1 /*
2  *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "rtc_base/timestamp_aligner.h"
12 
13 #include <cstdlib>
14 #include <limits>
15 
16 #include "rtc_base/checks.h"
17 #include "rtc_base/logging.h"
18 #include "rtc_base/time_utils.h"
19 
20 namespace rtc {
21 
TimestampAligner()22 TimestampAligner::TimestampAligner()
23     : frames_seen_(0),
24       offset_us_(0),
25       clip_bias_us_(0),
26       prev_translated_time_us_(std::numeric_limits<int64_t>::min()),
27       prev_time_offset_us_(0) {}
28 
~TimestampAligner()29 TimestampAligner::~TimestampAligner() {}
30 
TranslateTimestamp(int64_t capturer_time_us,int64_t system_time_us)31 int64_t TimestampAligner::TranslateTimestamp(int64_t capturer_time_us,
32                                              int64_t system_time_us) {
33   const int64_t translated_timestamp = ClipTimestamp(
34       capturer_time_us + UpdateOffset(capturer_time_us, system_time_us),
35       system_time_us);
36   prev_time_offset_us_ = translated_timestamp - capturer_time_us;
37   return translated_timestamp;
38 }
39 
TranslateTimestamp(int64_t capturer_time_us) const40 int64_t TimestampAligner::TranslateTimestamp(int64_t capturer_time_us) const {
41   return capturer_time_us + prev_time_offset_us_;
42 }
43 
UpdateOffset(int64_t capturer_time_us,int64_t system_time_us)44 int64_t TimestampAligner::UpdateOffset(int64_t capturer_time_us,
45                                        int64_t system_time_us) {
46   // Estimate the offset between system monotonic time and the capturer's
47   // time. The capturer is assumed to provide more
48   // accurate timestamps than we get from the system time. But the
49   // capturer may use its own free-running clock with a large offset and
50   // a small drift compared to the system clock. So the model is
51   // basically
52   //
53   //   y_k = c_0 + c_1 * x_k + v_k
54   //
55   // where x_k is the capturer's timestamp, believed to be accurate in its
56   // own scale. y_k is our reading of the system clock. v_k is the
57   // measurement noise, i.e., the delay from frame capture until the
58   // system clock was read.
59   //
60   // It's possible to do (weighted) least-squares estimation of both
61   // c_0 and c_1. Then we get the constants as c_1 = Cov(x,y) /
62   // Var(x), and c_0 = mean(y) - c_1 * mean(x). Substituting this c_0,
63   // we can rearrange the model as
64   //
65   //   y_k = mean(y) + (x_k - mean(x)) + (c_1 - 1) * (x_k - mean(x)) + v_k
66   //
67   // Now if we use a weighted average which gradually forgets old
68   // values, x_k - mean(x) is bounded, of the same order as the time
69   // constant (and close to constant for a steady frame rate). In
70   // addition, the frequency error |c_1 - 1| should be small. Cameras
71   // with a frequency error up to 3000 ppm (3 ms drift per second)
72   // have been observed, but frequency errors below 100 ppm could be
73   // expected of any cheap crystal.
74   //
75   // Bottom line is that we ignore the c_1 term, and use only the estimator
76   //
77   //    x_k + mean(y-x)
78   //
79   // where mean is plain averaging for initial samples, followed by
80   // exponential averaging.
81 
82   // The input for averaging, y_k - x_k in the above notation.
83   int64_t diff_us = system_time_us - capturer_time_us;
84   // The deviation from the current average.
85   int64_t error_us = diff_us - offset_us_;
86 
87   // If the current difference is far from the currently estimated
88   // offset, the filter is reset. This could happen, e.g., if the
89   // capturer's clock is reset, cameras are plugged in and out, or
90   // the application process is temporarily suspended. Expected to
91   // happen for the very first timestamp (|frames_seen_| = 0). The
92   // threshold of 300 ms should make this unlikely in normal
93   // operation, and at the same time, converging gradually rather than
94   // resetting the filter should be tolerable for jumps in capturer's time
95   // below this threshold.
96   static const int64_t kResetThresholdUs = 300000;
97   if (std::abs(error_us) > kResetThresholdUs) {
98     RTC_LOG(LS_INFO) << "Resetting timestamp translation after averaging "
99                      << frames_seen_ << " frames. Old offset: " << offset_us_
100                      << ", new offset: " << diff_us;
101     frames_seen_ = 0;
102     clip_bias_us_ = 0;
103   }
104 
105   static const int kWindowSize = 100;
106   if (frames_seen_ < kWindowSize) {
107     ++frames_seen_;
108   }
109   offset_us_ += error_us / frames_seen_;
110   return offset_us_;
111 }
112 
ClipTimestamp(int64_t filtered_time_us,int64_t system_time_us)113 int64_t TimestampAligner::ClipTimestamp(int64_t filtered_time_us,
114                                         int64_t system_time_us) {
115   const int64_t kMinFrameIntervalUs = rtc::kNumMicrosecsPerMillisec;
116   // Clip to make sure we don't produce timestamps in the future.
117   int64_t time_us = filtered_time_us - clip_bias_us_;
118   if (time_us > system_time_us) {
119     clip_bias_us_ += time_us - system_time_us;
120     time_us = system_time_us;
121   }
122   // Make timestamps monotonic, with a minimum inter-frame interval of 1 ms.
123   else if (time_us < prev_translated_time_us_ + kMinFrameIntervalUs) {
124     time_us = prev_translated_time_us_ + kMinFrameIntervalUs;
125     if (time_us > system_time_us) {
126       // In the anomalous case that this function is called with values of
127       // |system_time_us| less than |kMinFrameIntervalUs| apart, we may output
128       // timestamps with with too short inter-frame interval. We may even return
129       // duplicate timestamps in case this function is called several times with
130       // exactly the same |system_time_us|.
131       RTC_LOG(LS_WARNING) << "too short translated timestamp interval: "
132                              "system time (us) = "
133                           << system_time_us << ", interval (us) = "
134                           << system_time_us - prev_translated_time_us_;
135       time_us = system_time_us;
136     }
137   }
138   RTC_DCHECK_GE(time_us, prev_translated_time_us_);
139   RTC_DCHECK_LE(time_us, system_time_us);
140   prev_translated_time_us_ = time_us;
141   return time_us;
142 }
143 
144 }  // namespace rtc
145