1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/compiler/xla/service/hlo_memory_scheduler.h"
17 
18 #include <algorithm>
19 #include <limits>
20 #include <map>
21 #include <queue>
22 #include <utility>
23 #include <vector>
24 
25 #include "absl/container/flat_hash_map.h"
26 #include "absl/container/flat_hash_set.h"
27 #include "tensorflow/compiler/xla/service/dfs_hlo_visitor_with_default.h"
28 #include "tensorflow/compiler/xla/service/heap_simulator.h"
29 #include "tensorflow/compiler/xla/service/hlo_computation.h"
30 #include "tensorflow/compiler/xla/service/hlo_opcode.h"
31 #include "tensorflow/compiler/xla/service/hlo_schedule.h"
32 #include "tensorflow/compiler/xla/service/tuple_points_to_analysis.h"
33 #include "tensorflow/compiler/xla/shape_util.h"
34 #include "tensorflow/compiler/xla/status_macros.h"
35 #include "tensorflow/compiler/xla/statusor.h"
36 #include "tensorflow/compiler/xla/types.h"
37 #include "tensorflow/compiler/xla/util.h"
38 #include "tensorflow/core/lib/core/errors.h"
39 #include "tensorflow/core/lib/gtl/map_util.h"
40 #include "tensorflow/core/platform/logging.h"
41 
42 namespace xla {
43 namespace {
44 
45 using ::tensorflow::strings::HumanReadableNumBytes;
46 
47 // Class implementing a list scheduler of HLO instructions which produces a
48 // sequence which minimizes memory usage by preferring to schedule the node that
49 // frees bigger buffer and defines smaller outputs.
50 //
51 // Note that list scheduler is a greedy algorithm which cannot guarantee a
52 // global optimal solution. As a counterexample, considering the following
53 // graph:
54 //
55 //      +--> B ===> C -------+
56 // A -> |                    |
57 //      |                    v
58 //      +--> D ---> F=======>G
59 //      |           ^
60 //      |           |
61 //      +--> E -----+
62 //
63 //  --> : Buffer with size 1
64 //  ==> : Buffer with size 2
65 //
66 // The list scheduler will always try to defer scheduling B in a greedy way
67 // since its output buffer is bigger than input. The sequence it creates will
68 // be:
69 //   A D E F B C G
70 // , which has a maximum memory usage of 6 (B is alive while F is executing).
71 //
72 // An optimal way to schedule the previous graph is:
73 //   A B C D E F G
74 // , which has a maximum memory usage of 5 (when F is executing).
75 //
76 class ListScheduler {
77  public:
78   // Construct and return a memory-minimizing sequence of HLO instructions
79   // containing the given HLO computation.
Run(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation)80   static StatusOr<HloInstructionSequence> Run(
81       HloComputation* computation,
82       const TuplePointsToAnalysis& points_to_analysis,
83       const BufferValue::SizeFunction& size_function,
84       const absl::flat_hash_map<const HloComputation*, int64>&
85           memory_by_computation) {
86     ListScheduler scheduler(computation, points_to_analysis, size_function,
87                             memory_by_computation);
88     return scheduler.CreateSchedule();
89   }
90 
91   // Returns whether the memory used by the given HLO should be ignored by the
92   // scheduling heuristic.
IgnoreInstruction(const HloInstruction & instruction)93   static bool IgnoreInstruction(const HloInstruction& instruction) {
94     return instruction.opcode() == HloOpcode::kParameter ||
95            instruction.opcode() == HloOpcode::kConstant;
96   }
97 
98  private:
99   // The scheduling priority of an instruction is first the number of bytes
100   // freed by scheduling the instruction, and second (tie-breaker) by the number
101   // of users. This is represented as a std::pair containing these two values
102   // (first element is the bytes freed). std::pair provides the necessary
103   // comparison operators.
104   using Priority = std::pair<int64, int64>;
105 
ListScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation)106   ListScheduler(HloComputation* computation,
107                 const TuplePointsToAnalysis& points_to_analysis,
108                 const BufferValue::SizeFunction& size_function,
109                 const absl::flat_hash_map<const HloComputation*, int64>&
110                     memory_by_computation)
111       : computation_(computation),
112         points_to_analysis_(points_to_analysis),
113         size_function_(size_function),
114         memory_by_computation_(memory_by_computation) {
115     // Create a map containing the LogicalBuffer uses for each HLO
116     // instruction. An HLO instruction "uses" a LogicalBuffer if the
117     // LogicalBuffer is in an operand of the instruction as indicated by
118     // points-to analysis.
119     for (auto* instruction : computation->instructions()) {
120       absl::flat_hash_set<const LogicalBuffer*> instr_uses;
121       for (auto* operand : instruction->operands()) {
122         points_to_analysis.GetPointsToSet(operand).ForEachElement(
123             [&](const ShapeIndex& /*index*/,
124                 const PointsToSet::BufferList& buffers) {
125               instr_uses.insert(buffers.begin(), buffers.end());
126             });
127       }
128       buffer_uses_[instruction] = std::vector<const LogicalBuffer*>(
129           instr_uses.begin(), instr_uses.end());
130     }
131 
132     // Create map containing the number of unscheduled uses (hlo instructions)
133     // of each logical buffer.
134     unscheduled_use_count_.reserve(points_to_analysis.num_logical_buffers());
135     for (auto* instruction : computation->instructions()) {
136       for (auto* buffer :
137            points_to_analysis.GetBuffersDefinedByInstruction(instruction)) {
138         unscheduled_use_count_[buffer] = 0;
139       }
140     }
141     for (auto* instruction : computation->instructions()) {
142       for (const LogicalBuffer* buffer : buffer_uses_.at(instruction)) {
143         ++unscheduled_use_count_[buffer];
144       }
145     }
146 
147     // Buffers live out of the computation have an implicit use at the end of
148     // the computation.
149     for (const LogicalBuffer* live_out_buffer :
150          points_to_analysis.GetPointsToSet(computation->root_instruction())
151              .CreateFlattenedSet()) {
152       ++unscheduled_use_count_[live_out_buffer];
153     }
154   }
155 
156   // Returns whether the memory used by the given buffer should be ignored by
157   // the scheduling heuristic.
IgnoreBuffer(const LogicalBuffer & buffer)158   static bool IgnoreBuffer(const LogicalBuffer& buffer) {
159     return IgnoreInstruction(*buffer.instruction());
160   }
161 
162   // An entry in the worklist used by CreateSchedule.  Corresponds to one
163   // HloInstruction, plus some cached metadata, saved for the purposes of making
164   // BytesFreedIfScheduled fast.
165   struct ReadyListEntry {
166     HloInstruction* instruction;
167 
168     // The total size of all buffers defined by this instruction.
169     int64 bytes_defined;
170 
171     // For each buffer B used by this instruction, we keep a pair (B, U), where
172     // U is the number of uses of B that have not yet been scheduled. This pair
173     // is a pointer into the unscheduled_use_count_ map, so it gets updated for
174     // free when we update counts in the map.
175     std::vector<const std::pair<const LogicalBuffer* const, int64>*>
176         used_buffer_unscheduled_use_counts;
177   };
178 
179   // Creates a ReadyListEntry for the given instruction.
MakeReadyListEntry(HloInstruction * instruction)180   ReadyListEntry MakeReadyListEntry(HloInstruction* instruction) {
181     ReadyListEntry entry;
182     entry.instruction = instruction;
183 
184     entry.bytes_defined = 0;
185     for (auto* buffer :
186          points_to_analysis_.GetBuffersDefinedByInstruction(instruction)) {
187       if (!IgnoreBuffer(*buffer)) {
188         entry.bytes_defined += size_function_(*buffer);
189       }
190     }
191 
192     for (auto* buffer : buffer_uses_.at(instruction)) {
193       if (IgnoreBuffer(*buffer)) {
194         continue;
195       }
196       auto unscheduled_use_count_it = unscheduled_use_count_.find(buffer);
197       CHECK(unscheduled_use_count_it != unscheduled_use_count_.end());
198       entry.used_buffer_unscheduled_use_counts.push_back(
199           &*unscheduled_use_count_it);
200     }
201     return entry;
202   }
203 
204   // Returns the number of bytes freed *after* the HLO instruction finishes.
205   // The current List algorithm only considers two states for an instruction:
206   // right before it runs, and after it finishes. We don't represent memory
207   // usage during the execution of an instruction. But if the instruction calls
208   // subcomputations, they are only live during the instruction's execution.
209   // We end up counting the memory used by subcomputations as memory "defined"
210   // by the instruction. This is not entirely accurate, but it is more accurate
211   // than not taking subcomputations into account at all. In the future, we may
212   // improve accounting for subcomputation memory (b/65409243).
BytesFreedIfScheduled(const ReadyListEntry & entry)213   int64 BytesFreedIfScheduled(const ReadyListEntry& entry) {
214     auto instruction = entry.instruction;
215     auto opcode = instruction->opcode();
216 
217     // Scheduling the outfeed early and the infeed late gives more time to the
218     // communicating processor to do its work.
219     if (opcode == HloOpcode::kOutfeed &&
220         !instruction->outfeed_config().empty()) {
221       return INT_MAX;
222     }
223     if (opcode == HloOpcode::kInfeed && !instruction->infeed_config().empty()) {
224       return INT_MIN;
225     }
226 
227     int64 freed_bytes = 0;
228     for (const auto& kv : entry.used_buffer_unscheduled_use_counts) {
229       auto buffer = kv->first;
230       auto use_count = kv->second;
231       if (use_count == 1) {
232         freed_bytes += size_function_(*buffer);
233       }
234     }
235     // We only count the memory usage of the largest subcomputation, instead of
236     // adding them all, because subcomputations won't execute in parallel.
237     int64 max_subcomputation_bytes = 0;
238     for (const auto* c : instruction->called_computations()) {
239       auto it = memory_by_computation_.find(c);
240       if (it != memory_by_computation_.end()) {
241         int64 subcomputation_bytes = it->second;
242         if (subcomputation_bytes > max_subcomputation_bytes) {
243           max_subcomputation_bytes = subcomputation_bytes;
244         }
245       }
246     }
247     int64 bytes_defined;
248     if (max_subcomputation_bytes > 0 &&
249         (opcode == HloOpcode::kWhile || opcode == HloOpcode::kCall ||
250          opcode == HloOpcode::kConditional)) {
251       // The output buffer of while/call/conditional is always aliased with the
252       // output buffer of the root instruction in the body. Don't double count.
253       bytes_defined = max_subcomputation_bytes;
254     } else {
255       bytes_defined = entry.bytes_defined + max_subcomputation_bytes;
256     }
257     return freed_bytes - bytes_defined;
258   }
259 
260   // Constructs the scheduling priority of the given instruction.
GetPriority(const ReadyListEntry & entry)261   Priority GetPriority(const ReadyListEntry& entry) {
262     // Try to cluster scalars as close together as possible so that if they are
263     // in unfused hlos, they can still live in machine registers without
264     // excessive spilling.
265     if (ShapeUtil::IsEffectiveScalar(entry.instruction->shape())) {
266       return {std::numeric_limits<int64>::max(),
267               std::numeric_limits<int64>::max()};
268     }
269     return {BytesFreedIfScheduled(entry), entry.instruction->user_count()};
270   }
271 
CreateSchedule()272   HloInstructionSequence CreateSchedule() {
273     HloInstructionSequence schedule;
274 
275     // Populate the ready list with instructions which have no operands or
276     // control predecessors.
277     absl::flat_hash_map<const HloInstruction*, int64> unscheduled_pred_count;
278     for (auto* instruction : computation_->instructions()) {
279       // TODO(b/34466113): Replace this and above with successors() or
280       // predecessors() when these methods are added to HloInstruction.
281       for (HloInstruction* user : instruction->users()) {
282         unscheduled_pred_count[user]++;
283       }
284       for (HloInstruction* succ : instruction->control_successors()) {
285         unscheduled_pred_count[succ]++;
286       }
287     }
288 
289     // Use a multimap to sort ReadyListEntry according to their priority.
290     std::multimap<Priority, ReadyListEntry> ready_queue;
291 
292     // Map of ready instructions to their iterators in ready_queue.
293     absl::flat_hash_map<const HloInstruction*,
294                         std::multimap<Priority, ReadyListEntry>::iterator>
295         ready_instructions;
296 
297     auto add_to_ready_queue = [&](HloInstruction* inst) {
298       auto entry = MakeReadyListEntry(inst);
299       auto it = ready_queue.emplace(GetPriority(entry), std::move(entry));
300       ready_instructions[inst] = it;
301     };
302 
303     for (auto* instruction : computation_->instructions()) {
304       if (instruction->operands().empty() &&
305           instruction->control_predecessors().empty()) {
306         add_to_ready_queue(instruction);
307       }
308     }
309 
310     while (!ready_queue.empty()) {
311       // Remove the selected instruction from the ready list and add it to the
312       // schedule.
313       auto best_it = ready_queue.end();
314       --best_it;
315       HloInstruction* best = best_it->second.instruction;
316       VLOG(2) << "Schedule instruction: " << best->ToShortString()
317               << " Bytes freed: " << best_it->first.first;
318       ready_queue.erase(best_it);
319       ready_instructions.erase(best);
320       schedule.push_back(best);
321       scheduled_instructions_.insert(best);
322 
323       bool adjust_ready_queue = false;
324       // Update the unscheduled uses of the logical buffers.
325       for (const LogicalBuffer* buffer : buffer_uses_.at(best)) {
326         int64& count = unscheduled_use_count_[buffer];
327         CHECK_GT(count, 0);
328         --count;
329         if (count == 1) {
330           adjust_ready_queue = true;
331         }
332       }
333 
334       // Add new instructions to ready list.
335       auto update_pred_count = [&](HloInstruction* inst) {
336         int64 pred_count = --unscheduled_pred_count.at(inst);
337         CHECK_GE(pred_count, 0);
338         if (pred_count == 0) {
339           add_to_ready_queue(inst);
340         }
341       };
342       // TODO(b/34466113): Replace this and above with successors() or
343       // predecessors() when these methods are added to HloInstruction.
344       for (HloInstruction* user : best->users()) {
345         update_pred_count(user);
346       }
347       for (HloInstruction* succ : best->control_successors()) {
348         update_pred_count(succ);
349       }
350       // The unscheduled use count for a buffer has changed to 1, so the
351       // priorities of some ready instructions may go up. We update them in the
352       // ready queue, so that they can appear earlier.
353       if (adjust_ready_queue) {
354         for (HloInstruction* operand : best->operands()) {
355           for (HloInstruction* operand_user : operand->users()) {
356             auto ready_instructions_it = ready_instructions.find(operand_user);
357             if (ready_instructions_it == ready_instructions.end()) {
358               continue;
359             }
360             auto ready_queue_it = ready_instructions_it->second;
361             auto& entry = ready_queue_it->second;
362             Priority new_priority = GetPriority(entry);
363             if (new_priority == ready_queue_it->first) {
364               continue;
365             }
366             // Create a new entry in ready_queue, then update
367             // ready_instructions[operand_user] to refer to the new entry.
368             ready_instructions_it->second =
369                 ready_queue.emplace(new_priority, std::move(entry));
370             // Remove the old entry in ready_queue.
371             ready_queue.erase(ready_queue_it);
372           }
373         }
374       }
375     }
376     CHECK_EQ(schedule.size(), computation_->instruction_count());
377     CHECK_EQ(scheduled_instructions_.size(), computation_->instruction_count());
378 
379     return schedule;
380   }
381 
382   HloComputation* computation_;
383   const TuplePointsToAnalysis& points_to_analysis_;
384   const BufferValue::SizeFunction& size_function_;
385   // Computations are analyzed in post-order. When scheduling an instruction
386   // that includes subcomputations, such as a while loop, we use this map to
387   // look up the memory needed by subcomputations.
388   const absl::flat_hash_map<const HloComputation*, int64>&
389       memory_by_computation_;
390 
391   // A map containing the LogicalBuffers that each instruction uses.
392   absl::flat_hash_map<const HloInstruction*, std::vector<const LogicalBuffer*>>
393       buffer_uses_;
394 
395   // A map containing the count of unscheduled HLOs which using a particular
396   // LogicalBuffer.
397   absl::flat_hash_map<const LogicalBuffer*, int64> unscheduled_use_count_;
398 
399   // Set of instructions which have been scheduled.
400   absl::flat_hash_set<const HloInstruction*> scheduled_instructions_;
401 };
402 
SumLogicalBufferSizes(const TuplePointsToAnalysis::BufferDefinitionVector & buffers,const BufferValue::SizeFunction & size_function)403 int64 SumLogicalBufferSizes(
404     const TuplePointsToAnalysis::BufferDefinitionVector& buffers,
405     const BufferValue::SizeFunction& size_function) {
406   int64 size = 0;
407   for (const LogicalBuffer* buffer : buffers) {
408     size += size_function(*buffer);
409   }
410   return size;
411 }
412 
ScheduleComputationHelper(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const MemorySchedulerAlgorithm & algorithm,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,int64 * peak_memory)413 StatusOr<HloInstructionSequence> ScheduleComputationHelper(
414     HloComputation* computation,
415     const TuplePointsToAnalysis& points_to_analysis,
416     const HloAliasAnalysis& alias_analysis,
417     const BufferValue::SizeFunction& size_function,
418     const MemorySchedulerAlgorithm& algorithm,
419     const absl::flat_hash_map<const HloComputation*, int64>&
420         memory_by_computation,
421     int64* peak_memory) {
422   VLOG(2) << "Computation: " << computation->name();
423 
424   if (algorithm) {
425     return algorithm(computation, points_to_analysis, alias_analysis,
426                      size_function, memory_by_computation, peak_memory);
427   }
428   return DefaultMemoryScheduler(computation, points_to_analysis, alias_analysis,
429                                 size_function, memory_by_computation,
430                                 peak_memory);
431 }
432 
433 }  // namespace
434 
DFSMemoryScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,int64 * peak_memory)435 StatusOr<HloInstructionSequence> DFSMemoryScheduler(
436     HloComputation* computation,
437     const TuplePointsToAnalysis& points_to_analysis,
438     const HloAliasAnalysis& alias_analysis,
439     const BufferValue::SizeFunction& size_function,
440     const absl::flat_hash_map<const HloComputation*, int64>&
441         memory_by_computation,
442     int64* peak_memory) {
443   // These variables are a hack to prevent overflows.
444   int64 cumulative_total_size = 0;
445   int64 total_hlos = computation->parent()->instruction_count();
446   absl::flat_hash_map<const HloInstruction*, int64> extra_users;
447   absl::flat_hash_map<const HloInstruction*, int64> total_sizes;
448   for (const HloInstruction* hlo : computation->MakeInstructionPostOrder()) {
449     if (ListScheduler::IgnoreInstruction(*hlo)) {
450       extra_users[hlo] = 0;
451       total_sizes[hlo] = 0;
452       continue;
453     }
454     // This ordering is based on DFS post-order, with a heuristic to decide
455     // which operand to visit first.  The heuristic is based on 'extra_users',
456     // which is simply users-1 for each instruction.  By subtracting 1, we're
457     // saying that instructions with no users or a single user don't count;
458     // instructions with lots of fan-out will be visited earlier.
459     extra_users[hlo] = hlo->users().empty() ? 0 : hlo->users().size() - 1;
460     int64 logical_buffer_size = SumLogicalBufferSizes(
461         points_to_analysis.GetBuffersDefinedByInstruction(hlo), size_function);
462     total_sizes[hlo] = logical_buffer_size;
463     cumulative_total_size += logical_buffer_size;
464     absl::flat_hash_set<const HloInstruction*> unique_operands(
465         hlo->operands().begin(), hlo->operands().end());
466     for (const HloInstruction* operand : unique_operands) {
467       extra_users[hlo] += extra_users[operand];
468       total_sizes[hlo] += total_sizes[operand];
469     }
470     // total_sizes[hlo] transitively includes the sizes of all nodes that
471     // lead to it. But computation is a DAG, so we are double-counting nodes,
472     // which can lead to overflows for large programs.
473     // cumulative_total_size caps the size to prevent overflows.
474     // Same for total_hlos: it prevents overflows on very large and branchy
475     // models, where the number of paths is exponential to the number of nodes.
476     // NOTE(dimvar): this is quite ugly and should be changed. It's unclear
477     // why we care about transitive sizes; when scheduling a node, its input
478     // and output buffers should be all that matters, not its "history".
479     total_sizes[hlo] = std::min(total_sizes[hlo], cumulative_total_size);
480     extra_users[hlo] = std::min(extra_users[hlo], total_hlos);
481   }
482   CHECK_EQ(extra_users.size(), computation->instruction_count());
483   CHECK_EQ(total_sizes.size(), computation->instruction_count());
484 
485   // Construct a total order based on DFS post-order, visiting operands in
486   // decreasing cumulative extra user order, and next by cumulative size, with a
487   // tiebreaker by name for determinism.
488   HloInstructionSequence sequence;
489   FunctionVisitor visitor([&sequence](HloInstruction* hlo) {
490     sequence.push_back(hlo);
491     return Status::OK();
492   });
493   visitor.ReserveVisitStates(computation->instruction_count());
494   TF_RETURN_IF_ERROR(computation->AcceptWithOperandOrder(
495       &visitor, [&extra_users, &total_sizes](const HloInstruction* a,
496                                              const HloInstruction* b) {
497         if (extra_users[a] != extra_users[b]) {
498           return extra_users[a] > extra_users[b];
499         }
500         if (total_sizes[a] != total_sizes[b]) {
501           return total_sizes[a] > total_sizes[b];
502         }
503         return a->name() < b->name();
504       }));
505   CHECK_EQ(sequence.size(), computation->instruction_count());
506   if (peak_memory) {
507     TF_ASSIGN_OR_RETURN(
508         *peak_memory, HeapSimulator::MinimumMemoryForComputation(
509                           *computation, sequence, alias_analysis, size_function,
510                           &memory_by_computation));
511   }
512   return sequence;
513 }  // namespace xla
514 
ComputationSchedulerToModuleScheduler(const MemorySchedulerAlgorithm & computation_scheduler)515 ModuleSchedulerAlgorithm ComputationSchedulerToModuleScheduler(
516     const MemorySchedulerAlgorithm& computation_scheduler) {
517   return [computation_scheduler](
518              HloModule* module, const TuplePointsToAnalysis& points_to_analysis,
519              const HloAliasAnalysis& alias_analysis,
520              const LogicalBuffer::SizeFunction& size_func,
521              int64* peak_memory) -> StatusOr<HloSchedule> {
522     HloSchedule schedule(module);
523     absl::flat_hash_map<const HloComputation*, int64> memory_by_computation;
524     for (auto* computation : module->MakeComputationPostOrder()) {
525       if (!computation->IsFusionComputation()) {
526         TF_ASSIGN_OR_RETURN(
527             HloInstructionSequence computation_sequence,
528             ScheduleComputationHelper(
529                 computation, points_to_analysis, alias_analysis, size_func,
530                 computation_scheduler, memory_by_computation, nullptr));
531         schedule.set_sequence(computation, std::move(computation_sequence));
532       }
533     }
534     if (peak_memory) {
535       TF_ASSIGN_OR_RETURN(*peak_memory, HeapSimulator::MinimumMemoryForModule(
536                                             schedule, size_func));
537     }
538     return std::move(schedule);
539   };
540 }
541 
ListMemoryScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,int64 * peak_memory)542 StatusOr<HloInstructionSequence> ListMemoryScheduler(
543     HloComputation* computation,
544     const TuplePointsToAnalysis& points_to_analysis,
545     const HloAliasAnalysis& alias_analysis,
546     const BufferValue::SizeFunction& size_function,
547     const absl::flat_hash_map<const HloComputation*, int64>&
548         memory_by_computation,
549     int64* peak_memory) {
550   TF_ASSIGN_OR_RETURN(HloInstructionSequence sequence,
551                       ListScheduler::Run(computation, points_to_analysis,
552                                          size_function, memory_by_computation));
553   if (peak_memory) {
554     TF_ASSIGN_OR_RETURN(
555         *peak_memory, HeapSimulator::MinimumMemoryForComputation(
556                           *computation, sequence, alias_analysis, size_function,
557                           &memory_by_computation));
558   }
559   return sequence;
560 }
561 
PostOrderMemoryScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,int64 * peak_memory)562 StatusOr<HloInstructionSequence> PostOrderMemoryScheduler(
563     HloComputation* computation,
564     const TuplePointsToAnalysis& points_to_analysis,
565     const HloAliasAnalysis& alias_analysis,
566     const BufferValue::SizeFunction& size_function,
567     const absl::flat_hash_map<const HloComputation*, int64>&
568         memory_by_computation,
569     int64* peak_memory) {
570   HloInstructionSequence sequence(computation->MakeInstructionPostOrder());
571   if (peak_memory) {
572     TF_ASSIGN_OR_RETURN(
573         *peak_memory, HeapSimulator::MinimumMemoryForComputation(
574                           *computation, sequence, alias_analysis, size_function,
575                           &memory_by_computation));
576   }
577   return sequence;
578 }
579 
DefaultMemoryScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,int64 * peak_memory)580 StatusOr<HloInstructionSequence> DefaultMemoryScheduler(
581     HloComputation* computation,
582     const TuplePointsToAnalysis& points_to_analysis,
583     const HloAliasAnalysis& alias_analysis,
584     const BufferValue::SizeFunction& size_function,
585     const absl::flat_hash_map<const HloComputation*, int64>&
586         memory_by_computation,
587     int64* peak_memory) {
588   // We try a few schedulers and choose whichever returns a lower min-memory,
589   // not accounting for fragmentation.
590   // - List is a scheduler that uses greedy heuristics.
591   // - DFS visits HLOs in postorder, with a heuristic to decide the order of
592   //   children.
593   // - Postorder does not use any heuristics.
594   // List wins for most of our benchmarks; postorder-based schedulers win for
595   // some RNNs.
596   int64 list_memory;
597   TF_ASSIGN_OR_RETURN(
598       HloInstructionSequence list_sequence,
599       ListMemoryScheduler(computation, points_to_analysis, alias_analysis,
600                           size_function, memory_by_computation, &list_memory));
601   VLOG(2) << "Min-memory list sequence: " << HumanReadableNumBytes(list_memory);
602 
603   int64 dfs_memory;
604   TF_ASSIGN_OR_RETURN(
605       HloInstructionSequence dfs_sequence,
606       DFSMemoryScheduler(computation, points_to_analysis, alias_analysis,
607                          size_function, memory_by_computation, &dfs_memory));
608   VLOG(2) << "Min-memory dfs sequence: " << HumanReadableNumBytes(dfs_memory);
609 
610   int64 post_order_memory;
611   TF_ASSIGN_OR_RETURN(
612       HloInstructionSequence post_order_sequence,
613       PostOrderMemoryScheduler(computation, points_to_analysis, alias_analysis,
614                                size_function, memory_by_computation,
615                                &post_order_memory));
616   VLOG(2) << "Min-memory post order sequence: "
617           << HumanReadableNumBytes(post_order_memory);
618 
619   auto min_memory = std::min({dfs_memory, post_order_memory, list_memory});
620   if (peak_memory) {
621     *peak_memory = min_memory;
622   }
623 
624   if (min_memory == list_memory) {
625     VLOG(2) << "Chose min-memory list sequence: "
626             << HumanReadableNumBytes(list_memory);
627     return list_sequence;
628   } else if (min_memory == dfs_memory) {
629     VLOG(2) << "Chose min-memory dfs sequence: "
630             << HumanReadableNumBytes(dfs_memory);
631     return dfs_sequence;
632   } else {
633     VLOG(2) << "Chose min-memory post_order sequence: "
634             << HumanReadableNumBytes(post_order_memory);
635     return post_order_sequence;
636   }
637 }
638 
DefaultModuleScheduler(HloModule * module,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,int64 * peak_memory)639 StatusOr<HloSchedule> DefaultModuleScheduler(
640     HloModule* module, const TuplePointsToAnalysis& points_to_analysis,
641     const HloAliasAnalysis& alias_analysis,
642     const BufferValue::SizeFunction& size_function, int64* peak_memory) {
643   // We try a few schedulers and choose whichever returns a lower min-memory,
644   // not accounting for fragmentation.
645   // - List is a scheduler that uses greedy heuristics.
646   // - DFS visits HLOs in postorder, with a heuristic to decide the order of
647   //   children.
648   // - Postorder does not use any heuristics.
649   // List wins for most of our benchmarks; postorder-based schedulers win for
650   // some RNNs.
651   int64 list_memory;
652   TF_ASSIGN_OR_RETURN(
653       HloSchedule list_sequence,
654       ComputationSchedulerToModuleScheduler(ListMemoryScheduler)(
655           module, points_to_analysis, alias_analysis, size_function,
656           &list_memory));
657 
658   VLOG(2) << "Min-memory list sequence: " << HumanReadableNumBytes(list_memory);
659 
660   int64 dfs_memory;
661   TF_ASSIGN_OR_RETURN(HloSchedule dfs_sequence,
662                       ComputationSchedulerToModuleScheduler(DFSMemoryScheduler)(
663                           module, points_to_analysis, alias_analysis,
664                           size_function, &dfs_memory));
665   VLOG(2) << "Min-memory dfs sequence: " << HumanReadableNumBytes(dfs_memory);
666 
667   int64 post_order_memory;
668   TF_ASSIGN_OR_RETURN(
669       HloSchedule post_order_sequence,
670       ComputationSchedulerToModuleScheduler(PostOrderMemoryScheduler)(
671           module, points_to_analysis, alias_analysis, size_function,
672           &post_order_memory));
673   VLOG(2) << "Min-memory post order sequence: "
674           << HumanReadableNumBytes(post_order_memory);
675 
676   auto min_memory = std::min({dfs_memory, post_order_memory, list_memory});
677   if (peak_memory) {
678     *peak_memory = min_memory;
679   }
680 
681   if (min_memory == list_memory) {
682     VLOG(2) << "Chose min-memory list sequence: "
683             << HumanReadableNumBytes(list_memory);
684     return list_sequence;
685   } else if (min_memory == dfs_memory) {
686     VLOG(2) << "Chose min-memory dfs sequence: "
687             << HumanReadableNumBytes(dfs_memory);
688     return dfs_sequence;
689   } else {
690     VLOG(2) << "Chose min-memory post_order sequence: "
691             << HumanReadableNumBytes(post_order_memory);
692     return post_order_sequence;
693   }
694 }
695 
ScheduleModule(HloModule * module,const BufferValue::SizeFunction & size_function,const ModuleSchedulerAlgorithm & algorithm,int64 * peak_memory)696 StatusOr<HloSchedule> ScheduleModule(
697     HloModule* module, const BufferValue::SizeFunction& size_function,
698     const ModuleSchedulerAlgorithm& algorithm, int64* peak_memory) {
699   TF_ASSIGN_OR_RETURN(std::unique_ptr<TuplePointsToAnalysis> points_to_analysis,
700                       TuplePointsToAnalysis::Run(module));
701   TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis,
702                       HloAliasAnalysis::Run(module));
703 
704   TF_ASSIGN_OR_RETURN(HloSchedule schedule,
705                       (algorithm ? algorithm : DefaultModuleScheduler)(
706                           module, *points_to_analysis, *alias_analysis,
707                           size_function, peak_memory));
708 
709   TF_RETURN_IF_ERROR(schedule.Verify());
710 
711   return std::move(schedule);
712 }
713 
ScheduleComputation(HloComputation * computation,const BufferValue::SizeFunction & size_function)714 StatusOr<HloInstructionSequence> ScheduleComputation(
715     HloComputation* computation,
716     const BufferValue::SizeFunction& size_function) {
717   CHECK(!computation->IsFusionComputation());
718   TF_ASSIGN_OR_RETURN(std::unique_ptr<TuplePointsToAnalysis> points_to_analysis,
719                       TuplePointsToAnalysis::Run(computation->parent()));
720   TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis,
721                       HloAliasAnalysis::Run(computation->parent()));
722   absl::flat_hash_map<const HloComputation*, int64> empty_map;
723   return ScheduleComputationHelper(computation, *points_to_analysis,
724                                    *alias_analysis, size_function, nullptr,
725                                    empty_map, nullptr);
726 }
727 
HloMemoryScheduler(const BufferValue::SizeFunction & size_function,const ModuleSchedulerAlgorithm & algorithm)728 HloMemoryScheduler::HloMemoryScheduler(
729     const BufferValue::SizeFunction& size_function,
730     const ModuleSchedulerAlgorithm& algorithm)
731     : size_function_(size_function), algorithm_(algorithm) {}
732 
Run(HloModule * module)733 StatusOr<bool> HloMemoryScheduler::Run(HloModule* module) {
734   TF_ASSIGN_OR_RETURN(HloSchedule schedule,
735                       ScheduleModule(module, size_function_, algorithm_));
736   TF_RETURN_IF_ERROR(module->set_schedule(std::move(schedule)));
737   return true;
738 }
739 
Run(HloModule * module)740 StatusOr<bool> HloTrivialScheduler::Run(HloModule* module) {
741   HloSchedule schedule(module);
742   for (HloComputation* computation : module->MakeComputationPostOrder()) {
743     if (!computation->IsFusionComputation()) {
744       HloInstructionSequence& computation_sequence =
745           schedule.GetOrCreateSequence(computation);
746       FunctionVisitor visitor(
747           [&computation_sequence](HloInstruction* instruction) {
748             computation_sequence.push_back(instruction);
749             return Status::OK();
750           });
751       visitor.ReserveVisitStates(computation->instruction_count());
752       TF_RETURN_IF_ERROR(computation->Accept(&visitor));
753     }
754   }
755   TF_RETURN_IF_ERROR(module->set_schedule(std::move(schedule)));
756   return true;
757 }
758 
Run(HloModule * module)759 StatusOr<bool> HloDescheduler::Run(HloModule* module) {
760   bool changed = module->has_schedule();
761   module->clear_schedule();
762   return changed;
763 }
764 
765 }  // namespace xla
766