1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/compiler/xla/service/compile_only_service.h"
17 
18 #include <string>
19 #include <utility>
20 #include <vector>
21 
22 #include "absl/strings/str_cat.h"
23 #include "tensorflow/compiler/xla/debug_options_flags.h"
24 #include "tensorflow/compiler/xla/service/backend.h"
25 #include "tensorflow/compiler/xla/service/computation_layout.h"
26 #include "tensorflow/compiler/xla/service/dump.h"
27 #include "tensorflow/compiler/xla/service/platform_util.h"
28 #include "tensorflow/compiler/xla/status_macros.h"
29 #include "tensorflow/compiler/xla/types.h"
30 #include "tensorflow/compiler/xla/util.h"
31 #include "tensorflow/core/lib/gtl/cleanup.h"
32 #include "tensorflow/core/lib/io/path.h"
33 #include "tensorflow/core/platform/host_info.h"
34 #include "tensorflow/core/platform/logging.h"
35 #include "tensorflow/core/platform/stream_executor_no_cuda.h"
36 
37 namespace xla {
38 
39 /* static */ StatusOr<std::unique_ptr<CompileOnlyService>>
NewService(se::Platform * platform)40 CompileOnlyService::NewService(se::Platform* platform) {
41   ServiceOptions default_options;
42   default_options.set_platform(platform);
43   return NewService(default_options);
44 }
45 
46 /* static */ StatusOr<std::unique_ptr<CompileOnlyService>>
NewService(const ServiceOptions & options)47 CompileOnlyService::NewService(const ServiceOptions& options) {
48   se::Platform* platform = options.platform();
49   if (platform == nullptr) {
50     TF_ASSIGN_OR_RETURN(platform, PlatformUtil::GetDefaultPlatform());
51   }
52 
53   TF_ASSIGN_OR_RETURN(auto compiler, Compiler::GetForPlatform(platform));
54 
55   std::unique_ptr<CompileOnlyService> service(
56       new CompileOnlyService(options, compiler));
57   return std::move(service);
58 }
59 
CompileOnlyService(const ServiceOptions & options,Compiler * compiler)60 CompileOnlyService::CompileOnlyService(const ServiceOptions& options,
61                                        Compiler* compiler)
62     : Service(options, /*execute_backend=*/nullptr), compiler_(compiler) {}
63 
64 StatusOr<std::vector<std::unique_ptr<AotCompilationResult>>>
CompileAheadOfTime(const absl::Span<const AotXlaComputationInstance> computations,const AotCompilationOptions & options,std::unique_ptr<AotCompilationMetadata> * metadata)65 CompileOnlyService::CompileAheadOfTime(
66     const absl::Span<const AotXlaComputationInstance> computations,
67     const AotCompilationOptions& options,
68     std::unique_ptr<AotCompilationMetadata>* metadata) {
69   std::vector<std::unique_ptr<HloModule>> hlo_modules;
70 
71   const DebugOptions& debug_options = options.debug_options();
72   ExecutionOptions execution_options;
73   *execution_options.mutable_debug_options() = debug_options;
74   // Capture replica_count, num_cores, and device_assignment in ExecutionOptions
75   // to later save in a proto dump.
76   if (options.replica_count() > 0) {
77     execution_options.set_num_replicas(options.replica_count());
78     if (options.has_static_device_assignment()) {
79       CHECK_EQ(options.replica_count(),
80                options.static_device_assignment().replica_count());
81     }
82   }
83   if (options.num_cores() > 0) {
84     execution_options.set_num_partitions(options.num_cores());
85     if (options.has_static_device_assignment()) {
86       CHECK_EQ(options.num_cores(),
87                options.static_device_assignment().computation_count());
88     }
89   }
90   if (options.has_static_device_assignment()) {
91     TF_RETURN_IF_ERROR(options.static_device_assignment().Serialize(
92         execution_options.mutable_device_assignment()));
93   }
94   execution_options.set_use_spmd_partitioning(options.use_spmd_partitioning());
95   execution_options.set_deduplicate_hlo(options.deduplicate_hlo());
96   execution_options.set_broadcast_replicated_parameters_via_collectives(
97       options.broadcast_replicated_params());
98   for (const AotXlaComputationInstance& instance : computations) {
99     TF_RET_CHECK(instance.computation.has_host_program_shape());
100     *execution_options.mutable_shape_with_output_layout() =
101         instance.result_layout->ToProto();
102 
103     TF_ASSIGN_OR_RETURN(
104         std::unique_ptr<HloModuleConfig> module_config,
105         CreateModuleConfig(
106             ProgramShape(instance.computation.host_program_shape()),
107             instance.argument_layouts, &execution_options, &options));
108 
109     TF_ASSIGN_OR_RETURN(
110         std::unique_ptr<HloModule> hlo_module,
111         HloModule::CreateFromProto(instance.computation, *module_config));
112     DumpHloModuleIfEnabled(*hlo_module, "before_optimizations");
113     hlo_modules.push_back(std::move(hlo_module));
114   }
115 
116   execution_options.clear_shape_with_output_layout();
117   DumpExecutionOptions(execution_options, debug_options);
118 
119   return compiler_->CompileAheadOfTime(
120       absl::make_unique<HloModuleGroup>(hlo_modules[0]->name(),
121                                         absl::MakeSpan(hlo_modules)),
122       options, metadata);
123 }
124 
125 }  // namespace xla
126