1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/lite/delegates/flex/buffer_map.h"
16 
17 #include "tensorflow/c/c_api_internal.h"
18 #include "tensorflow/core/framework/allocation_description.pb.h"
19 #include "tensorflow/core/framework/log_memory.h"
20 #include "tensorflow/core/framework/typed_allocator.h"
21 #include "tensorflow/lite/delegates/flex/util.h"
22 #include "tensorflow/lite/string_type.h"
23 #include "tensorflow/lite/string_util.h"
24 
25 namespace tflite {
26 namespace flex {
27 namespace {
28 // A tensor buffer that is allocated, deallocated and populated by TF Lite.
29 class BaseTfLiteTensorBuffer : public tensorflow::TensorBuffer {
30   using tensorflow::TensorBuffer::TensorBuffer;
31 
root_buffer()32   TensorBuffer* root_buffer() override { return this; }
FillAllocationDescription(tensorflow::AllocationDescription * proto) const33   void FillAllocationDescription(
34       tensorflow::AllocationDescription* proto) const override {
35     tensorflow::int64 rb = size();
36     proto->set_requested_bytes(rb);
37     proto->set_allocator_name(tensorflow::cpu_allocator()->Name());
38   }
39 
40   // Prevents input forwarding from mutating this buffer.
OwnsMemory() const41   bool OwnsMemory() const override { return false; }
42 
43  protected:
LogAllocation()44   void LogAllocation() {
45     if (tensorflow::LogMemory::IsEnabled() && data() != nullptr) {
46       tensorflow::LogMemory::RecordRawAllocation(
47           "TfLiteTensorBuffer_New",
48           tensorflow::LogMemory::EXTERNAL_TENSOR_ALLOCATION_STEP_ID, size(),
49           data(), tensorflow::cpu_allocator());
50     }
51   }
LogDeallocation()52   void LogDeallocation() {
53     if (tensorflow::LogMemory::IsEnabled() && data() != nullptr) {
54       tensorflow::LogMemory::RecordRawDeallocation(
55           "TfLiteTensorBuffer_Delete",
56           tensorflow::LogMemory::EXTERNAL_TENSOR_ALLOCATION_STEP_ID, data(),
57           tensorflow::cpu_allocator(), false);
58     }
59   }
60 };
61 
62 // A tensor buffer for most data types. Numeric types have exactly the same
63 // representation in TFLITE and TF, so we just need use memcpy().
64 class TfLiteTensorBuffer : public BaseTfLiteTensorBuffer {
65  public:
TfLiteTensorBuffer(const TfLiteTensor * tensor)66   explicit TfLiteTensorBuffer(const TfLiteTensor* tensor)
67       : BaseTfLiteTensorBuffer(tensorflow::cpu_allocator()->AllocateRaw(
68             EIGEN_MAX_ALIGN_BYTES, tensor->bytes)) {
69     // TODO(ahentz): if we can guarantee that TF Lite allocated tensors with
70     // the same alignment as TensorFlow (EIGEN_MAX_ALIGN_BYTES), then we can
71     // potentially eliminate the copy below.
72     len_ = tensor->bytes;
73 
74     LogAllocation();
75 
76     if (data()) {
77       std::memcpy(data(), tensor->data.raw, tensor->bytes);
78     }
79   }
80 
~TfLiteTensorBuffer()81   ~TfLiteTensorBuffer() override {
82     LogDeallocation();
83     tensorflow::cpu_allocator()->DeallocateRaw(data());
84   }
85 
size() const86   size_t size() const override { return len_; }
87 
88  private:
89   size_t len_;
90 };
91 
92 // A string buffer. TFLITE string tensor format is different than
93 // TF's so we need perform the conversion here.
94 class StringTfLiteTensorBuffer : public BaseTfLiteTensorBuffer {
95  public:
StringTfLiteTensorBuffer(const TfLiteTensor * tensor)96   explicit StringTfLiteTensorBuffer(const TfLiteTensor* tensor)
97       : StringTfLiteTensorBuffer(
98             tensor, tensor->data.raw != nullptr ? GetStringCount(tensor) : 0) {}
99 
~StringTfLiteTensorBuffer()100   ~StringTfLiteTensorBuffer() override {
101     LogDeallocation();
102     tensorflow::TypedAllocator::Deallocate<tensorflow::tstring>(
103         tensorflow::cpu_allocator(), static_cast<tensorflow::tstring*>(data()),
104         num_strings_);
105   }
106 
size() const107   size_t size() const override {
108     return num_strings_ * sizeof(tensorflow::tstring);
109   }
110 
111  private:
StringTfLiteTensorBuffer(const TfLiteTensor * tensor,int num_strings)112   StringTfLiteTensorBuffer(const TfLiteTensor* tensor, int num_strings)
113       : BaseTfLiteTensorBuffer(
114             num_strings != 0
115                 ? tensorflow::TypedAllocator::Allocate<tensorflow::tstring>(
116                       tensorflow::cpu_allocator(), num_strings,
117                       tensorflow::AllocationAttributes())
118                 : nullptr),
119         num_strings_(num_strings) {
120     LogAllocation();
121 
122     if (data()) {
123       tensorflow::tstring* p = static_cast<tensorflow::tstring*>(data());
124       for (size_t i = 0; i < num_strings_; ++p, ++i) {
125         auto ref = GetString(tensor, i);
126         p->assign(ref.str, ref.len);
127       }
128     }
129   }
130 
131   int num_strings_;
132 };
133 
134 }  // namespace
135 
BufferMap()136 BufferMap::BufferMap() {}
137 
~BufferMap()138 BufferMap::~BufferMap() {}
139 
HasTensor(int tensor_index) const140 bool BufferMap::HasTensor(int tensor_index) const {
141   return id_to_tensor_.count(tensor_index) != 0;
142 }
143 
IsTensorFlowTensor(int tensor_index) const144 bool BufferMap::IsTensorFlowTensor(int tensor_index) const {
145   return HasTensor(tensor_index) && owned_by_tf_.count(tensor_index) > 0;
146 }
147 
GetTensor(int tensor_index) const148 tensorflow::Tensor BufferMap::GetTensor(int tensor_index) const {
149   return id_to_tensor_.at(tensor_index);
150 }
151 
GetTensorPtr(int tensor_index) const152 const tensorflow::Tensor* BufferMap::GetTensorPtr(int tensor_index) const {
153   auto& tensor = id_to_tensor_.at(tensor_index);
154   return &tensor;
155 }
156 
SetFromTfLite(int tensor_index,const TfLiteTensor * tensor)157 void BufferMap::SetFromTfLite(int tensor_index, const TfLiteTensor* tensor) {
158   tensorflow::TensorShape shape;
159   int num_dims = tensor->dims->size;
160   for (int i = 0; i < num_dims; ++i) {
161     shape.AddDim(tensor->dims->data[i]);
162   }
163   // TODO(ahentz): we assume this is a new tensor and allocate a new buffer
164   // for it. This is not always the best approach. For example, this might
165   // be a reallocation after resizing tensors. In that case it would be
166   // preferable to somehow reuse the buffer.
167   BaseTfLiteTensorBuffer* buf;
168   if (tensor->type == kTfLiteString) {
169     buf = new StringTfLiteTensorBuffer(tensor);
170   } else {
171     buf = new TfLiteTensorBuffer(tensor);
172   }
173   tensorflow::Tensor t = tensorflow::TensorCApi::MakeTensor(
174       GetTensorFlowDataType(tensor->type), shape, buf);
175   buf->Unref();
176 
177   id_to_tensor_[tensor_index] = std::move(t);
178   owned_by_tf_.erase(tensor_index);
179 }
180 
SetFromTensorFlow(int tensor_index,tensorflow::Tensor tensor)181 void BufferMap::SetFromTensorFlow(int tensor_index, tensorflow::Tensor tensor) {
182   id_to_tensor_[tensor_index] = std::move(tensor);
183   owned_by_tf_.insert(tensor_index);
184 }
185 
186 }  // namespace flex
187 }  // namespace tflite
188