInnerIndex,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<Sema::OriginalCallArg> & OriginalCallArgs,bool DecomposedParam,unsigned ArgIdx,unsigned TDF)4026 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
4027     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
4028     QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
4029     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
4030     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
4031     bool DecomposedParam, unsigned ArgIdx, unsigned TDF) {
4032   QualType ArgType = Arg->getType();
4033   QualType OrigParamType = ParamType;
4034 
4035   //   If P is a reference type [...]
4036   //   If P is a cv-qualified type [...]
4037   if (AdjustFunctionParmAndArgTypesForDeduction(
4038           S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF))
4039     return Sema::TDK_Success;
4040 
4041   //   If [...] the argument is a non-empty initializer list [...]
4042   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg))
4043     return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
4044                                      Deduced, OriginalCallArgs, ArgIdx, TDF);
4045 
4046   //   [...] the deduction process attempts to find template argument values
4047   //   that will make the deduced A identical to A
4048   //
4049   // Keep track of the argument type and corresponding parameter index,
4050   // so we can check for compatibility between the deduced A and A.
4051   OriginalCallArgs.push_back(
4052       Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
4053   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
4054                                             ArgType, Info, Deduced, TDF);
4055 }
4056 
4057 /// Perform template argument deduction from a function call
4058 /// (C++ [temp.deduct.call]).
4059 ///
4060 /// \param FunctionTemplate the function template for which we are performing
4061 /// template argument deduction.
4062 ///
4063 /// \param ExplicitTemplateArgs the explicit template arguments provided
4064 /// for this call.
4065 ///
4066 /// \param Args the function call arguments
4067 ///
4068 /// \param Specialization if template argument deduction was successful,
4069 /// this will be set to the function template specialization produced by
4070 /// template argument deduction.
4071 ///
4072 /// \param Info the argument will be updated to provide additional information
4073 /// about template argument deduction.
4074 ///
4075 /// \param CheckNonDependent A callback to invoke to check conversions for
4076 /// non-dependent parameters, between deduction and substitution, per DR1391.
4077 /// If this returns true, substitution will be skipped and we return
4078 /// TDK_NonDependentConversionFailure. The callback is passed the parameter
4079 /// types (after substituting explicit template arguments).
4080 ///
4081 /// \returns the result of template argument deduction.
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool PartialOverloading,llvm::function_ref<bool (ArrayRef<QualType>)> CheckNonDependent)4082 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4083     FunctionTemplateDecl *FunctionTemplate,
4084     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
4085     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4086     bool PartialOverloading,
4087     llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
4088   if (FunctionTemplate->isInvalidDecl())
4089     return TDK_Invalid;
4090 
4091   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4092   unsigned NumParams = Function->getNumParams();
4093 
4094   unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
4095 
4096   // C++ [temp.deduct.call]p1:
4097   //   Template argument deduction is done by comparing each function template
4098   //   parameter type (call it P) with the type of the corresponding argument
4099   //   of the call (call it A) as described below.
4100   if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
4101     return TDK_TooFewArguments;
4102   else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
4103     const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
4104     if (Proto->isTemplateVariadic())
4105       /* Do nothing */;
4106     else if (!Proto->isVariadic())
4107       return TDK_TooManyArguments;
4108   }
4109 
4110   // The types of the parameters from which we will perform template argument
4111   // deduction.
4112   LocalInstantiationScope InstScope(*this);
4113   TemplateParameterList *TemplateParams
4114     = FunctionTemplate->getTemplateParameters();
4115   SmallVector<DeducedTemplateArgument, 4> Deduced;
4116   SmallVector<QualType, 8> ParamTypes;
4117   unsigned NumExplicitlySpecified = 0;
4118   if (ExplicitTemplateArgs) {
4119     TemplateDeductionResult Result;
4120     runWithSufficientStackSpace(Info.getLocation(), [&] {
4121       Result = SubstituteExplicitTemplateArguments(
4122           FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr,
4123           Info);
4124     });
4125     if (Result)
4126       return Result;
4127 
4128     NumExplicitlySpecified = Deduced.size();
4129   } else {
4130     // Just fill in the parameter types from the function declaration.
4131     for (unsigned I = 0; I != NumParams; ++I)
4132       ParamTypes.push_back(Function->getParamDecl(I)->getType());
4133   }
4134 
4135   SmallVector<OriginalCallArg, 8> OriginalCallArgs;
4136 
4137   // Deduce an argument of type ParamType from an expression with index ArgIdx.
4138   auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) {
4139     // C++ [demp.deduct.call]p1: (DR1391)
4140     //   Template argument deduction is done by comparing each function template
4141     //   parameter that contains template-parameters that participate in
4142     //   template argument deduction ...
4143     if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
4144       return Sema::TDK_Success;
4145 
4146     //   ... with the type of the corresponding argument
4147     return DeduceTemplateArgumentsFromCallArgument(
4148         *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced,
4149         OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0);
4150   };
4151 
4152   // Deduce template arguments from the function parameters.
4153   Deduced.resize(TemplateParams->size());
4154   SmallVector<QualType, 8> ParamTypesForArgChecking;
4155   for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
4156        ParamIdx != NumParamTypes; ++ParamIdx) {
4157     QualType ParamType = ParamTypes[ParamIdx];
4158 
4159     const PackExpansionType *ParamExpansion =
4160         dyn_cast<PackExpansionType>(ParamType);
4161     if (!ParamExpansion) {
4162       // Simple case: matching a function parameter to a function argument.
4163       if (ArgIdx >= Args.size())
4164         break;
4165 
4166       ParamTypesForArgChecking.push_back(ParamType);
4167       if (auto Result = DeduceCallArgument(ParamType, ArgIdx++))
4168         return Result;
4169 
4170       continue;
4171     }
4172 
4173     QualType ParamPattern = ParamExpansion->getPattern();
4174     PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
4175                                  ParamPattern);
4176 
4177     // C++0x [temp.deduct.call]p1:
4178     //   For a function parameter pack that occurs at the end of the
4179     //   parameter-declaration-list, the type A of each remaining argument of
4180     //   the call is compared with the type P of the declarator-id of the
4181     //   function parameter pack. Each comparison deduces template arguments
4182     //   for subsequent positions in the template parameter packs expanded by
4183     //   the function parameter pack. When a function parameter pack appears
4184     //   in a non-deduced context [not at the end of the list], the type of
4185     //   that parameter pack is never deduced.
4186     //
4187     // FIXME: The above rule allows the size of the parameter pack to change
4188     // after we skip it (in the non-deduced case). That makes no sense, so
4189     // we instead notionally deduce the pack against N arguments, where N is
4190     // the length of the explicitly-specified pack if it's expanded by the
4191     // parameter pack and 0 otherwise, and we treat each deduction as a
4192     // non-deduced context.
4193     if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) {
4194       for (; ArgIdx < Args.size() && PackScope.hasNextElement();
4195            PackScope.nextPackElement(), ++ArgIdx) {
4196         ParamTypesForArgChecking.push_back(ParamPattern);
4197         if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx))
4198           return Result;
4199       }
4200     } else {
4201       // If the parameter type contains an explicitly-specified pack that we
4202       // could not expand, skip the number of parameters notionally created
4203       // by the expansion.
4204       Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions();
4205       if (NumExpansions && !PackScope.isPartiallyExpanded()) {
4206         for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
4207              ++I, ++ArgIdx) {
4208           ParamTypesForArgChecking.push_back(ParamPattern);
4209           // FIXME: Should we add OriginalCallArgs for these? What if the
4210           // corresponding argument is a list?
4211           PackScope.nextPackElement();
4212         }
4213       }
4214     }
4215 
4216     // Build argument packs for each of the parameter packs expanded by this
4217     // pack expansion.
4218     if (auto Result = PackScope.finish())
4219       return Result;
4220   }
4221 
4222   // Capture the context in which the function call is made. This is the context
4223   // that is needed when the accessibility of template arguments is checked.
4224   DeclContext *CallingCtx = CurContext;
4225 
4226   TemplateDeductionResult Result;
4227   runWithSufficientStackSpace(Info.getLocation(), [&] {
4228     Result = FinishTemplateArgumentDeduction(
4229         FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4230         &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() {
4231           ContextRAII SavedContext(*this, CallingCtx);
4232           return CheckNonDependent(ParamTypesForArgChecking);
4233         });
4234   });
4235   return Result;
4236 }
4237 
adjustCCAndNoReturn(QualType ArgFunctionType,QualType FunctionType,bool AdjustExceptionSpec)4238 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
4239                                    QualType FunctionType,
4240                                    bool AdjustExceptionSpec) {
4241   if (ArgFunctionType.isNull())
4242     return ArgFunctionType;
4243 
4244   const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
4245   const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
4246   FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
4247   bool Rebuild = false;
4248 
4249   CallingConv CC = FunctionTypeP->getCallConv();
4250   if (EPI.ExtInfo.getCC() != CC) {
4251     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
4252     Rebuild = true;
4253   }
4254 
4255   bool NoReturn = FunctionTypeP->getNoReturnAttr();
4256   if (EPI.ExtInfo.getNoReturn() != NoReturn) {
4257     EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
4258     Rebuild = true;
4259   }
4260 
4261   if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
4262                               ArgFunctionTypeP->hasExceptionSpec())) {
4263     EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
4264     Rebuild = true;
4265   }
4266 
4267   if (!Rebuild)
4268     return ArgFunctionType;
4269 
4270   return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
4271                                  ArgFunctionTypeP->getParamTypes(), EPI);
4272 }
4273 
4274 /// Deduce template arguments when taking the address of a function
4275 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
4276 /// a template.
4277 ///
4278 /// \param FunctionTemplate the function template for which we are performing
4279 /// template argument deduction.
4280 ///
4281 /// \param ExplicitTemplateArgs the explicitly-specified template
4282 /// arguments.
4283 ///
4284 /// \param ArgFunctionType the function type that will be used as the
4285 /// "argument" type (A) when performing template argument deduction from the
4286 /// function template's function type. This type may be NULL, if there is no
4287 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
4288 ///
4289 /// \param Specialization if template argument deduction was successful,
4290 /// this will be set to the function template specialization produced by
4291 /// template argument deduction.
4292 ///
4293 /// \param Info the argument will be updated to provide additional information
4294 /// about template argument deduction.
4295 ///
4296 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4297 /// the address of a function template per [temp.deduct.funcaddr] and
4298 /// [over.over]. If \c false, we are looking up a function template
4299 /// specialization based on its signature, per [temp.deduct.decl].
4300 ///
4301 /// \returns the result of template argument deduction.
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool IsAddressOfFunction)4302 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4303     FunctionTemplateDecl *FunctionTemplate,
4304     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
4305     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4306     bool IsAddressOfFunction) {
4307   if (FunctionTemplate->isInvalidDecl())
4308     return TDK_Invalid;
4309 
4310   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4311   TemplateParameterList *TemplateParams
4312     = FunctionTemplate->getTemplateParameters();
4313   QualType FunctionType = Function->getType();
4314 
4315   // Substitute any explicit template arguments.
4316   LocalInstantiationScope InstScope(*this);
4317   SmallVector<DeducedTemplateArgument, 4> Deduced;
4318   unsigned NumExplicitlySpecified = 0;
4319   SmallVector<QualType, 4> ParamTypes;
4320   if (ExplicitTemplateArgs) {
4321     TemplateDeductionResult Result;
4322     runWithSufficientStackSpace(Info.getLocation(), [&] {
4323       Result = SubstituteExplicitTemplateArguments(
4324           FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes,
4325           &FunctionType, Info);
4326     });
4327     if (Result)
4328       return Result;
4329 
4330     NumExplicitlySpecified = Deduced.size();
4331   }
4332 
4333   // When taking the address of a function, we require convertibility of
4334   // the resulting function type. Otherwise, we allow arbitrary mismatches
4335   // of calling convention and noreturn.
4336   if (!IsAddressOfFunction)
4337     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
4338                                           /*AdjustExceptionSpec*/false);
4339 
4340   // Unevaluated SFINAE context.
4341   EnterExpressionEvaluationContext Unevaluated(
4342       *this, Sema::ExpressionEvaluationContext::Unevaluated);
4343   SFINAETrap Trap(*this);
4344 
4345   Deduced.resize(TemplateParams->size());
4346 
4347   // If the function has a deduced return type, substitute it for a dependent
4348   // type so that we treat it as a non-deduced context in what follows. If we
4349   // are looking up by signature, the signature type should also have a deduced
4350   // return type, which we instead expect to exactly match.
4351   bool HasDeducedReturnType = false;
4352   if (getLangOpts().CPlusPlus14 && IsAddressOfFunction &&
4353       Function->getReturnType()->getContainedAutoType()) {
4354     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
4355     HasDeducedReturnType = true;
4356   }
4357 
4358   if (!ArgFunctionType.isNull()) {
4359     unsigned TDF =
4360         TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
4361     // Deduce template arguments from the function type.
4362     if (TemplateDeductionResult Result
4363           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4364                                                FunctionType, ArgFunctionType,
4365                                                Info, Deduced, TDF))
4366       return Result;
4367   }
4368 
4369   TemplateDeductionResult Result;
4370   runWithSufficientStackSpace(Info.getLocation(), [&] {
4371     Result = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
4372                                              NumExplicitlySpecified,
4373                                              Specialization, Info);
4374   });
4375   if (Result)
4376     return Result;
4377 
4378   // If the function has a deduced return type, deduce it now, so we can check
4379   // that the deduced function type matches the requested type.
4380   if (HasDeducedReturnType &&
4381       Specialization->getReturnType()->isUndeducedType() &&
4382       DeduceReturnType(Specialization, Info.getLocation(), false))
4383     return TDK_MiscellaneousDeductionFailure;
4384 
4385   // If the function has a dependent exception specification, resolve it now,
4386   // so we can check that the exception specification matches.
4387   auto *SpecializationFPT =
4388       Specialization->getType()->castAs<FunctionProtoType>();
4389   if (getLangOpts().CPlusPlus17 &&
4390       isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
4391       !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT))
4392     return TDK_MiscellaneousDeductionFailure;
4393 
4394   // Adjust the exception specification of the argument to match the
4395   // substituted and resolved type we just formed. (Calling convention and
4396   // noreturn can't be dependent, so we don't actually need this for them
4397   // right now.)
4398   QualType SpecializationType = Specialization->getType();
4399   if (!IsAddressOfFunction)
4400     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
4401                                           /*AdjustExceptionSpec*/true);
4402 
4403   // If the requested function type does not match the actual type of the
4404   // specialization with respect to arguments of compatible pointer to function
4405   // types, template argument deduction fails.
4406   if (!ArgFunctionType.isNull()) {
4407     if (IsAddressOfFunction &&
4408         !isSameOrCompatibleFunctionType(
4409             Context.getCanonicalType(SpecializationType),
4410             Context.getCanonicalType(ArgFunctionType)))
4411       return TDK_MiscellaneousDeductionFailure;
4412 
4413     if (!IsAddressOfFunction &&
4414         !Context.hasSameType(SpecializationType, ArgFunctionType))
4415       return TDK_MiscellaneousDeductionFailure;
4416   }
4417 
4418   return TDK_Success;
4419 }
4420 
4421 /// Deduce template arguments for a templated conversion
4422 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
4423 /// conversion function template specialization.
4424 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * ConversionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)4425 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
4426                               QualType ToType,
4427                               CXXConversionDecl *&Specialization,
4428                               TemplateDeductionInfo &Info) {
4429   if (ConversionTemplate->isInvalidDecl())
4430     return TDK_Invalid;
4431 
4432   CXXConversionDecl *ConversionGeneric
4433     = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
4434 
4435   QualType FromType = ConversionGeneric->getConversionType();
4436 
4437   // Canonicalize the types for deduction.
4438   QualType P = Context.getCanonicalType(FromType);
4439   QualType A = Context.getCanonicalType(ToType);
4440 
4441   // C++0x [temp.deduct.conv]p2:
4442   //   If P is a reference type, the type referred to by P is used for
4443   //   type deduction.
4444   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
4445     P = PRef->getPointeeType();
4446 
4447   // C++0x [temp.deduct.conv]p4:
4448   //   [...] If A is a reference type, the type referred to by A is used
4449   //   for type deduction.
4450   if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
4451     A = ARef->getPointeeType();
4452     // We work around a defect in the standard here: cv-qualifiers are also
4453     // removed from P and A in this case, unless P was a reference type. This
4454     // seems to mostly match what other compilers are doing.
4455     if (!FromType->getAs<ReferenceType>()) {
4456       A = A.getUnqualifiedType();
4457       P = P.getUnqualifiedType();
4458     }
4459 
4460   // C++ [temp.deduct.conv]p3:
4461   //
4462   //   If A is not a reference type:
4463   } else {
4464     assert(!A->isReferenceType() && "Reference types were handled above");
4465 
4466     //   - If P is an array type, the pointer type produced by the
4467     //     array-to-pointer standard conversion (4.2) is used in place
4468     //     of P for type deduction; otherwise,
4469     if (P->isArrayType())
4470       P = Context.getArrayDecayedType(P);
4471     //   - If P is a function type, the pointer type produced by the
4472     //     function-to-pointer standard conversion (4.3) is used in
4473     //     place of P for type deduction; otherwise,
4474     else if (P->isFunctionType())
4475       P = Context.getPointerType(P);
4476     //   - If P is a cv-qualified type, the top level cv-qualifiers of
4477     //     P's type are ignored for type deduction.
4478     else
4479       P = P.getUnqualifiedType();
4480 
4481     // C++0x [temp.deduct.conv]p4:
4482     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
4483     //   type are ignored for type deduction. If A is a reference type, the type
4484     //   referred to by A is used for type deduction.
4485     A = A.getUnqualifiedType();
4486   }
4487 
4488   // Unevaluated SFINAE context.
4489   EnterExpressionEvaluationContext Unevaluated(
4490       *this, Sema::ExpressionEvaluationContext::Unevaluated);
4491   SFINAETrap Trap(*this);
4492 
4493   // C++ [temp.deduct.conv]p1:
4494   //   Template argument deduction is done by comparing the return
4495   //   type of the template conversion function (call it P) with the
4496   //   type that is required as the result of the conversion (call it
4497   //   A) as described in 14.8.2.4.
4498   TemplateParameterList *TemplateParams
4499     = ConversionTemplate->getTemplateParameters();
4500   SmallVector<DeducedTemplateArgument, 4> Deduced;
4501   Deduced.resize(TemplateParams->size());
4502 
4503   // C++0x [temp.deduct.conv]p4:
4504   //   In general, the deduction process attempts to find template
4505   //   argument values that will make the deduced A identical to
4506   //   A. However, there are two cases that allow a difference:
4507   unsigned TDF = 0;
4508   //     - If the original A is a reference type, A can be more
4509   //       cv-qualified than the deduced A (i.e., the type referred to
4510   //       by the reference)
4511   if (ToType->isReferenceType())
4512     TDF |= TDF_ArgWithReferenceType;
4513   //     - The deduced A can be another pointer or pointer to member
4514   //       type that can be converted to A via a qualification
4515   //       conversion.
4516   //
4517   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
4518   // both P and A are pointers or member pointers. In this case, we
4519   // just ignore cv-qualifiers completely).
4520   if ((P->isPointerType() && A->isPointerType()) ||
4521       (P->isMemberPointerType() && A->isMemberPointerType()))
4522     TDF |= TDF_IgnoreQualifiers;
4523   if (TemplateDeductionResult Result
4524         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4525                                              P, A, Info, Deduced, TDF))
4526     return Result;
4527 
4528   // Create an Instantiation Scope for finalizing the operator.
4529   LocalInstantiationScope InstScope(*this);
4530   // Finish template argument deduction.
4531   FunctionDecl *ConversionSpecialized = nullptr;
4532   TemplateDeductionResult Result;
4533   runWithSufficientStackSpace(Info.getLocation(), [&] {
4534     Result = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
4535                                              ConversionSpecialized, Info);
4536   });
4537   Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
4538   return Result;
4539 }
4540 
4541 /// Deduce template arguments for a function template when there is
4542 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
4543 ///
4544 /// \param FunctionTemplate the function template for which we are performing
4545 /// template argument deduction.
4546 ///
4547 /// \param ExplicitTemplateArgs the explicitly-specified template
4548 /// arguments.
4549 ///
4550 /// \param Specialization if template argument deduction was successful,
4551 /// this will be set to the function template specialization produced by
4552 /// template argument deduction.
4553 ///
4554 /// \param Info the argument will be updated to provide additional information
4555 /// about template argument deduction.
4556 ///
4557 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4558 /// the address of a function template in a context where we do not have a
4559 /// target type, per [over.over]. If \c false, we are looking up a function
4560 /// template specialization based on its signature, which only happens when
4561 /// deducing a function parameter type from an argument that is a template-id
4562 /// naming a function template specialization.
4563 ///
4564 /// \returns the result of template argument deduction.
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool IsAddressOfFunction)4565 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4566     FunctionTemplateDecl *FunctionTemplate,
4567     TemplateArgumentListInfo *ExplicitTemplateArgs,
4568     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4569     bool IsAddressOfFunction) {
4570   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4571                                  QualType(), Specialization, Info,
4572                                  IsAddressOfFunction);
4573 }
4574 
4575 namespace {
4576   struct DependentAuto { bool IsPack; };
4577 
4578   /// Substitute the 'auto' specifier or deduced template specialization type
4579   /// specifier within a type for a given replacement type.
4580   class SubstituteDeducedTypeTransform :
4581       public TreeTransform<SubstituteDeducedTypeTransform> {
4582     QualType Replacement;
4583     bool ReplacementIsPack;
4584     bool UseTypeSugar;
4585 
4586   public:
SubstituteDeducedTypeTransform(Sema & SemaRef,DependentAuto DA)4587     SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
4588         : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(),
4589           ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
4590 
SubstituteDeducedTypeTransform(Sema & SemaRef,QualType Replacement,bool UseTypeSugar=true)4591     SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
4592                                    bool UseTypeSugar = true)
4593         : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
4594           Replacement(Replacement), ReplacementIsPack(false),
4595           UseTypeSugar(UseTypeSugar) {}
4596 
TransformDesugared(TypeLocBuilder & TLB,DeducedTypeLoc TL)4597     QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
4598       assert(isa<TemplateTypeParmType>(Replacement) &&
4599              "unexpected unsugared replacement kind");
4600       QualType Result = Replacement;
4601       TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
4602       NewTL.setNameLoc(TL.getNameLoc());
4603       return Result;
4604     }
4605 
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)4606     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
4607       // If we're building the type pattern to deduce against, don't wrap the
4608       // substituted type in an AutoType. Certain template deduction rules
4609       // apply only when a template type parameter appears directly (and not if
4610       // the parameter is found through desugaring). For instance:
4611       //   auto &&lref = lvalue;
4612       // must transform into "rvalue reference to T" not "rvalue reference to
4613       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
4614       //
4615       // FIXME: Is this still necessary?
4616       if (!UseTypeSugar)
4617         return TransformDesugared(TLB, TL);
4618 
4619       QualType Result = SemaRef.Context.getAutoType(
4620           Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
4621           ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
4622           TL.getTypePtr()->getTypeConstraintArguments());
4623       auto NewTL = TLB.push<AutoTypeLoc>(Result);
4624       NewTL.copy(TL);
4625       return Result;
4626     }
4627 
TransformDeducedTemplateSpecializationType(TypeLocBuilder & TLB,DeducedTemplateSpecializationTypeLoc TL)4628     QualType TransformDeducedTemplateSpecializationType(
4629         TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
4630       if (!UseTypeSugar)
4631         return TransformDesugared(TLB, TL);
4632 
4633       QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
4634           TL.getTypePtr()->getTemplateName(),
4635           Replacement, Replacement.isNull());
4636       auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
4637       NewTL.setNameLoc(TL.getNameLoc());
4638       return Result;
4639     }
4640 
TransformLambdaExpr(LambdaExpr * E)4641     ExprResult TransformLambdaExpr(LambdaExpr *E) {
4642       // Lambdas never need to be transformed.
4643       return E;
4644     }
4645 
Apply(TypeLoc TL)4646     QualType Apply(TypeLoc TL) {
4647       // Create some scratch storage for the transformed type locations.
4648       // FIXME: We're just going to throw this information away. Don't build it.
4649       TypeLocBuilder TLB;
4650       TLB.reserve(TL.getFullDataSize());
4651       return TransformType(TLB, TL);
4652     }
4653   };
4654 
4655 } // namespace
4656 
4657 Sema::DeduceAutoResult
DeduceAutoType(TypeSourceInfo * Type,Expr * & Init,QualType & Result,Optional<unsigned> DependentDeductionDepth,bool IgnoreConstraints)4658 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result,
4659                      Optional<unsigned> DependentDeductionDepth,
4660                      bool IgnoreConstraints) {
4661   return DeduceAutoType(Type->getTypeLoc(), Init, Result,
4662                         DependentDeductionDepth, IgnoreConstraints);
4663 }
4664 
4665 /// Attempt to produce an informative diagostic explaining why auto deduction
4666 /// failed.
4667 /// \return \c true if diagnosed, \c false if not.
diagnoseAutoDeductionFailure(Sema & S,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info,ArrayRef<SourceRange> Ranges)4668 static bool diagnoseAutoDeductionFailure(Sema &S,
4669                                          Sema::TemplateDeductionResult TDK,
4670                                          TemplateDeductionInfo &Info,
4671                                          ArrayRef<SourceRange> Ranges) {
4672   switch (TDK) {
4673   case Sema::TDK_Inconsistent: {
4674     // Inconsistent deduction means we were deducing from an initializer list.
4675     auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction);
4676     D << Info.FirstArg << Info.SecondArg;
4677     for (auto R : Ranges)
4678       D << R;
4679     return true;
4680   }
4681 
4682   // FIXME: Are there other cases for which a custom diagnostic is more useful
4683   // than the basic "types don't match" diagnostic?
4684 
4685   default:
4686     return false;
4687   }
4688 }
4689 
4690 static Sema::DeduceAutoResult
CheckDeducedPlaceholderConstraints(Sema & S,const AutoType & Type,AutoTypeLoc TypeLoc,QualType Deduced)4691 CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
4692                                    AutoTypeLoc TypeLoc, QualType Deduced) {
4693   ConstraintSatisfaction Satisfaction;
4694   ConceptDecl *Concept = Type.getTypeConstraintConcept();
4695   TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
4696                                         TypeLoc.getRAngleLoc());
4697   TemplateArgs.addArgument(
4698       TemplateArgumentLoc(TemplateArgument(Deduced),
4699                           S.Context.getTrivialTypeSourceInfo(
4700                               Deduced, TypeLoc.getNameLoc())));
4701   for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
4702     TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
4703 
4704   llvm::SmallVector<TemplateArgument, 4> Converted;
4705   if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs,
4706                                   /*PartialTemplateArgs=*/false, Converted))
4707     return Sema::DAR_FailedAlreadyDiagnosed;
4708   if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()},
4709                                     Converted, TypeLoc.getLocalSourceRange(),
4710                                     Satisfaction))
4711     return Sema::DAR_FailedAlreadyDiagnosed;
4712   if (!Satisfaction.IsSatisfied) {
4713     std::string Buf;
4714     llvm::raw_string_ostream OS(Buf);
4715     OS << "'" << Concept->getName();
4716     if (TypeLoc.hasExplicitTemplateArgs()) {
4717       OS << "<";
4718       for (const auto &Arg : Type.getTypeConstraintArguments())
4719         Arg.print(S.getPrintingPolicy(), OS);
4720       OS << ">";
4721     }
4722     OS << "'";
4723     OS.flush();
4724     S.Diag(TypeLoc.getConceptNameLoc(),
4725            diag::err_placeholder_constraints_not_satisfied)
4726          << Deduced << Buf << TypeLoc.getLocalSourceRange();
4727     S.DiagnoseUnsatisfiedConstraint(Satisfaction);
4728     return Sema::DAR_FailedAlreadyDiagnosed;
4729   }
4730   return Sema::DAR_Succeeded;
4731 }
4732 
4733 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
4734 ///
4735 /// Note that this is done even if the initializer is dependent. (This is
4736 /// necessary to support partial ordering of templates using 'auto'.)
4737 /// A dependent type will be produced when deducing from a dependent type.
4738 ///
4739 /// \param Type the type pattern using the auto type-specifier.
4740 /// \param Init the initializer for the variable whose type is to be deduced.
4741 /// \param Result if type deduction was successful, this will be set to the
4742 ///        deduced type.
4743 /// \param DependentDeductionDepth Set if we should permit deduction in
4744 ///        dependent cases. This is necessary for template partial ordering with
4745 ///        'auto' template parameters. The value specified is the template
4746 ///        parameter depth at which we should perform 'auto' deduction.
4747 /// \param IgnoreConstraints Set if we should not fail if the deduced type does
4748 ///                          not satisfy the type-constraint in the auto type.
4749 Sema::DeduceAutoResult
DeduceAutoType(TypeLoc Type,Expr * & Init,QualType & Result,Optional<unsigned> DependentDeductionDepth,bool IgnoreConstraints)4750 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result,
4751                      Optional<unsigned> DependentDeductionDepth,
4752                      bool IgnoreConstraints) {
4753   if (Init->containsErrors())
4754     return DAR_FailedAlreadyDiagnosed;
4755   if (Init->getType()->isNonOverloadPlaceholderType()) {
4756     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
4757     if (NonPlaceholder.isInvalid())
4758       return DAR_FailedAlreadyDiagnosed;
4759     Init = NonPlaceholder.get();
4760   }
4761 
4762   DependentAuto DependentResult = {
4763       /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
4764 
4765   if (!DependentDeductionDepth &&
4766       (Type.getType()->isDependentType() || Init->isTypeDependent() ||
4767        Init->containsUnexpandedParameterPack())) {
4768     Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4769     assert(!Result.isNull() && "substituting DependentTy can't fail");
4770     return DAR_Succeeded;
4771   }
4772 
4773   // Find the depth of template parameter to synthesize.
4774   unsigned Depth = DependentDeductionDepth.getValueOr(0);
4775 
4776   // If this is a 'decltype(auto)' specifier, do the decltype dance.
4777   // Since 'decltype(auto)' can only occur at the top of the type, we
4778   // don't need to go digging for it.
4779   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
4780     if (AT->isDecltypeAuto()) {
4781       if (isa<InitListExpr>(Init)) {
4782         Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
4783         return DAR_FailedAlreadyDiagnosed;
4784       }
4785 
4786       ExprResult ER = CheckPlaceholderExpr(Init);
4787       if (ER.isInvalid())
4788         return DAR_FailedAlreadyDiagnosed;
4789       Init = ER.get();
4790       QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false);
4791       if (Deduced.isNull())
4792         return DAR_FailedAlreadyDiagnosed;
4793       // FIXME: Support a non-canonical deduced type for 'auto'.
4794       Deduced = Context.getCanonicalType(Deduced);
4795       if (AT->isConstrained() && !IgnoreConstraints) {
4796         auto ConstraintsResult =
4797             CheckDeducedPlaceholderConstraints(*this, *AT,
4798                                                Type.getContainedAutoTypeLoc(),
4799                                                Deduced);
4800         if (ConstraintsResult != DAR_Succeeded)
4801           return ConstraintsResult;
4802       }
4803       Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type);
4804       if (Result.isNull())
4805         return DAR_FailedAlreadyDiagnosed;
4806       return DAR_Succeeded;
4807     } else if (!getLangOpts().CPlusPlus) {
4808       if (isa<InitListExpr>(Init)) {
4809         Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c);
4810         return DAR_FailedAlreadyDiagnosed;
4811       }
4812     }
4813   }
4814 
4815   SourceLocation Loc = Init->getExprLoc();
4816 
4817   LocalInstantiationScope InstScope(*this);
4818 
4819   // Build template<class TemplParam> void Func(FuncParam);
4820   TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
4821       Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false,
4822       false);
4823   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
4824   NamedDecl *TemplParamPtr = TemplParam;
4825   FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
4826       Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
4827 
4828   QualType FuncParam =
4829       SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false)
4830           .Apply(Type);
4831   assert(!FuncParam.isNull() &&
4832          "substituting template parameter for 'auto' failed");
4833 
4834   // Deduce type of TemplParam in Func(Init)
4835   SmallVector<DeducedTemplateArgument, 1> Deduced;
4836   Deduced.resize(1);
4837 
4838   TemplateDeductionInfo Info(Loc, Depth);
4839 
4840   // If deduction failed, don't diagnose if the initializer is dependent; it
4841   // might acquire a matching type in the instantiation.
4842   auto DeductionFailed = [&](TemplateDeductionResult TDK,
4843                              ArrayRef<SourceRange> Ranges) -> DeduceAutoResult {
4844     if (Init->isTypeDependent()) {
4845       Result =
4846           SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4847       assert(!Result.isNull() && "substituting DependentTy can't fail");
4848       return DAR_Succeeded;
4849     }
4850     if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges))
4851       return DAR_FailedAlreadyDiagnosed;
4852     return DAR_Failed;
4853   };
4854 
4855   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
4856 
4857   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
4858   if (InitList) {
4859     // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce
4860     // against that. Such deduction only succeeds if removing cv-qualifiers and
4861     // references results in std::initializer_list<T>.
4862     if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
4863       return DAR_Failed;
4864 
4865     // Resolving a core issue: a braced-init-list containing any designators is
4866     // a non-deduced context.
4867     for (Expr *E : InitList->inits())
4868       if (isa<DesignatedInitExpr>(E))
4869         return DAR_Failed;
4870 
4871     SourceRange DeducedFromInitRange;
4872     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
4873       Expr *Init = InitList->getInit(i);
4874 
4875       if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4876               *this, TemplateParamsSt.get(), 0, TemplArg, Init,
4877               Info, Deduced, OriginalCallArgs, /*Decomposed*/ true,
4878               /*ArgIdx*/ 0, /*TDF*/ 0))
4879         return DeductionFailed(TDK, {DeducedFromInitRange,
4880                                      Init->getSourceRange()});
4881 
4882       if (DeducedFromInitRange.isInvalid() &&
4883           Deduced[0].getKind() != TemplateArgument::Null)
4884         DeducedFromInitRange = Init->getSourceRange();
4885     }
4886   } else {
4887     if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
4888       Diag(Loc, diag::err_auto_bitfield);
4889       return DAR_FailedAlreadyDiagnosed;
4890     }
4891 
4892     if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4893             *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced,
4894             OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0))
4895       return DeductionFailed(TDK, {});
4896   }
4897 
4898   // Could be null if somehow 'auto' appears in a non-deduced context.
4899   if (Deduced[0].getKind() != TemplateArgument::Type)
4900     return DeductionFailed(TDK_Incomplete, {});
4901 
4902   QualType DeducedType = Deduced[0].getAsType();
4903 
4904   if (InitList) {
4905     DeducedType = BuildStdInitializerList(DeducedType, Loc);
4906     if (DeducedType.isNull())
4907       return DAR_FailedAlreadyDiagnosed;
4908   }
4909 
4910   if (const auto *AT = Type.getType()->getAs<AutoType>()) {
4911     if (AT->isConstrained() && !IgnoreConstraints) {
4912       auto ConstraintsResult =
4913           CheckDeducedPlaceholderConstraints(*this, *AT,
4914                                              Type.getContainedAutoTypeLoc(),
4915                                              DeducedType);
4916       if (ConstraintsResult != DAR_Succeeded)
4917         return ConstraintsResult;
4918     }
4919   }
4920 
4921   Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
4922   if (Result.isNull())
4923     return DAR_FailedAlreadyDiagnosed;
4924 
4925   // Check that the deduced argument type is compatible with the original
4926   // argument type per C++ [temp.deduct.call]p4.
4927   QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
4928   for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
4929     assert((bool)InitList == OriginalArg.DecomposedParam &&
4930            "decomposed non-init-list in auto deduction?");
4931     if (auto TDK =
4932             CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) {
4933       Result = QualType();
4934       return DeductionFailed(TDK, {});
4935     }
4936   }
4937 
4938   return DAR_Succeeded;
4939 }
4940 
SubstAutoType(QualType TypeWithAuto,QualType TypeToReplaceAuto)4941 QualType Sema::SubstAutoType(QualType TypeWithAuto,
4942                              QualType TypeToReplaceAuto) {
4943   if (TypeToReplaceAuto->isDependentType())
4944     return SubstituteDeducedTypeTransform(
4945                *this, DependentAuto{
4946                           TypeToReplaceAuto->containsUnexpandedParameterPack()})
4947         .TransformType(TypeWithAuto);
4948   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4949       .TransformType(TypeWithAuto);
4950 }
4951 
SubstAutoTypeSourceInfo(TypeSourceInfo * TypeWithAuto,QualType TypeToReplaceAuto)4952 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4953                                               QualType TypeToReplaceAuto) {
4954   if (TypeToReplaceAuto->isDependentType())
4955     return SubstituteDeducedTypeTransform(
4956                *this,
4957                DependentAuto{
4958                    TypeToReplaceAuto->containsUnexpandedParameterPack()})
4959         .TransformType(TypeWithAuto);
4960   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4961       .TransformType(TypeWithAuto);
4962 }
4963 
ReplaceAutoType(QualType TypeWithAuto,QualType TypeToReplaceAuto)4964 QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
4965                                QualType TypeToReplaceAuto) {
4966   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
4967                                         /*UseTypeSugar*/ false)
4968       .TransformType(TypeWithAuto);
4969 }
4970 
ReplaceAutoTypeSourceInfo(TypeSourceInfo * TypeWithAuto,QualType TypeToReplaceAuto)4971 TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4972                                                 QualType TypeToReplaceAuto) {
4973   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
4974                                         /*UseTypeSugar*/ false)
4975       .TransformType(TypeWithAuto);
4976 }
4977 
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)4978 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4979   if (isa<InitListExpr>(Init))
4980     Diag(VDecl->getLocation(),
4981          VDecl->isInitCapture()
4982              ? diag::err_init_capture_deduction_failure_from_init_list
4983              : diag::err_auto_var_deduction_failure_from_init_list)
4984       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4985   else
4986     Diag(VDecl->getLocation(),
4987          VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4988                                 : diag::err_auto_var_deduction_failure)
4989       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4990       << Init->getSourceRange();
4991 }
4992 
DeduceReturnType(FunctionDecl * FD,SourceLocation Loc,bool Diagnose)4993 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4994                             bool Diagnose) {
4995   assert(FD->getReturnType()->isUndeducedType());
4996 
4997   // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
4998   // within the return type from the call operator's type.
4999   if (isLambdaConversionOperator(FD)) {
5000     CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
5001     FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
5002 
5003     // For a generic lambda, instantiate the call operator if needed.
5004     if (auto *Args = FD->getTemplateSpecializationArgs()) {
5005       CallOp = InstantiateFunctionDeclaration(
5006           CallOp->getDescribedFunctionTemplate(), Args, Loc);
5007       if (!CallOp || CallOp->isInvalidDecl())
5008         return true;
5009 
5010       // We might need to deduce the return type by instantiating the definition
5011       // of the operator() function.
5012       if (CallOp->getReturnType()->isUndeducedType()) {
5013         runWithSufficientStackSpace(Loc, [&] {
5014           InstantiateFunctionDefinition(Loc, CallOp);
5015         });
5016       }
5017     }
5018 
5019     if (CallOp->isInvalidDecl())
5020       return true;
5021     assert(!CallOp->getReturnType()->isUndeducedType() &&
5022            "failed to deduce lambda return type");
5023 
5024     // Build the new return type from scratch.
5025     CallingConv RetTyCC = FD->getReturnType()
5026                               ->getPointeeType()
5027                               ->castAs<FunctionType>()
5028                               ->getCallConv();
5029     QualType RetType = getLambdaConversionFunctionResultType(
5030         CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC);
5031     if (FD->getReturnType()->getAs<PointerType>())
5032       RetType = Context.getPointerType(RetType);
5033     else {
5034       assert(FD->getReturnType()->getAs<BlockPointerType>());
5035       RetType = Context.getBlockPointerType(RetType);
5036     }
5037     Context.adjustDeducedFunctionResultType(FD, RetType);
5038     return false;
5039   }
5040 
5041   if (FD->getTemplateInstantiationPattern()) {
5042     runWithSufficientStackSpace(Loc, [&] {
5043       InstantiateFunctionDefinition(Loc, FD);
5044     });
5045   }
5046 
5047   bool StillUndeduced = FD->getReturnType()->isUndeducedType();
5048   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
5049     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
5050     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
5051   }
5052 
5053   return StillUndeduced;
5054 }
5055 
5056 /// If this is a non-static member function,
5057 static void
AddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)5058 AddImplicitObjectParameterType(ASTContext &Context,
5059                                CXXMethodDecl *Method,
5060                                SmallVectorImpl<QualType> &ArgTypes) {
5061   // C++11 [temp.func.order]p3:
5062   //   [...] The new parameter is of type "reference to cv A," where cv are
5063   //   the cv-qualifiers of the function template (if any) and A is
5064   //   the class of which the function template is a member.
5065   //
5066   // The standard doesn't say explicitly, but we pick the appropriate kind of
5067   // reference type based on [over.match.funcs]p4.
5068   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
5069   ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers());
5070   if (Method->getRefQualifier() == RQ_RValue)
5071     ArgTy = Context.getRValueReferenceType(ArgTy);
5072   else
5073     ArgTy = Context.getLValueReferenceType(ArgTy);
5074   ArgTypes.push_back(ArgTy);
5075 }
5076 
5077 /// Determine whether the function template \p FT1 is at least as
5078 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments1,bool Reversed)5079 static bool isAtLeastAsSpecializedAs(Sema &S,
5080                                      SourceLocation Loc,
5081                                      FunctionTemplateDecl *FT1,
5082                                      FunctionTemplateDecl *FT2,
5083                                      TemplatePartialOrderingContext TPOC,
5084                                      unsigned NumCallArguments1,
5085                                      bool Reversed) {
5086   assert(!Reversed || TPOC == TPOC_Call);
5087 
5088   FunctionDecl *FD1 = FT1->getTemplatedDecl();
5089   FunctionDecl *FD2 = FT2->getTemplatedDecl();
5090   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
5091   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
5092 
5093   assert(Proto1 && Proto2 && "Function templates must have prototypes");
5094   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
5095   SmallVector<DeducedTemplateArgument, 4> Deduced;
5096   Deduced.resize(TemplateParams->size());
5097 
5098   // C++0x [temp.deduct.partial]p3:
5099   //   The types used to determine the ordering depend on the context in which
5100   //   the partial ordering is done:
5101   TemplateDeductionInfo Info(Loc);
5102   SmallVector<QualType, 4> Args2;
5103   switch (TPOC) {
5104   case TPOC_Call: {
5105     //   - In the context of a function call, the function parameter types are
5106     //     used.
5107     CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
5108     CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
5109 
5110     // C++11 [temp.func.order]p3:
5111     //   [...] If only one of the function templates is a non-static
5112     //   member, that function template is considered to have a new
5113     //   first parameter inserted in its function parameter list. The
5114     //   new parameter is of type "reference to cv A," where cv are
5115     //   the cv-qualifiers of the function template (if any) and A is
5116     //   the class of which the function template is a member.
5117     //
5118     // Note that we interpret this to mean "if one of the function
5119     // templates is a non-static member and the other is a non-member";
5120     // otherwise, the ordering rules for static functions against non-static
5121     // functions don't make any sense.
5122     //
5123     // C++98/03 doesn't have this provision but we've extended DR532 to cover
5124     // it as wording was broken prior to it.
5125     SmallVector<QualType, 4> Args1;
5126 
5127     unsigned NumComparedArguments = NumCallArguments1;
5128 
5129     if (!Method2 && Method1 && !Method1->isStatic()) {
5130       // Compare 'this' from Method1 against first parameter from Method2.
5131       AddImplicitObjectParameterType(S.Context, Method1, Args1);
5132       ++NumComparedArguments;
5133     } else if (!Method1 && Method2 && !Method2->isStatic()) {
5134       // Compare 'this' from Method2 against first parameter from Method1.
5135       AddImplicitObjectParameterType(S.Context, Method2, Args2);
5136     } else if (Method1 && Method2 && Reversed) {
5137       // Compare 'this' from Method1 against second parameter from Method2
5138       // and 'this' from Method2 against second parameter from Method1.
5139       AddImplicitObjectParameterType(S.Context, Method1, Args1);
5140       AddImplicitObjectParameterType(S.Context, Method2, Args2);
5141       ++NumComparedArguments;
5142     }
5143 
5144     Args1.insert(Args1.end(), Proto1->param_type_begin(),
5145                  Proto1->param_type_end());
5146     Args2.insert(Args2.end(), Proto2->param_type_begin(),
5147                  Proto2->param_type_end());
5148 
5149     // C++ [temp.func.order]p5:
5150     //   The presence of unused ellipsis and default arguments has no effect on
5151     //   the partial ordering of function templates.
5152     if (Args1.size() > NumComparedArguments)
5153       Args1.resize(NumComparedArguments);
5154     if (Args2.size() > NumComparedArguments)
5155       Args2.resize(NumComparedArguments);
5156     if (Reversed)
5157       std::reverse(Args2.begin(), Args2.end());
5158     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
5159                                 Args1.data(), Args1.size(), Info, Deduced,
5160                                 TDF_None, /*PartialOrdering=*/true))
5161       return false;
5162 
5163     break;
5164   }
5165 
5166   case TPOC_Conversion:
5167     //   - In the context of a call to a conversion operator, the return types
5168     //     of the conversion function templates are used.
5169     if (DeduceTemplateArgumentsByTypeMatch(
5170             S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
5171             Info, Deduced, TDF_None,
5172             /*PartialOrdering=*/true))
5173       return false;
5174     break;
5175 
5176   case TPOC_Other:
5177     //   - In other contexts (14.6.6.2) the function template's function type
5178     //     is used.
5179     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
5180                                            FD2->getType(), FD1->getType(),
5181                                            Info, Deduced, TDF_None,
5182                                            /*PartialOrdering=*/true))
5183       return false;
5184     break;
5185   }
5186 
5187   // C++0x [temp.deduct.partial]p11:
5188   //   In most cases, all template parameters must have values in order for
5189   //   deduction to succeed, but for partial ordering purposes a template
5190   //   parameter may remain without a value provided it is not used in the
5191   //   types being used for partial ordering. [ Note: a template parameter used
5192   //   in a non-deduced context is considered used. -end note]
5193   unsigned ArgIdx = 0, NumArgs = Deduced.size();
5194   for (; ArgIdx != NumArgs; ++ArgIdx)
5195     if (Deduced[ArgIdx].isNull())
5196       break;
5197 
5198   // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need
5199   // to substitute the deduced arguments back into the template and check that
5200   // we get the right type.
5201 
5202   if (ArgIdx == NumArgs) {
5203     // All template arguments were deduced. FT1 is at least as specialized
5204     // as FT2.
5205     return true;
5206   }
5207 
5208   // Figure out which template parameters were used.
5209   llvm::SmallBitVector UsedParameters(TemplateParams->size());
5210   switch (TPOC) {
5211   case TPOC_Call:
5212     for (unsigned I = 0, N = Args2.size(); I != N; ++I)
5213       ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
5214                                    TemplateParams->getDepth(),
5215                                    UsedParameters);
5216     break;
5217 
5218   case TPOC_Conversion:
5219     ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
5220                                  TemplateParams->getDepth(), UsedParameters);
5221     break;
5222 
5223   case TPOC_Other:
5224     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
5225                                  TemplateParams->getDepth(),
5226                                  UsedParameters);
5227     break;
5228   }
5229 
5230   for (; ArgIdx != NumArgs; ++ArgIdx)
5231     // If this argument had no value deduced but was used in one of the types
5232     // used for partial ordering, then deduction fails.
5233     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
5234       return false;
5235 
5236   return true;
5237 }
5238 
5239 /// Determine whether this a function template whose parameter-type-list
5240 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)5241 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
5242   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
5243   unsigned NumParams = Function->getNumParams();
5244   if (NumParams == 0)
5245     return false;
5246 
5247   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
5248   if (!Last->isParameterPack())
5249     return false;
5250 
5251   // Make sure that no previous parameter is a parameter pack.
5252   while (--NumParams > 0) {
5253     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
5254       return false;
5255   }
5256 
5257   return true;
5258 }
5259 
5260 /// Returns the more specialized function template according
5261 /// to the rules of function template partial ordering (C++ [temp.func.order]).
5262 ///
5263 /// \param FT1 the first function template
5264 ///
5265 /// \param FT2 the second function template
5266 ///
5267 /// \param TPOC the context in which we are performing partial ordering of
5268 /// function templates.
5269 ///
5270 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
5271 /// only when \c TPOC is \c TPOC_Call.
5272 ///
5273 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
5274 /// only when \c TPOC is \c TPOC_Call.
5275 ///
5276 /// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload
5277 /// candidate with a reversed parameter order. In this case, the corresponding
5278 /// P/A pairs between FT1 and FT2 are reversed.
5279 ///
5280 /// \returns the more specialized function template. If neither
5281 /// template is more specialized, returns NULL.
5282 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments1,unsigned NumCallArguments2,bool Reversed)5283 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
5284                                  FunctionTemplateDecl *FT2,
5285                                  SourceLocation Loc,
5286                                  TemplatePartialOrderingContext TPOC,
5287                                  unsigned NumCallArguments1,
5288                                  unsigned NumCallArguments2,
5289                                  bool Reversed) {
5290 
5291   auto JudgeByConstraints = [&] () -> FunctionTemplateDecl * {
5292     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5293     FT1->getAssociatedConstraints(AC1);
5294     FT2->getAssociatedConstraints(AC2);
5295     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5296     if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
5297       return nullptr;
5298     if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
5299       return nullptr;
5300     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5301       return nullptr;
5302     return AtLeastAsConstrained1 ? FT1 : FT2;
5303   };
5304 
5305   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
5306                                           NumCallArguments1, Reversed);
5307   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
5308                                           NumCallArguments2, Reversed);
5309 
5310   if (Better1 != Better2) // We have a clear winner
5311     return Better1 ? FT1 : FT2;
5312 
5313   if (!Better1 && !Better2) // Neither is better than the other
5314     return JudgeByConstraints();
5315 
5316   // FIXME: This mimics what GCC implements, but doesn't match up with the
5317   // proposed resolution for core issue 692. This area needs to be sorted out,
5318   // but for now we attempt to maintain compatibility.
5319   bool Variadic1 = isVariadicFunctionTemplate(FT1);
5320   bool Variadic2 = isVariadicFunctionTemplate(FT2);
5321   if (Variadic1 != Variadic2)
5322     return Variadic1? FT2 : FT1;
5323 
5324   return JudgeByConstraints();
5325 }
5326 
5327 /// Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)5328 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
5329   if (T1 == T2)
5330     return true;
5331 
5332   if (!T1 || !T2)
5333     return false;
5334 
5335   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
5336 }
5337 
5338 /// Retrieve the most specialized of the given function template
5339 /// specializations.
5340 ///
5341 /// \param SpecBegin the start iterator of the function template
5342 /// specializations that we will be comparing.
5343 ///
5344 /// \param SpecEnd the end iterator of the function template
5345 /// specializations, paired with \p SpecBegin.
5346 ///
5347 /// \param Loc the location where the ambiguity or no-specializations
5348 /// diagnostic should occur.
5349 ///
5350 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
5351 /// no matching candidates.
5352 ///
5353 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
5354 /// occurs.
5355 ///
5356 /// \param CandidateDiag partial diagnostic used for each function template
5357 /// specialization that is a candidate in the ambiguous ordering. One parameter
5358 /// in this diagnostic should be unbound, which will correspond to the string
5359 /// describing the template arguments for the function template specialization.
5360 ///
5361 /// \returns the most specialized function template specialization, if
5362 /// found. Otherwise, returns SpecEnd.
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplateSpecCandidateSet & FailedCandidates,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)5363 UnresolvedSetIterator Sema::getMostSpecialized(
5364     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
5365     TemplateSpecCandidateSet &FailedCandidates,
5366     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
5367     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
5368     bool Complain, QualType TargetType) {
5369   if (SpecBegin == SpecEnd) {
5370     if (Complain) {
5371       Diag(Loc, NoneDiag);
5372       FailedCandidates.NoteCandidates(*this, Loc);
5373     }
5374     return SpecEnd;
5375   }
5376 
5377   if (SpecBegin + 1 == SpecEnd)
5378     return SpecBegin;
5379 
5380   // Find the function template that is better than all of the templates it
5381   // has been compared to.
5382   UnresolvedSetIterator Best = SpecBegin;
5383   FunctionTemplateDecl *BestTemplate
5384     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
5385   assert(BestTemplate && "Not a function template specialization?");
5386   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
5387     FunctionTemplateDecl *Challenger
5388       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5389     assert(Challenger && "Not a function template specialization?");
5390     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5391                                                   Loc, TPOC_Other, 0, 0),
5392                        Challenger)) {
5393       Best = I;
5394       BestTemplate = Challenger;
5395     }
5396   }
5397 
5398   // Make sure that the "best" function template is more specialized than all
5399   // of the others.
5400   bool Ambiguous = false;
5401   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5402     FunctionTemplateDecl *Challenger
5403       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5404     if (I != Best &&
5405         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5406                                                    Loc, TPOC_Other, 0, 0),
5407                         BestTemplate)) {
5408       Ambiguous = true;
5409       break;
5410     }
5411   }
5412 
5413   if (!Ambiguous) {
5414     // We found an answer. Return it.
5415     return Best;
5416   }
5417 
5418   // Diagnose the ambiguity.
5419   if (Complain) {
5420     Diag(Loc, AmbigDiag);
5421 
5422     // FIXME: Can we order the candidates in some sane way?
5423     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5424       PartialDiagnostic PD = CandidateDiag;
5425       const auto *FD = cast<FunctionDecl>(*I);
5426       PD << FD << getTemplateArgumentBindingsText(
5427                       FD->getPrimaryTemplate()->getTemplateParameters(),
5428                       *FD->getTemplateSpecializationArgs());
5429       if (!TargetType.isNull())
5430         HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
5431       Diag((*I)->getLocation(), PD);
5432     }
5433   }
5434 
5435   return SpecEnd;
5436 }
5437 
5438 /// Determine whether one partial specialization, P1, is at least as
5439 /// specialized than another, P2.
5440 ///
5441 /// \tparam TemplateLikeDecl The kind of P2, which must be a
5442 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
5443 /// \param T1 The injected-class-name of P1 (faked for a variable template).
5444 /// \param T2 The injected-class-name of P2 (faked for a variable template).
5445 template<typename TemplateLikeDecl>
isAtLeastAsSpecializedAs(Sema & S,QualType T1,QualType T2,TemplateLikeDecl * P2,TemplateDeductionInfo & Info)5446 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
5447                                      TemplateLikeDecl *P2,
5448                                      TemplateDeductionInfo &Info) {
5449   // C++ [temp.class.order]p1:
5450   //   For two class template partial specializations, the first is at least as
5451   //   specialized as the second if, given the following rewrite to two
5452   //   function templates, the first function template is at least as
5453   //   specialized as the second according to the ordering rules for function
5454   //   templates (14.6.6.2):
5455   //     - the first function template has the same template parameters as the
5456   //       first partial specialization and has a single function parameter
5457   //       whose type is a class template specialization with the template
5458   //       arguments of the first partial specialization, and
5459   //     - the second function template has the same template parameters as the
5460   //       second partial specialization and has a single function parameter
5461   //       whose type is a class template specialization with the template
5462   //       arguments of the second partial specialization.
5463   //
5464   // Rather than synthesize function templates, we merely perform the
5465   // equivalent partial ordering by performing deduction directly on
5466   // the template arguments of the class template partial
5467   // specializations. This computation is slightly simpler than the
5468   // general problem of function template partial ordering, because
5469   // class template partial specializations are more constrained. We
5470   // know that every template parameter is deducible from the class
5471   // template partial specialization's template arguments, for
5472   // example.
5473   SmallVector<DeducedTemplateArgument, 4> Deduced;
5474 
5475   // Determine whether P1 is at least as specialized as P2.
5476   Deduced.resize(P2->getTemplateParameters()->size());
5477   if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(),
5478                                          T2, T1, Info, Deduced, TDF_None,
5479                                          /*PartialOrdering=*/true))
5480     return false;
5481 
5482   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
5483                                                Deduced.end());
5484   Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
5485                                    Info);
5486   auto *TST1 = T1->castAs<TemplateSpecializationType>();
5487   bool AtLeastAsSpecialized;
5488   S.runWithSufficientStackSpace(Info.getLocation(), [&] {
5489     AtLeastAsSpecialized = !FinishTemplateArgumentDeduction(
5490         S, P2, /*IsPartialOrdering=*/true,
5491         TemplateArgumentList(TemplateArgumentList::OnStack,
5492                              TST1->template_arguments()),
5493         Deduced, Info);
5494   });
5495   return AtLeastAsSpecialized;
5496 }
5497 
5498 /// Returns the more specialized class template partial specialization
5499 /// according to the rules of partial ordering of class template partial
5500 /// specializations (C++ [temp.class.order]).
5501 ///
5502 /// \param PS1 the first class template partial specialization
5503 ///
5504 /// \param PS2 the second class template partial specialization
5505 ///
5506 /// \returns the more specialized class template partial specialization. If
5507 /// neither partial specialization is more specialized, returns NULL.
5508 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)5509 Sema::getMoreSpecializedPartialSpecialization(
5510                                   ClassTemplatePartialSpecializationDecl *PS1,
5511                                   ClassTemplatePartialSpecializationDecl *PS2,
5512                                               SourceLocation Loc) {
5513   QualType PT1 = PS1->getInjectedSpecializationType();
5514   QualType PT2 = PS2->getInjectedSpecializationType();
5515 
5516   TemplateDeductionInfo Info(Loc);
5517   bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5518   bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5519 
5520   if (!Better1 && !Better2)
5521       return nullptr;
5522   if (Better1 && Better2) {
5523     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5524     PS1->getAssociatedConstraints(AC1);
5525     PS2->getAssociatedConstraints(AC2);
5526     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5527     if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
5528       return nullptr;
5529     if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
5530       return nullptr;
5531     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5532       return nullptr;
5533     return AtLeastAsConstrained1 ? PS1 : PS2;
5534   }
5535 
5536   return Better1 ? PS1 : PS2;
5537 }
5538 
isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl * Spec,TemplateDeductionInfo & Info)5539 bool Sema::isMoreSpecializedThanPrimary(
5540     ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5541   ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
5542   QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
5543   QualType PartialT = Spec->getInjectedSpecializationType();
5544   if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5545     return false;
5546   if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
5547     return true;
5548   Info.clearSFINAEDiagnostic();
5549   llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
5550   Primary->getAssociatedConstraints(PrimaryAC);
5551   Spec->getAssociatedConstraints(SpecAC);
5552   bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
5553   if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
5554                              AtLeastAsConstrainedSpec))
5555     return false;
5556   if (!AtLeastAsConstrainedSpec)
5557     return false;
5558   if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
5559                              AtLeastAsConstrainedPrimary))
5560     return false;
5561   return !AtLeastAsConstrainedPrimary;
5562 }
5563 
5564 VarTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(VarTemplatePartialSpecializationDecl * PS1,VarTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)5565 Sema::getMoreSpecializedPartialSpecialization(
5566     VarTemplatePartialSpecializationDecl *PS1,
5567     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
5568   // Pretend the variable template specializations are class template
5569   // specializations and form a fake injected class name type for comparison.
5570   assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
5571          "the partial specializations being compared should specialize"
5572          " the same template.");
5573   TemplateName Name(PS1->getSpecializedTemplate());
5574   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5575   QualType PT1 = Context.getTemplateSpecializationType(
5576       CanonTemplate, PS1->getTemplateArgs().asArray());
5577   QualType PT2 = Context.getTemplateSpecializationType(
5578       CanonTemplate, PS2->getTemplateArgs().asArray());
5579 
5580   TemplateDeductionInfo Info(Loc);
5581   bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5582   bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5583 
5584   if (!Better1 && !Better2)
5585     return nullptr;
5586   if (Better1 && Better2) {
5587     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5588     PS1->getAssociatedConstraints(AC1);
5589     PS2->getAssociatedConstraints(AC2);
5590     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5591     if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
5592       return nullptr;
5593     if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
5594       return nullptr;
5595     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5596       return nullptr;
5597     return AtLeastAsConstrained1 ? PS1 : PS2;
5598   }
5599 
5600   return Better1 ? PS1 : PS2;
5601 }
5602 
isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl * Spec,TemplateDeductionInfo & Info)5603 bool Sema::isMoreSpecializedThanPrimary(
5604     VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5605   TemplateDecl *Primary = Spec->getSpecializedTemplate();
5606   // FIXME: Cache the injected template arguments rather than recomputing
5607   // them for each partial specialization.
5608   SmallVector<TemplateArgument, 8> PrimaryArgs;
5609   Context.getInjectedTemplateArgs(Primary->getTemplateParameters(),
5610                                   PrimaryArgs);
5611 
5612   TemplateName CanonTemplate =
5613       Context.getCanonicalTemplateName(TemplateName(Primary));
5614   QualType PrimaryT = Context.getTemplateSpecializationType(
5615       CanonTemplate, PrimaryArgs);
5616   QualType PartialT = Context.getTemplateSpecializationType(
5617       CanonTemplate, Spec->getTemplateArgs().asArray());
5618 
5619   if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5620     return false;
5621   if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
5622     return true;
5623   Info.clearSFINAEDiagnostic();
5624   llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
5625   Primary->getAssociatedConstraints(PrimaryAC);
5626   Spec->getAssociatedConstraints(SpecAC);
5627   bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
5628   if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
5629                              AtLeastAsConstrainedSpec))
5630     return false;
5631   if (!AtLeastAsConstrainedSpec)
5632     return false;
5633   if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
5634                              AtLeastAsConstrainedPrimary))
5635     return false;
5636   return !AtLeastAsConstrainedPrimary;
5637 }
5638 
isTemplateTemplateParameterAtLeastAsSpecializedAs(TemplateParameterList * P,TemplateDecl * AArg,SourceLocation Loc)5639 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
5640      TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) {
5641   // C++1z [temp.arg.template]p4: (DR 150)
5642   //   A template template-parameter P is at least as specialized as a
5643   //   template template-argument A if, given the following rewrite to two
5644   //   function templates...
5645 
5646   // Rather than synthesize function templates, we merely perform the
5647   // equivalent partial ordering by performing deduction directly on
5648   // the template parameter lists of the template template parameters.
5649   //
5650   //   Given an invented class template X with the template parameter list of
5651   //   A (including default arguments):
5652   TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg));
5653   TemplateParameterList *A = AArg->getTemplateParameters();
5654 
5655   //    - Each function template has a single function parameter whose type is
5656   //      a specialization of X with template arguments corresponding to the
5657   //      template parameters from the respective function template
5658   SmallVector<TemplateArgument, 8> AArgs;
5659   Context.getInjectedTemplateArgs(A, AArgs);
5660 
5661   // Check P's arguments against A's parameter list. This will fill in default
5662   // template arguments as needed. AArgs are already correct by construction.
5663   // We can't just use CheckTemplateIdType because that will expand alias
5664   // templates.
5665   SmallVector<TemplateArgument, 4> PArgs;
5666   {
5667     SFINAETrap Trap(*this);
5668 
5669     Context.getInjectedTemplateArgs(P, PArgs);
5670     TemplateArgumentListInfo PArgList(P->getLAngleLoc(),
5671                                       P->getRAngleLoc());
5672     for (unsigned I = 0, N = P->size(); I != N; ++I) {
5673       // Unwrap packs that getInjectedTemplateArgs wrapped around pack
5674       // expansions, to form an "as written" argument list.
5675       TemplateArgument Arg = PArgs[I];
5676       if (Arg.getKind() == TemplateArgument::Pack) {
5677         assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
5678         Arg = *Arg.pack_begin();
5679       }
5680       PArgList.addArgument(getTrivialTemplateArgumentLoc(
5681           Arg, QualType(), P->getParam(I)->getLocation()));
5682     }
5683     PArgs.clear();
5684 
5685     // C++1z [temp.arg.template]p3:
5686     //   If the rewrite produces an invalid type, then P is not at least as
5687     //   specialized as A.
5688     if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) ||
5689         Trap.hasErrorOccurred())
5690       return false;
5691   }
5692 
5693   QualType AType = Context.getTemplateSpecializationType(X, AArgs);
5694   QualType PType = Context.getTemplateSpecializationType(X, PArgs);
5695 
5696   //   ... the function template corresponding to P is at least as specialized
5697   //   as the function template corresponding to A according to the partial
5698   //   ordering rules for function templates.
5699   TemplateDeductionInfo Info(Loc, A->getDepth());
5700   return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info);
5701 }
5702 
5703 namespace {
5704 struct MarkUsedTemplateParameterVisitor :
5705     RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> {
5706   llvm::SmallBitVector &Used;
5707   unsigned Depth;
5708 
MarkUsedTemplateParameterVisitor__anonb17da8c01711::MarkUsedTemplateParameterVisitor5709   MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
5710                                    unsigned Depth)
5711       : Used(Used), Depth(Depth) { }
5712 
VisitTemplateTypeParmType__anonb17da8c01711::MarkUsedTemplateParameterVisitor5713   bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
5714     if (T->getDepth() == Depth)
5715       Used[T->getIndex()] = true;
5716     return true;
5717   }
5718 
TraverseTemplateName__anonb17da8c01711::MarkUsedTemplateParameterVisitor5719   bool TraverseTemplateName(TemplateName Template) {
5720     if (auto *TTP =
5721             dyn_cast<TemplateTemplateParmDecl>(Template.getAsTemplateDecl()))
5722       if (TTP->getDepth() == Depth)
5723         Used[TTP->getIndex()] = true;
5724     RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>::
5725         TraverseTemplateName(Template);
5726     return true;
5727   }
5728 
VisitDeclRefExpr__anonb17da8c01711::MarkUsedTemplateParameterVisitor5729   bool VisitDeclRefExpr(DeclRefExpr *E) {
5730     if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
5731       if (NTTP->getDepth() == Depth)
5732         Used[NTTP->getIndex()] = true;
5733     return true;
5734   }
5735 };
5736 }
5737 
5738 /// Mark the template parameters that are used by the given
5739 /// expression.
5740 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5741 MarkUsedTemplateParameters(ASTContext &Ctx,
5742                            const Expr *E,
5743                            bool OnlyDeduced,
5744                            unsigned Depth,
5745                            llvm::SmallBitVector &Used) {
5746   if (!OnlyDeduced) {
5747     MarkUsedTemplateParameterVisitor(Used, Depth)
5748         .TraverseStmt(const_cast<Expr *>(E));
5749     return;
5750   }
5751 
5752   // We can deduce from a pack expansion.
5753   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
5754     E = Expansion->getPattern();
5755 
5756   const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth);
5757   if (!NTTP)
5758     return;
5759 
5760   if (NTTP->getDepth() == Depth)
5761     Used[NTTP->getIndex()] = true;
5762 
5763   // In C++17 mode, additional arguments may be deduced from the type of a
5764   // non-type argument.
5765   if (Ctx.getLangOpts().CPlusPlus17)
5766     MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
5767 }
5768 
5769 /// Mark the template parameters that are used by the given
5770 /// nested name specifier.
5771 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5772 MarkUsedTemplateParameters(ASTContext &Ctx,
5773                            NestedNameSpecifier *NNS,
5774                            bool OnlyDeduced,
5775                            unsigned Depth,
5776                            llvm::SmallBitVector &Used) {
5777   if (!NNS)
5778     return;
5779 
5780   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
5781                              Used);
5782   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
5783                              OnlyDeduced, Depth, Used);
5784 }
5785 
5786 /// Mark the template parameters that are used by the given
5787 /// template name.
5788 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5789 MarkUsedTemplateParameters(ASTContext &Ctx,
5790                            TemplateName Name,
5791                            bool OnlyDeduced,
5792                            unsigned Depth,
5793                            llvm::SmallBitVector &Used) {
5794   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
5795     if (TemplateTemplateParmDecl *TTP
5796           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
5797       if (TTP->getDepth() == Depth)
5798         Used[TTP->getIndex()] = true;
5799     }
5800     return;
5801   }
5802 
5803   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
5804     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
5805                                Depth, Used);
5806   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
5807     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
5808                                Depth, Used);
5809 }
5810 
5811 /// Mark the template parameters that are used by the given
5812 /// type.
5813 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5814 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
5815                            bool OnlyDeduced,
5816                            unsigned Depth,
5817                            llvm::SmallBitVector &Used) {
5818   if (T.isNull())
5819     return;
5820 
5821   // Non-dependent types have nothing deducible
5822   if (!T->isDependentType())
5823     return;
5824 
5825   T = Ctx.getCanonicalType(T);
5826   switch (T->getTypeClass()) {
5827   case Type::Pointer:
5828     MarkUsedTemplateParameters(Ctx,
5829                                cast<PointerType>(T)->getPointeeType(),
5830                                OnlyDeduced,
5831                                Depth,
5832                                Used);
5833     break;
5834 
5835   case Type::BlockPointer:
5836     MarkUsedTemplateParameters(Ctx,
5837                                cast<BlockPointerType>(T)->getPointeeType(),
5838                                OnlyDeduced,
5839                                Depth,
5840                                Used);
5841     break;
5842 
5843   case Type::LValueReference:
5844   case Type::RValueReference:
5845     MarkUsedTemplateParameters(Ctx,
5846                                cast<ReferenceType>(T)->getPointeeType(),
5847                                OnlyDeduced,
5848                                Depth,
5849                                Used);
5850     break;
5851 
5852   case Type::MemberPointer: {
5853     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
5854     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
5855                                Depth, Used);
5856     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
5857                                OnlyDeduced, Depth, Used);
5858     break;
5859   }
5860 
5861   case Type::DependentSizedArray:
5862     MarkUsedTemplateParameters(Ctx,
5863                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
5864                                OnlyDeduced, Depth, Used);
5865     // Fall through to check the element type
5866     LLVM_FALLTHROUGH;
5867 
5868   case Type::ConstantArray:
5869   case Type::IncompleteArray:
5870     MarkUsedTemplateParameters(Ctx,
5871                                cast<ArrayType>(T)->getElementType(),
5872                                OnlyDeduced, Depth, Used);
5873     break;
5874 
5875   case Type::Vector:
5876   case Type::ExtVector:
5877     MarkUsedTemplateParameters(Ctx,
5878                                cast<VectorType>(T)->getElementType(),
5879                                OnlyDeduced, Depth, Used);
5880     break;
5881 
5882   case Type::DependentVector: {
5883     const auto *VecType = cast<DependentVectorType>(T);
5884     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5885                                Depth, Used);
5886     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
5887                                Used);
5888     break;
5889   }
5890   case Type::DependentSizedExtVector: {
5891     const DependentSizedExtVectorType *VecType
5892       = cast<DependentSizedExtVectorType>(T);
5893     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5894                                Depth, Used);
5895     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
5896                                Depth, Used);
5897     break;
5898   }
5899 
5900   case Type::DependentAddressSpace: {
5901     const DependentAddressSpaceType *DependentASType =
5902         cast<DependentAddressSpaceType>(T);
5903     MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
5904                                OnlyDeduced, Depth, Used);
5905     MarkUsedTemplateParameters(Ctx,
5906                                DependentASType->getAddrSpaceExpr(),
5907                                OnlyDeduced, Depth, Used);
5908     break;
5909   }
5910 
5911   case Type::ConstantMatrix: {
5912     const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T);
5913     MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
5914                                Depth, Used);
5915     break;
5916   }
5917 
5918   case Type::DependentSizedMatrix: {
5919     const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T);
5920     MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
5921                                Depth, Used);
5922     MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth,
5923                                Used);
5924     MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced,
5925                                Depth, Used);
5926     break;
5927   }
5928 
5929   case Type::FunctionProto: {
5930     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
5931     MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
5932                                Used);
5933     for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
5934       // C++17 [temp.deduct.type]p5:
5935       //   The non-deduced contexts are: [...]
5936       //   -- A function parameter pack that does not occur at the end of the
5937       //      parameter-declaration-list.
5938       if (!OnlyDeduced || I + 1 == N ||
5939           !Proto->getParamType(I)->getAs<PackExpansionType>()) {
5940         MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
5941                                    Depth, Used);
5942       } else {
5943         // FIXME: C++17 [temp.deduct.call]p1:
5944         //   When a function parameter pack appears in a non-deduced context,
5945         //   the type of that pack is never deduced.
5946         //
5947         // We should also track a set of "never deduced" parameters, and
5948         // subtract that from the list of deduced parameters after marking.
5949       }
5950     }
5951     if (auto *E = Proto->getNoexceptExpr())
5952       MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
5953     break;
5954   }
5955 
5956   case Type::TemplateTypeParm: {
5957     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
5958     if (TTP->getDepth() == Depth)
5959       Used[TTP->getIndex()] = true;
5960     break;
5961   }
5962 
5963   case Type::SubstTemplateTypeParmPack: {
5964     const SubstTemplateTypeParmPackType *Subst
5965       = cast<SubstTemplateTypeParmPackType>(T);
5966     MarkUsedTemplateParameters(Ctx,
5967                                QualType(Subst->getReplacedParameter(), 0),
5968                                OnlyDeduced, Depth, Used);
5969     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
5970                                OnlyDeduced, Depth, Used);
5971     break;
5972   }
5973 
5974   case Type::InjectedClassName:
5975     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
5976     LLVM_FALLTHROUGH;
5977 
5978   case Type::TemplateSpecialization: {
5979     const TemplateSpecializationType *Spec
5980       = cast<TemplateSpecializationType>(T);
5981     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
5982                                Depth, Used);
5983 
5984     // C++0x [temp.deduct.type]p9:
5985     //   If the template argument list of P contains a pack expansion that is
5986     //   not the last template argument, the entire template argument list is a
5987     //   non-deduced context.
5988     if (OnlyDeduced &&
5989         hasPackExpansionBeforeEnd(Spec->template_arguments()))
5990       break;
5991 
5992     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5993       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5994                                  Used);
5995     break;
5996   }
5997 
5998   case Type::Complex:
5999     if (!OnlyDeduced)
6000       MarkUsedTemplateParameters(Ctx,
6001                                  cast<ComplexType>(T)->getElementType(),
6002                                  OnlyDeduced, Depth, Used);
6003     break;
6004 
6005   case Type::Atomic:
6006     if (!OnlyDeduced)
6007       MarkUsedTemplateParameters(Ctx,
6008                                  cast<AtomicType>(T)->getValueType(),
6009                                  OnlyDeduced, Depth, Used);
6010     break;
6011 
6012   case Type::DependentName:
6013     if (!OnlyDeduced)
6014       MarkUsedTemplateParameters(Ctx,
6015                                  cast<DependentNameType>(T)->getQualifier(),
6016                                  OnlyDeduced, Depth, Used);
6017     break;
6018 
6019   case Type::DependentTemplateSpecialization: {
6020     // C++14 [temp.deduct.type]p5:
6021     //   The non-deduced contexts are:
6022     //     -- The nested-name-specifier of a type that was specified using a
6023     //        qualified-id
6024     //
6025     // C++14 [temp.deduct.type]p6:
6026     //   When a type name is specified in a way that includes a non-deduced
6027     //   context, all of the types that comprise that type name are also
6028     //   non-deduced.
6029     if (OnlyDeduced)
6030       break;
6031 
6032     const DependentTemplateSpecializationType *Spec
6033       = cast<DependentTemplateSpecializationType>(T);
6034 
6035     MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
6036                                OnlyDeduced, Depth, Used);
6037 
6038     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
6039       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
6040                                  Used);
6041     break;
6042   }
6043 
6044   case Type::TypeOf:
6045     if (!OnlyDeduced)
6046       MarkUsedTemplateParameters(Ctx,
6047                                  cast<TypeOfType>(T)->getUnderlyingType(),
6048                                  OnlyDeduced, Depth, Used);
6049     break;
6050 
6051   case Type::TypeOfExpr:
6052     if (!OnlyDeduced)
6053       MarkUsedTemplateParameters(Ctx,
6054                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
6055                                  OnlyDeduced, Depth, Used);
6056     break;
6057 
6058   case Type::Decltype:
6059     if (!OnlyDeduced)
6060       MarkUsedTemplateParameters(Ctx,
6061                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
6062                                  OnlyDeduced, Depth, Used);
6063     break;
6064 
6065   case Type::UnaryTransform:
6066     if (!OnlyDeduced)
6067       MarkUsedTemplateParameters(Ctx,
6068                                  cast<UnaryTransformType>(T)->getUnderlyingType(),
6069                                  OnlyDeduced, Depth, Used);
6070     break;
6071 
6072   case Type::PackExpansion:
6073     MarkUsedTemplateParameters(Ctx,
6074                                cast<PackExpansionType>(T)->getPattern(),
6075                                OnlyDeduced, Depth, Used);
6076     break;
6077 
6078   case Type::Auto:
6079   case Type::DeducedTemplateSpecialization:
6080     MarkUsedTemplateParameters(Ctx,
6081                                cast<DeducedType>(T)->getDeducedType(),
6082                                OnlyDeduced, Depth, Used);
6083     break;
6084   case Type::DependentExtInt:
6085     MarkUsedTemplateParameters(Ctx,
6086                                cast<DependentExtIntType>(T)->getNumBitsExpr(),
6087                                OnlyDeduced, Depth, Used);
6088     break;
6089 
6090   // None of these types have any template parameters in them.
6091   case Type::Builtin:
6092   case Type::VariableArray:
6093   case Type::FunctionNoProto:
6094   case Type::Record:
6095   case Type::Enum:
6096   case Type::ObjCInterface:
6097   case Type::ObjCObject:
6098   case Type::ObjCObjectPointer:
6099   case Type::UnresolvedUsing:
6100   case Type::Pipe:
6101   case Type::ExtInt:
6102 #define TYPE(Class, Base)
6103 #define ABSTRACT_TYPE(Class, Base)
6104 #define DEPENDENT_TYPE(Class, Base)
6105 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6106 #include "clang/AST/TypeNodes.inc"
6107     break;
6108   }
6109 }
6110 
6111 /// Mark the template parameters that are used by this
6112 /// template argument.
6113 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)6114 MarkUsedTemplateParameters(ASTContext &Ctx,
6115                            const TemplateArgument &TemplateArg,
6116                            bool OnlyDeduced,
6117                            unsigned Depth,
6118                            llvm::SmallBitVector &Used) {
6119   switch (TemplateArg.getKind()) {
6120   case TemplateArgument::Null:
6121   case TemplateArgument::Integral:
6122   case TemplateArgument::Declaration:
6123     break;
6124 
6125   case TemplateArgument::NullPtr:
6126     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
6127                                Depth, Used);
6128     break;
6129 
6130   case TemplateArgument::Type:
6131     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
6132                                Depth, Used);
6133     break;
6134 
6135   case TemplateArgument::Template:
6136   case TemplateArgument::TemplateExpansion:
6137     MarkUsedTemplateParameters(Ctx,
6138                                TemplateArg.getAsTemplateOrTemplatePattern(),
6139                                OnlyDeduced, Depth, Used);
6140     break;
6141 
6142   case TemplateArgument::Expression:
6143     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
6144                                Depth, Used);
6145     break;
6146 
6147   case TemplateArgument::Pack:
6148     for (const auto &P : TemplateArg.pack_elements())
6149       MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
6150     break;
6151   }
6152 }
6153 
6154 /// Mark which template parameters are used in a given expression.
6155 ///
6156 /// \param E the expression from which template parameters will be deduced.
6157 ///
6158 /// \param Used a bit vector whose elements will be set to \c true
6159 /// to indicate when the corresponding template parameter will be
6160 /// deduced.
6161 void
MarkUsedTemplateParameters(const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)6162 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
6163                                  unsigned Depth,
6164                                  llvm::SmallBitVector &Used) {
6165   ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
6166 }
6167 
6168 /// Mark which template parameters can be deduced from a given
6169 /// template argument list.
6170 ///
6171 /// \param TemplateArgs the template argument list from which template
6172 /// parameters will be deduced.
6173 ///
6174 /// \param Used a bit vector whose elements will be set to \c true
6175 /// to indicate when the corresponding template parameter will be
6176 /// deduced.
6177 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)6178 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
6179                                  bool OnlyDeduced, unsigned Depth,
6180                                  llvm::SmallBitVector &Used) {
6181   // C++0x [temp.deduct.type]p9:
6182   //   If the template argument list of P contains a pack expansion that is not
6183   //   the last template argument, the entire template argument list is a
6184   //   non-deduced context.
6185   if (OnlyDeduced &&
6186       hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
6187     return;
6188 
6189   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6190     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
6191                                  Depth, Used);
6192 }
6193 
6194 /// Marks all of the template parameters that will be deduced by a
6195 /// call to the given function template.
MarkDeducedTemplateParameters(ASTContext & Ctx,const FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)6196 void Sema::MarkDeducedTemplateParameters(
6197     ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
6198     llvm::SmallBitVector &Deduced) {
6199   TemplateParameterList *TemplateParams
6200     = FunctionTemplate->getTemplateParameters();
6201   Deduced.clear();
6202   Deduced.resize(TemplateParams->size());
6203 
6204   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
6205   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
6206     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
6207                                  true, TemplateParams->getDepth(), Deduced);
6208 }
6209 
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)6210 bool hasDeducibleTemplateParameters(Sema &S,
6211                                     FunctionTemplateDecl *FunctionTemplate,
6212                                     QualType T) {
6213   if (!T->isDependentType())
6214     return false;
6215 
6216   TemplateParameterList *TemplateParams
6217     = FunctionTemplate->getTemplateParameters();
6218   llvm::SmallBitVector Deduced(TemplateParams->size());
6219   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
6220                                Deduced);
6221 
6222   return Deduced.any();
6223 }
6224