1 /*
2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 // Modified from the Chromium original:
12 // src/media/base/sinc_resampler_unittest.cc
13 
14 // MSVC++ requires this to be set before any other includes to get M_PI.
15 #define _USE_MATH_DEFINES
16 
17 #include "common_audio/resampler/sinc_resampler.h"
18 
19 #include <math.h>
20 
21 #include <algorithm>
22 #include <memory>
23 #include <tuple>
24 
25 #include "common_audio/resampler/sinusoidal_linear_chirp_source.h"
26 #include "rtc_base/stringize_macros.h"
27 #include "rtc_base/system/arch.h"
28 #include "rtc_base/time_utils.h"
29 #include "system_wrappers/include/cpu_features_wrapper.h"
30 #include "test/gmock.h"
31 #include "test/gtest.h"
32 
33 using ::testing::_;
34 
35 namespace webrtc {
36 
37 static const double kSampleRateRatio = 192000.0 / 44100.0;
38 static const double kKernelInterpolationFactor = 0.5;
39 
40 // Helper class to ensure ChunkedResample() functions properly.
41 class MockSource : public SincResamplerCallback {
42  public:
43   MOCK_METHOD(void, Run, (size_t frames, float* destination), (override));
44 };
45 
ACTION(ClearBuffer)46 ACTION(ClearBuffer) {
47   memset(arg1, 0, arg0 * sizeof(float));
48 }
49 
ACTION(FillBuffer)50 ACTION(FillBuffer) {
51   // Value chosen arbitrarily such that SincResampler resamples it to something
52   // easily representable on all platforms; e.g., using kSampleRateRatio this
53   // becomes 1.81219.
54   memset(arg1, 64, arg0 * sizeof(float));
55 }
56 
57 // Test requesting multiples of ChunkSize() frames results in the proper number
58 // of callbacks.
TEST(SincResamplerTest,ChunkedResample)59 TEST(SincResamplerTest, ChunkedResample) {
60   MockSource mock_source;
61 
62   // Choose a high ratio of input to output samples which will result in quick
63   // exhaustion of SincResampler's internal buffers.
64   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
65                           &mock_source);
66 
67   static const int kChunks = 2;
68   size_t max_chunk_size = resampler.ChunkSize() * kChunks;
69   std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]);
70 
71   // Verify requesting ChunkSize() frames causes a single callback.
72   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
73   resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
74 
75   // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
76   ::testing::Mock::VerifyAndClear(&mock_source);
77   EXPECT_CALL(mock_source, Run(_, _))
78       .Times(kChunks)
79       .WillRepeatedly(ClearBuffer());
80   resampler.Resample(max_chunk_size, resampled_destination.get());
81 }
82 
83 // Test flush resets the internal state properly.
TEST(SincResamplerTest,Flush)84 TEST(SincResamplerTest, Flush) {
85   MockSource mock_source;
86   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
87                           &mock_source);
88   std::unique_ptr<float[]> resampled_destination(
89       new float[resampler.ChunkSize()]);
90 
91   // Fill the resampler with junk data.
92   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(FillBuffer());
93   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
94   ASSERT_NE(resampled_destination[0], 0);
95 
96   // Flush and request more data, which should all be zeros now.
97   resampler.Flush();
98   ::testing::Mock::VerifyAndClear(&mock_source);
99   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
100   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
101   for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i)
102     ASSERT_FLOAT_EQ(resampled_destination[i], 0);
103 }
104 
105 // Test flush resets the internal state properly.
TEST(SincResamplerTest,DISABLED_SetRatioBench)106 TEST(SincResamplerTest, DISABLED_SetRatioBench) {
107   MockSource mock_source;
108   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
109                           &mock_source);
110 
111   int64_t start = rtc::TimeNanos();
112   for (int i = 1; i < 10000; ++i)
113     resampler.SetRatio(1.0 / i);
114   double total_time_c_us =
115       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
116   printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000);
117 }
118 
119 // Define platform independent function name for Convolve* tests.
120 #if defined(WEBRTC_ARCH_X86_FAMILY)
121 #define CONVOLVE_FUNC Convolve_SSE
122 #elif defined(WEBRTC_ARCH_ARM_V7)
123 #define CONVOLVE_FUNC Convolve_NEON
124 #endif
125 
126 // Ensure various optimized Convolve() methods return the same value.  Only run
127 // this test if other optimized methods exist, otherwise the default Convolve()
128 // will be tested by the parameterized SincResampler tests below.
129 #if defined(CONVOLVE_FUNC)
TEST(SincResamplerTest,Convolve)130 TEST(SincResamplerTest, Convolve) {
131 #if defined(WEBRTC_ARCH_X86_FAMILY)
132   ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2));
133 #elif defined(WEBRTC_ARCH_ARM_V7)
134   ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON);
135 #endif
136 
137   // Initialize a dummy resampler.
138   MockSource mock_source;
139   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
140                           &mock_source);
141 
142   // The optimized Convolve methods are slightly more precise than Convolve_C(),
143   // so comparison must be done using an epsilon.
144   static const double kEpsilon = 0.00000005;
145 
146   // Use a kernel from SincResampler as input and kernel data, this has the
147   // benefit of already being properly sized and aligned for Convolve_SSE().
148   double result = resampler.Convolve_C(
149       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
150       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
151   double result2 = resampler.CONVOLVE_FUNC(
152       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
153       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
154   EXPECT_NEAR(result2, result, kEpsilon);
155 
156   // Test Convolve() w/ unaligned input pointer.
157   result = resampler.Convolve_C(
158       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
159       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
160   result2 = resampler.CONVOLVE_FUNC(
161       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
162       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
163   EXPECT_NEAR(result2, result, kEpsilon);
164 }
165 #endif
166 
167 // Benchmark for the various Convolve() methods.  Make sure to build with
168 // branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking.
169 // Original benchmarks were run with --convolve-iterations=50000000.
TEST(SincResamplerTest,ConvolveBenchmark)170 TEST(SincResamplerTest, ConvolveBenchmark) {
171   // Initialize a dummy resampler.
172   MockSource mock_source;
173   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
174                           &mock_source);
175 
176   // Retrieve benchmark iterations from command line.
177   // TODO(ajm): Reintroduce this as a command line option.
178   const int kConvolveIterations = 1000000;
179 
180   printf("Benchmarking %d iterations:\n", kConvolveIterations);
181 
182   // Benchmark Convolve_C().
183   int64_t start = rtc::TimeNanos();
184   for (int i = 0; i < kConvolveIterations; ++i) {
185     resampler.Convolve_C(
186         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
187         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
188   }
189   double total_time_c_us =
190       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
191   printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000);
192 
193 #if defined(CONVOLVE_FUNC)
194 #if defined(WEBRTC_ARCH_X86_FAMILY)
195   ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2));
196 #elif defined(WEBRTC_ARCH_ARM_V7)
197   ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON);
198 #endif
199 
200   // Benchmark with unaligned input pointer.
201   start = rtc::TimeNanos();
202   for (int j = 0; j < kConvolveIterations; ++j) {
203     resampler.CONVOLVE_FUNC(
204         resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
205         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
206   }
207   double total_time_optimized_unaligned_us =
208       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
209   printf(STRINGIZE(CONVOLVE_FUNC) "(unaligned) took %.2fms; which is %.2fx "
210          "faster than Convolve_C.\n", total_time_optimized_unaligned_us / 1000,
211          total_time_c_us / total_time_optimized_unaligned_us);
212 
213   // Benchmark with aligned input pointer.
214   start = rtc::TimeNanos();
215   for (int j = 0; j < kConvolveIterations; ++j) {
216     resampler.CONVOLVE_FUNC(
217         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
218         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
219   }
220   double total_time_optimized_aligned_us =
221       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
222   printf(STRINGIZE(CONVOLVE_FUNC) " (aligned) took %.2fms; which is %.2fx "
223          "faster than Convolve_C and %.2fx faster than "
224          STRINGIZE(CONVOLVE_FUNC) " (unaligned).\n",
225          total_time_optimized_aligned_us / 1000,
226          total_time_c_us / total_time_optimized_aligned_us,
227          total_time_optimized_unaligned_us / total_time_optimized_aligned_us);
228 #endif
229 }
230 
231 #undef CONVOLVE_FUNC
232 
233 typedef std::tuple<int, int, double, double> SincResamplerTestData;
234 class SincResamplerTest
235     : public ::testing::TestWithParam<SincResamplerTestData> {
236  public:
SincResamplerTest()237   SincResamplerTest()
238       : input_rate_(std::get<0>(GetParam())),
239         output_rate_(std::get<1>(GetParam())),
240         rms_error_(std::get<2>(GetParam())),
241         low_freq_error_(std::get<3>(GetParam())) {}
242 
~SincResamplerTest()243   virtual ~SincResamplerTest() {}
244 
245  protected:
246   int input_rate_;
247   int output_rate_;
248   double rms_error_;
249   double low_freq_error_;
250 };
251 
252 // Tests resampling using a given input and output sample rate.
TEST_P(SincResamplerTest,Resample)253 TEST_P(SincResamplerTest, Resample) {
254   // Make comparisons using one second of data.
255   static const double kTestDurationSecs = 1;
256   const size_t input_samples =
257       static_cast<size_t>(kTestDurationSecs * input_rate_);
258   const size_t output_samples =
259       static_cast<size_t>(kTestDurationSecs * output_rate_);
260 
261   // Nyquist frequency for the input sampling rate.
262   const double input_nyquist_freq = 0.5 * input_rate_;
263 
264   // Source for data to be resampled.
265   SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
266                                                input_nyquist_freq, 0);
267 
268   const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
269   SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize,
270                           &resampler_source);
271 
272   // Force an update to the sample rate ratio to ensure dyanmic sample rate
273   // changes are working correctly.
274   std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
275   memcpy(kernel.get(), resampler.get_kernel_for_testing(),
276          SincResampler::kKernelStorageSize);
277   resampler.SetRatio(M_PI);
278   ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
279                       SincResampler::kKernelStorageSize));
280   resampler.SetRatio(io_ratio);
281   ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
282                       SincResampler::kKernelStorageSize));
283 
284   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
285   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
286   std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
287   std::unique_ptr<float[]> pure_destination(new float[output_samples]);
288 
289   // Generate resampled signal.
290   resampler.Resample(output_samples, resampled_destination.get());
291 
292   // Generate pure signal.
293   SinusoidalLinearChirpSource pure_source(output_rate_, output_samples,
294                                           input_nyquist_freq, 0);
295   pure_source.Run(output_samples, pure_destination.get());
296 
297   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
298   // we refer to as low and high.
299   static const double kLowFrequencyNyquistRange = 0.7;
300   static const double kHighFrequencyNyquistRange = 0.9;
301 
302   // Calculate Root-Mean-Square-Error and maximum error for the resampling.
303   double sum_of_squares = 0;
304   double low_freq_max_error = 0;
305   double high_freq_max_error = 0;
306   int minimum_rate = std::min(input_rate_, output_rate_);
307   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
308   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
309   for (size_t i = 0; i < output_samples; ++i) {
310     double error = fabs(resampled_destination[i] - pure_destination[i]);
311 
312     if (pure_source.Frequency(i) < low_frequency_range) {
313       if (error > low_freq_max_error)
314         low_freq_max_error = error;
315     } else if (pure_source.Frequency(i) < high_frequency_range) {
316       if (error > high_freq_max_error)
317         high_freq_max_error = error;
318     }
319     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
320 
321     sum_of_squares += error * error;
322   }
323 
324   double rms_error = sqrt(sum_of_squares / output_samples);
325 
326 // Convert each error to dbFS.
327 #define DBFS(x) 20 * log10(x)
328   rms_error = DBFS(rms_error);
329   low_freq_max_error = DBFS(low_freq_max_error);
330   high_freq_max_error = DBFS(high_freq_max_error);
331 
332   EXPECT_LE(rms_error, rms_error_);
333   EXPECT_LE(low_freq_max_error, low_freq_error_);
334 
335   // All conversions currently have a high frequency error around -6 dbFS.
336   static const double kHighFrequencyMaxError = -6.02;
337   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
338 }
339 
340 // Almost all conversions have an RMS error of around -14 dbFS.
341 static const double kResamplingRMSError = -14.58;
342 
343 // Thresholds chosen arbitrarily based on what each resampling reported during
344 // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
345 INSTANTIATE_TEST_SUITE_P(
346     SincResamplerTest,
347     SincResamplerTest,
348     ::testing::Values(
349         // To 44.1kHz
350         std::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
351         std::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
352         std::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
353         std::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
354         std::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
355         std::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
356         std::make_tuple(48000, 44100, -15.01, -64.04),
357         std::make_tuple(96000, 44100, -18.49, -25.51),
358         std::make_tuple(192000, 44100, -20.50, -13.31),
359 
360         // To 48kHz
361         std::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
362         std::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
363         std::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
364         std::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
365         std::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
366         std::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
367         std::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
368         std::make_tuple(96000, 48000, -18.40, -28.44),
369         std::make_tuple(192000, 48000, -20.43, -14.11),
370 
371         // To 96kHz
372         std::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
373         std::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
374         std::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
375         std::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
376         std::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
377         std::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
378         std::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
379         std::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
380         std::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
381 
382         // To 192kHz
383         std::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
384         std::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
385         std::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
386         std::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
387         std::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
388         std::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
389         std::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
390         std::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
391         std::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
392 
393 }  // namespace webrtc
394