1 // Copyright 2014 The Chromium OS Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Internal implementation of brillo::Any class.
6 
7 #ifndef LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
8 #define LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
9 
10 #include <type_traits>
11 #include <typeinfo>
12 #include <utility>
13 
14 #include <base/logging.h>
15 #include <brillo/dbus/data_serialization.h>
16 #include <brillo/type_name_undecorate.h>
17 
18 namespace brillo {
19 
20 namespace internal_details {
21 
22 // An extension to std::is_convertible to allow conversion from an enum to
23 // an integral type which std::is_convertible does not indicate as supported.
24 template <typename From, typename To>
25 struct IsConvertible
26     : public std::integral_constant<
27           bool,
28           std::is_convertible<From, To>::value ||
29               (std::is_enum<From>::value && std::is_integral<To>::value)> {};
30 
31 // TryConvert is a helper function that does a safe compile-time conditional
32 // type cast between data types that may not be always convertible.
33 // From and To are the source and destination types.
34 // The function returns true if conversion was possible/successful.
35 template <typename From, typename To>
36 inline typename std::enable_if<IsConvertible<From, To>::value, bool>::type
TryConvert(const From & in,To * out)37 TryConvert(const From& in, To* out) {
38   *out = static_cast<To>(in);
39   return true;
40 }
41 template <typename From, typename To>
42 inline typename std::enable_if<!IsConvertible<From, To>::value, bool>::type
TryConvert(const From &,To *)43 TryConvert(const From& /* in */, To* /* out */) {
44   return false;
45 }
46 
47 //////////////////////////////////////////////////////////////////////////////
48 // Provide a way to compare values of unspecified types without compiler errors
49 // when no operator==() is provided for a given type. This is important to
50 // allow Any class to have operator==(), yet still allowing arbitrary types
51 // (not necessarily comparable) to be placed inside Any without resulting in
52 // compile-time error.
53 //
54 // We achieve this in two ways. First, we provide a IsEqualityComparable<T>
55 // class that can be used in compile-time conditions to determine if there is
56 // operator==() defined that takes values of type T (or which can be implicitly
57 // converted to type T). Secondly, this allows us to specialize a helper
58 // compare function EqCompare<T>(v1, v2) to use operator==() for types that
59 // are comparable, and just return false for those that are not.
60 //
61 // IsEqualityComparableHelper<T> is a helper class for implementing an
62 // an STL-compatible IsEqualityComparable<T> containing a Boolean member |value|
63 // which evaluates to true for comparable types and false otherwise.
64 template<typename T>
65 struct IsEqualityComparableHelper {
66   struct IntWrapper {
67     // A special structure that provides a constructor that takes an int.
68     // This way, an int argument passed to a function will be favored over
69     // IntWrapper when both overloads are provided.
70     // Also this constructor must NOT be explicit.
71     // NOLINTNEXTLINE(runtime/explicit)
72     // NOLINT: Allow implicit conversion from int.
IntWrapperIsEqualityComparableHelper::IntWrapper73     IntWrapper(int /* dummy */) {}  // do nothing, NOLINT
74   };
75 
76   // Here is an obscure trick to determine if a type U has operator==().
77   // We are providing two function prototypes for TriggerFunction. One that
78   // takes an argument of type IntWrapper (which is implicitly convertible from
79   // an int), and returns an std::false_type. This is a fall-back mechanism.
80   template<typename U>
81   static std::false_type TriggerFunction(IntWrapper dummy);
82 
83   // The second overload of TriggerFunction takes an int (explicitly) and
84   // returns std::true_type. If both overloads are available, this one will be
85   // chosen when referencing it as TriggerFunction(0), since it is a better
86   // (more specific) match.
87   //
88   // However this overload is available only for types that support operator==.
89   // This is achieved by employing SFINAE mechanism inside a template function
90   // overload that refers to operator==() for two values of types U&. This is
91   // used inside decltype(), so no actual code is executed. If the types
92   // are not comparable, reference to "==" would fail and the compiler will
93   // simply ignore this overload due to SFIANE.
94   //
95   // The final little trick used here is the reliance on operator comma inside
96   // the decltype() expression. The result of the expression is always
97   // std::true_type(). The expression on the left of comma is just evaluated and
98   // discarded. If it evaluates successfully (i.e. the type has operator==), the
99   // return value of the function is set to be std::true_value. If it fails,
100   // the whole function prototype is discarded and is not available in the
101   // IsEqualityComparableHelper<T> class.
102   //
103   // Here we use std::declval<U&>() to make sure we have operator==() that takes
104   // lvalue references to type U which is not necessarily default-constructible.
105   template<typename U>
106   static decltype((std::declval<U&>() == std::declval<U&>()), std::true_type())
107   TriggerFunction(int dummy);
108 
109   // Finally, use the return type of the overload of TriggerFunction that
110   // matches the argument (int) to be aliased to type |type|. If T is
111   // comparable, there will be two overloads and the more specific (int) will
112   // be chosen which returns std::true_value. If the type is non-comparable,
113   // there will be only one version of TriggerFunction available which
114   // returns std::false_value.
115   using type = decltype(TriggerFunction<T>(0));
116 };
117 
118 // IsEqualityComparable<T> is simply a class that derives from either
119 // std::true_value, if type T is comparable, or from std::false_value, if the
120 // type is non-comparable. We just use |type| alias from
121 // IsEqualityComparableHelper<T> as the base class.
122 template<typename T>
123 struct IsEqualityComparable : IsEqualityComparableHelper<T>::type {};
124 
125 // EqCompare() overload for non-comparable types. Always returns false.
126 template<typename T>
127 inline typename std::enable_if<!IsEqualityComparable<T>::value, bool>::type
EqCompare(const T &,const T &)128 EqCompare(const T& /* v1 */, const T& /* v2 */) {
129   return false;
130 }
131 
132 // EqCompare overload for comparable types. Calls operator==(v1, v2) to compare.
133 template<typename T>
134 inline typename std::enable_if<IsEqualityComparable<T>::value, bool>::type
EqCompare(const T & v1,const T & v2)135 EqCompare(const T& v1, const T& v2) {
136   return (v1 == v2);
137 }
138 
139 //////////////////////////////////////////////////////////////////////////////
140 
141 class Buffer;  // Forward declaration of data buffer container.
142 
143 // Abstract base class for contained variant data.
144 struct Data {
~DataData145   virtual ~Data() {}
146   // Returns the type tag (name) for the contained data.
147   virtual const char* GetTypeTag() const = 0;
148   // Copies the contained data to the output |buffer|.
149   virtual void CopyTo(Buffer* buffer) const = 0;
150   // Moves the contained data to the output |buffer|.
151   virtual void MoveTo(Buffer* buffer) = 0;
152   // Checks if the contained data is an integer type (not necessarily an 'int').
153   virtual bool IsConvertibleToInteger() const = 0;
154   // Gets the contained integral value as an integer.
155   virtual intmax_t GetAsInteger() const = 0;
156   // Writes the contained value to the D-Bus message buffer.
157   virtual void AppendToDBusMessage(::dbus::MessageWriter* writer) const = 0;
158   // Compares if the two data containers have objects of the same value.
159   virtual bool CompareEqual(const Data* other_data) const = 0;
160 };
161 
162 // Concrete implementation of variant data of type T.
163 template<typename T>
164 struct TypedData : public Data {
TypedDataTypedData165   explicit TypedData(const T& value) : value_(value) {}
166   // NOLINTNEXTLINE(build/c++11)
TypedDataTypedData167   explicit TypedData(T&& value) : value_(std::move(value)) {}
168 
GetTypeTagTypedData169   const char* GetTypeTag() const override { return brillo::GetTypeTag<T>(); }
170   void CopyTo(Buffer* buffer) const override;
171   void MoveTo(Buffer* buffer) override;
IsConvertibleToIntegerTypedData172   bool IsConvertibleToInteger() const override {
173     return std::is_integral<T>::value || std::is_enum<T>::value;
174   }
GetAsIntegerTypedData175   intmax_t GetAsInteger() const override {
176     intmax_t int_val = 0;
177     bool converted = TryConvert(value_, &int_val);
178     CHECK(converted) << "Unable to convert value of type '"
179                      << GetUndecoratedTypeName<T>() << "' to integer";
180     return int_val;
181   }
182 
183   template <typename U>
184   static typename std::enable_if<dbus_utils::IsTypeSupported<U>::value>::type
AppendValueHelperTypedData185   AppendValueHelper(::dbus::MessageWriter* writer, const U& value) {
186     brillo::dbus_utils::AppendValueToWriterAsVariant(writer, value);
187   }
188   template <typename U>
189   static typename std::enable_if<!dbus_utils::IsTypeSupported<U>::value>::type
AppendValueHelperTypedData190   AppendValueHelper(::dbus::MessageWriter* /* writer */, const U& /* value */) {
191     LOG(FATAL) << "Type '" << GetUndecoratedTypeName<U>()
192                << "' is not supported by D-Bus";
193   }
194 
AppendToDBusMessageTypedData195   void AppendToDBusMessage(::dbus::MessageWriter* writer) const override {
196     return AppendValueHelper(writer, value_);
197   }
198 
CompareEqualTypedData199   bool CompareEqual(const Data* other_data) const override {
200     return EqCompare<T>(value_,
201                         static_cast<const TypedData<T>*>(other_data)->value_);
202   }
203 
204   // Special methods to copy/move data of the same type
205   // without reallocating the buffer.
FastAssignTypedData206   void FastAssign(const T& source) { value_ = source; }
207   // NOLINTNEXTLINE(build/c++11)
FastAssignTypedData208   void FastAssign(T&& source) { value_ = std::move(source); }
209 
210   T value_;
211 };
212 
213 // Buffer class that stores the contained variant data.
214 // To improve performance and reduce memory fragmentation, small variants
215 // are stored in pre-allocated memory buffers that are part of the Any class.
216 // If the memory requirements are larger than the set limit or the type is
217 // non-trivially copyable, then the contained class is allocated in a separate
218 // memory block and the pointer to that memory is contained within this memory
219 // buffer class.
220 class Buffer final {
221  public:
222   enum StorageType { kExternal, kContained };
Buffer()223   Buffer() : external_ptr_(nullptr), storage_(kExternal) {}
~Buffer()224   ~Buffer() { Clear(); }
225 
Buffer(const Buffer & rhs)226   Buffer(const Buffer& rhs) : Buffer() { rhs.CopyTo(this); }
227   // NOLINTNEXTLINE(build/c++11)
Buffer(Buffer && rhs)228   Buffer(Buffer&& rhs) : Buffer() { rhs.MoveTo(this); }
229   Buffer& operator=(const Buffer& rhs) {
230     rhs.CopyTo(this);
231     return *this;
232   }
233   // NOLINTNEXTLINE(build/c++11)
234   Buffer& operator=(Buffer&& rhs) {
235     rhs.MoveTo(this);
236     return *this;
237   }
238 
239   // Returns the underlying pointer to contained data. Uses either the pointer
240   // or the raw data depending on |storage_| type.
GetDataPtr()241   inline Data* GetDataPtr() {
242     return (storage_ == kExternal) ? external_ptr_
243                                    : reinterpret_cast<Data*>(contained_buffer_);
244   }
GetDataPtr()245   inline const Data* GetDataPtr() const {
246     return (storage_ == kExternal)
247                ? external_ptr_
248                : reinterpret_cast<const Data*>(contained_buffer_);
249   }
250 
251   // Destroys the contained object (and frees memory if needed).
Clear()252   void Clear() {
253     Data* data = GetDataPtr();
254     if (storage_ == kExternal) {
255       delete data;
256     } else {
257       // Call the destructor manually, since the object was constructed inline
258       // in the pre-allocated buffer. We still need to call the destructor
259       // to free any associated resources, but we can't call delete |data| here.
260       data->~Data();
261     }
262     external_ptr_ = nullptr;
263     storage_ = kExternal;
264   }
265 
266   // Stores a value of type T.
267   template<typename T>
Assign(T && value)268   void Assign(T&& value) {  // NOLINT(build/c++11)
269     using Type = typename std::decay<T>::type;
270     using DataType = TypedData<Type>;
271     Data* ptr = GetDataPtr();
272     if (ptr && strcmp(ptr->GetTypeTag(), GetTypeTag<Type>()) == 0) {
273       // We assign the data to the variant container, which already
274       // has the data of the same type. Do fast copy/move with no memory
275       // reallocation.
276       DataType* typed_ptr = static_cast<DataType*>(ptr);
277       // NOLINTNEXTLINE(build/c++11)
278       typed_ptr->FastAssign(std::forward<T>(value));
279     } else {
280       Clear();
281       // TODO(avakulenko): [see crbug.com/379833]
282       // Unfortunately, GCC doesn't support std::is_trivially_copyable<T> yet,
283       // so using std::is_trivial instead, which is a bit more restrictive.
284       // Once GCC has support for is_trivially_copyable, update the following.
285       if (!std::is_trivial<Type>::value ||
286           sizeof(DataType) > sizeof(contained_buffer_)) {
287         // If it is too big or not trivially copyable, allocate it separately.
288         // NOLINTNEXTLINE(build/c++11)
289         external_ptr_ = new DataType(std::forward<T>(value));
290         storage_ = kExternal;
291       } else {
292         // Otherwise just use the pre-allocated buffer.
293         DataType* address = reinterpret_cast<DataType*>(contained_buffer_);
294         // Make sure we still call the copy/move constructor.
295         // Call the constructor manually by using placement 'new'.
296         // NOLINTNEXTLINE(build/c++11)
297         new (address) DataType(std::forward<T>(value));
298         storage_ = kContained;
299       }
300     }
301   }
302 
303   // Helper methods to retrieve a reference to contained data.
304   // These assume that type checking has already been performed by Any
305   // so the type cast is valid and will succeed.
306   template<typename T>
GetData()307   const T& GetData() const {
308     using DataType = internal_details::TypedData<typename std::decay<T>::type>;
309     return static_cast<const DataType*>(GetDataPtr())->value_;
310   }
311   template<typename T>
GetData()312   T& GetData() {
313     using DataType = internal_details::TypedData<typename std::decay<T>::type>;
314     return static_cast<DataType*>(GetDataPtr())->value_;
315   }
316 
317   // Returns true if the buffer has no contained data.
IsEmpty()318   bool IsEmpty() const {
319     return (storage_ == kExternal && external_ptr_ == nullptr);
320   }
321 
322   // Copies the data from the current buffer into the |destination|.
CopyTo(Buffer * destination)323   void CopyTo(Buffer* destination) const {
324     if (IsEmpty()) {
325       destination->Clear();
326     } else {
327       GetDataPtr()->CopyTo(destination);
328     }
329   }
330 
331   // Moves the data from the current buffer into the |destination|.
MoveTo(Buffer * destination)332   void MoveTo(Buffer* destination) {
333     if (IsEmpty()) {
334       destination->Clear();
335     } else {
336       if (storage_ == kExternal) {
337         destination->Clear();
338         destination->storage_ = kExternal;
339         destination->external_ptr_ = external_ptr_;
340         external_ptr_ = nullptr;
341       } else {
342         GetDataPtr()->MoveTo(destination);
343       }
344     }
345   }
346 
347   union {
348     // |external_ptr_| is a pointer to a larger object allocated in
349     // a separate memory block.
350     Data* external_ptr_;
351     // |contained_buffer_| is a pre-allocated buffer for smaller/simple objects.
352     // Pre-allocate enough memory to store objects as big as "double".
353     unsigned char contained_buffer_[sizeof(TypedData<double>)];
354   };
355   // Depending on a value of |storage_|, either |external_ptr_| or
356   // |contained_buffer_| above is used to get a pointer to memory containing
357   // the variant data.
358   StorageType storage_;  // Declare after the union to eliminate member padding.
359 };
360 
361 template <typename T>
CopyTo(Buffer * buffer)362 void TypedData<T>::CopyTo(Buffer* buffer) const {
363   buffer->Assign(value_);
364 }
365 template <typename T>
MoveTo(Buffer * buffer)366 void TypedData<T>::MoveTo(Buffer* buffer) {
367   buffer->Assign(std::move(value_));
368 }
369 
370 }  // namespace internal_details
371 
372 }  // namespace brillo
373 
374 #endif  // LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
375