1#cython: boundscheck=False
2#cython: wraparound=False
3#cython: infer_types=True
4import numpy as np
5cimport numpy as np
6
7from tensorflow.python.util import compat
8
9def AppendBFloat16ArrayToTensorProto(
10    tensor_proto, np.ndarray[np.uint16_t, ndim=1] nparray):
11  cdef long i, n
12  n = nparray.size
13  for i in range(n):
14    tensor_proto.half_val.append(nparray[i])
15
16
17def AppendFloat16ArrayToTensorProto(
18    # For numpy, npy_half is a typedef for npy_uint16,
19    # see: https://github.com/numpy/numpy/blob/master/doc/source/reference/c-api.coremath.rst#half-precision-functions
20    # Because np.float16_t dosen't exist in cython, we use uint16_t here.
21    # TODO: Use np.float16_t when cython supports it.
22    tensor_proto, np.ndarray[np.uint16_t, ndim=1] nparray):
23  cdef long i, n
24  n = nparray.size
25  for i in range(n):
26    tensor_proto.half_val.append(nparray[i])
27
28
29def AppendFloat32ArrayToTensorProto(
30    tensor_proto, np.ndarray[np.float32_t, ndim=1] nparray):
31  cdef long i, n
32  n = nparray.size
33  for i in range(n):
34    tensor_proto.float_val.append(nparray[i])
35
36
37def AppendFloat64ArrayToTensorProto(
38    tensor_proto, np.ndarray[np.float64_t, ndim=1] nparray):
39  cdef long i, n
40  n = nparray.size
41  for i in range(n):
42    tensor_proto.double_val.append(nparray[i])
43
44
45def AppendInt32ArrayToTensorProto(
46    tensor_proto, np.ndarray[np.int32_t, ndim=1] nparray):
47  cdef long i, n
48  n = nparray.size
49  for i in range(n):
50    tensor_proto.int_val.append(nparray[i])
51
52def AppendUInt32ArrayToTensorProto(
53    tensor_proto, np.ndarray[np.uint32_t, ndim=1] nparray):
54  cdef long i, n
55  n = nparray.size
56  for i in range(n):
57    tensor_proto.uint32_val.append(nparray[i])
58
59def AppendInt64ArrayToTensorProto(
60    tensor_proto, np.ndarray[np.int64_t, ndim=1] nparray):
61  cdef long i, n
62  n = nparray.size
63  for i in range(n):
64    tensor_proto.int64_val.append(nparray[i])
65
66def AppendUInt64ArrayToTensorProto(
67    tensor_proto, np.ndarray[np.uint64_t, ndim=1] nparray):
68  cdef long i, n
69  n = nparray.size
70  for i in range(n):
71    tensor_proto.uint64_val.append(nparray[i])
72
73def AppendUInt8ArrayToTensorProto(
74    tensor_proto, np.ndarray[np.uint8_t, ndim=1] nparray):
75  cdef long i, n
76  n = nparray.size
77  for i in range(n):
78    tensor_proto.int_val.append(nparray[i])
79
80
81def AppendUInt16ArrayToTensorProto(
82    tensor_proto, np.ndarray[np.uint16_t, ndim=1] nparray):
83  cdef long i, n
84  n = nparray.size
85  for i in range(n):
86    tensor_proto.int_val.append(nparray[i])
87
88
89def AppendInt16ArrayToTensorProto(
90    tensor_proto, np.ndarray[np.int16_t, ndim=1] nparray):
91  cdef long i, n
92  n = nparray.size
93  for i in range(n):
94    tensor_proto.int_val.append(nparray[i])
95
96
97def AppendInt8ArrayToTensorProto(
98    tensor_proto, np.ndarray[np.int8_t, ndim=1] nparray):
99  cdef long i, n
100  n = nparray.size
101  for i in range(n):
102    tensor_proto.int_val.append(nparray[i])
103
104
105def AppendComplex64ArrayToTensorProto(
106    tensor_proto, np.ndarray[np.complex64_t, ndim=1] nparray):
107  cdef long i, n
108  n = nparray.size
109  for i in range(n):
110    tensor_proto.scomplex_val.append(nparray[i].real)
111    tensor_proto.scomplex_val.append(nparray[i].imag)
112
113
114def AppendComplex128ArrayToTensorProto(
115    tensor_proto, np.ndarray[np.complex128_t, ndim=1] nparray):
116  cdef long i, n
117  n = nparray.size
118  for i in range(n):
119    tensor_proto.dcomplex_val.append(nparray[i].real)
120    tensor_proto.dcomplex_val.append(nparray[i].imag)
121
122
123def AppendObjectArrayToTensorProto(tensor_proto, np.ndarray nparray):
124  cdef long i, n
125  n = nparray.size
126  for i in range(n):
127    tensor_proto.string_val.append(compat.as_bytes(nparray[i]))
128
129
130def AppendBoolArrayToTensorProto(tensor_proto, nparray):
131  cdef long i, n
132  n = nparray.size
133  for i in range(n):
134    tensor_proto.bool_val.append(nparray.item(i))
135