1 #include "./deorummolae.h"
2 
3 #include <array>
4 #include <cstdio>
5 
6 #include "./esaxx/sais.hxx"
7 
8 /* Used for quick SA-entry to file mapping. Each file is padded to size that
9    is a multiple of chunk size. */
10 #define CHUNK_SIZE 64
11 /* Length of substring that is considered to be covered by dictionary string. */
12 #define CUT_MATCH 6
13 /* Minimal dictionary entry size. */
14 #define MIN_MATCH 24
15 
16 /* Non tunable definitions. */
17 #define CHUNK_MASK (CHUNK_SIZE - 1)
18 #define COVERAGE_SIZE (1 << (DM_LOG_MAX_FILES - 6))
19 
20 /* File coverage: every bit set to 1 denotes a file covered by an isle. */
21 typedef std::array<uint64_t, COVERAGE_SIZE> Coverage;
22 
23 /* Symbol of text alphabet. */
24 typedef int32_t TextChar;
25 
26 /* Pointer to position in text. */
27 typedef uint32_t TextIdx;
28 
29 /* SAIS sarray_type; unfortunately, must be a signed type. */
30 typedef int32_t TextSaIdx;
31 
popcount(uint64_t u)32 static size_t popcount(uint64_t u) {
33   return static_cast<size_t>(__builtin_popcountll(u));
34 }
35 
36 /* Condense terminators and pad file entries. */
rewriteText(std::vector<TextChar> * text)37 static void rewriteText(std::vector<TextChar>* text) {
38   TextChar terminator = text->back();
39   TextChar prev = terminator;
40   TextIdx to = 0;
41   for (TextIdx from = 0; from < text->size(); ++from) {
42     TextChar next = text->at(from);
43     if (next < 256 || prev < 256) {
44       text->at(to++) = next;
45       if (next >= 256) terminator = next;
46     }
47     prev = next;
48   }
49   text->resize(to);
50   if (text->empty()) text->push_back(terminator);
51   while (text->size() & CHUNK_MASK) text->push_back(terminator);
52 }
53 
54 /* Reenumerate terminators for smaller alphabet. */
remapTerminators(std::vector<TextChar> * text,TextChar * next_terminator)55 static void remapTerminators(std::vector<TextChar>* text,
56     TextChar* next_terminator) {
57   TextChar prev = -1;
58   TextChar x = 256;
59   for (TextIdx i = 0; i < text->size(); ++i) {
60     TextChar next = text->at(i);
61     if (next < 256) {  // Char.
62       // Do nothing.
63     } else if (prev < 256) {  // Terminator after char.
64       next = x++;
65     } else {  // Terminator after terminator.
66       next = prev;
67     }
68     text->at(i) = next;
69     prev = next;
70   }
71   *next_terminator = x;
72 }
73 
74 /* Combine all file entries; create mapping position->file. */
buildFullText(std::vector<std::vector<TextChar>> * data,std::vector<TextChar> * full_text,std::vector<TextIdx> * file_map,std::vector<TextIdx> * file_offset,TextChar * next_terminator)75 static void buildFullText(std::vector<std::vector<TextChar>>* data,
76     std::vector<TextChar>* full_text, std::vector<TextIdx>* file_map,
77     std::vector<TextIdx>* file_offset, TextChar* next_terminator) {
78   file_map->resize(0);
79   file_offset->resize(0);
80   full_text->resize(0);
81   for (TextIdx i = 0; i < data->size(); ++i) {
82     file_offset->push_back(full_text->size());
83     std::vector<TextChar>& file = data->at(i);
84     rewriteText(&file);
85     full_text->insert(full_text->end(), file.begin(), file.end());
86     file_map->insert(file_map->end(), file.size() / CHUNK_SIZE, i);
87   }
88   if (false) remapTerminators(full_text, next_terminator);
89 }
90 
91 /* Build longest-common-prefix based on suffix array and text.
92    TODO: borrowed -> unknown efficiency. */
buildLcp(std::vector<TextChar> * text,std::vector<TextIdx> * sa,std::vector<TextIdx> * lcp,std::vector<TextIdx> * invese_sa)93 static void buildLcp(std::vector<TextChar>* text, std::vector<TextIdx>* sa,
94     std::vector<TextIdx>* lcp, std::vector<TextIdx>* invese_sa) {
95   TextIdx size = static_cast<TextIdx>(text->size());
96   lcp->resize(size);
97   TextIdx k = 0;
98   lcp->at(size - 1) = 0;
99   for (TextIdx i = 0; i < size; ++i) {
100     if (invese_sa->at(i) == size - 1) {
101       k = 0;
102       continue;
103     }
104     // Suffix which follow i-th suffix.
105     TextIdx j = sa->at(invese_sa->at(i) + 1);
106     while (i + k < size && j + k < size && text->at(i + k) == text->at(j + k)) {
107       ++k;
108     }
109     lcp->at(invese_sa->at(i)) = k;
110     if (k > 0) --k;
111   }
112 }
113 
114 /* Isle is a range in SA with LCP not less than some value.
115    When we raise the LCP requirement, the isle sunks and smaller isles appear
116    instead. */
117 typedef struct {
118   TextIdx lcp;
119   TextIdx l;
120   TextIdx r;
121   Coverage coverage;
122 } Isle;
123 
124 /* Helper routine for `cutMatch`. */
poisonData(TextIdx pos,TextIdx length,std::vector<std::vector<TextChar>> * data,std::vector<TextIdx> * file_map,std::vector<TextIdx> * file_offset,TextChar * next_terminator)125 static void poisonData(TextIdx pos, TextIdx length,
126     std::vector<std::vector<TextChar>>* data, std::vector<TextIdx>* file_map,
127     std::vector<TextIdx>* file_offset, TextChar* next_terminator) {
128   TextIdx f = file_map->at(pos / CHUNK_SIZE);
129   pos -= file_offset->at(f);
130   std::vector<TextChar>& file = data->at(f);
131   TextIdx l = (length == CUT_MATCH) ? CUT_MATCH : 1;
132   for (TextIdx j = 0; j < l; j++, pos++) {
133     if (file[pos] >= 256) continue;
134     if (file[pos + 1] >= 256) {
135       file[pos] = file[pos + 1];
136     } else if (pos > 0 && file[pos - 1] >= 256) {
137       file[pos] = file[pos - 1];
138     } else {
139       file[pos] = (*next_terminator)++;
140     }
141   }
142 }
143 
144 /* Remove substrings of a given match from files.
145    Substrings are replaced with unique terminators, so next iteration SA would
146    not allow to cross removed areas. */
cutMatch(std::vector<std::vector<TextChar>> * data,TextIdx index,TextIdx length,std::vector<TextIdx> * sa,std::vector<TextIdx> * lcp,std::vector<TextIdx> * invese_sa,TextChar * next_terminator,std::vector<TextIdx> * file_map,std::vector<TextIdx> * file_offset)147 static void cutMatch(std::vector<std::vector<TextChar>>* data, TextIdx index,
148     TextIdx length, std::vector<TextIdx>* sa, std::vector<TextIdx>* lcp,
149     std::vector<TextIdx>* invese_sa, TextChar* next_terminator,
150     std::vector<TextIdx>* file_map, std::vector<TextIdx>* file_offset) {
151   while (length >= CUT_MATCH) {
152     TextIdx i = index;
153     while (lcp->at(i) >= length) {
154       i++;
155       poisonData(
156           sa->at(i), length, data, file_map, file_offset, next_terminator);
157     }
158     while (true) {
159       poisonData(
160           sa->at(index), length, data, file_map, file_offset, next_terminator);
161       if (index == 0 || lcp->at(index - 1) < length) break;
162       index--;
163     }
164     length--;
165     index = invese_sa->at(sa->at(index) + 1);
166   }
167 }
168 
DM_generate(size_t dictionary_size_limit,const std::vector<size_t> & sample_sizes,const uint8_t * sample_data)169 std::string DM_generate(size_t dictionary_size_limit,
170     const std::vector<size_t>& sample_sizes, const uint8_t* sample_data) {
171   {
172     TextIdx tmp = static_cast<TextIdx>(dictionary_size_limit);
173     if ((tmp != dictionary_size_limit) || (tmp > 1u << 30)) {
174       fprintf(stderr, "dictionary_size_limit is too large\n");
175       return "";
176     }
177   }
178 
179   /* Could use 256 + '0' for easier debugging. */
180   TextChar next_terminator = 256;
181 
182   std::string output;
183   std::vector<std::vector<TextChar>> data;
184 
185   TextIdx offset = 0;
186   size_t num_samples = sample_sizes.size();
187   if (num_samples > DM_MAX_FILES) num_samples = DM_MAX_FILES;
188   for (size_t n = 0; n < num_samples; ++n) {
189     TextIdx delta = static_cast<TextIdx>(sample_sizes[n]);
190     if (delta != sample_sizes[n]) {
191       fprintf(stderr, "sample is too large\n");
192       return "";
193     }
194     if (delta == 0) {
195       fprintf(stderr, "0-length samples are prohibited\n");
196       return "";
197     }
198     TextIdx next_offset = offset + delta;
199     if (next_offset <= offset) {
200       fprintf(stderr, "corpus is too large\n");
201       return "";
202     }
203     data.push_back(
204         std::vector<TextChar>(sample_data + offset, sample_data + next_offset));
205     offset = next_offset;
206     data.back().push_back(next_terminator++);
207   }
208 
209   /* Most arrays are allocated once, and then just resized to smaller and
210      smaller sizes. */
211   std::vector<TextChar> full_text;
212   std::vector<TextIdx> file_map;
213   std::vector<TextIdx> file_offset;
214   std::vector<TextIdx> sa;
215   std::vector<TextIdx> invese_sa;
216   std::vector<TextIdx> lcp;
217   std::vector<Isle> isles;
218   std::vector<char> output_data;
219   TextIdx total = 0;
220   TextIdx total_cost = 0;
221   TextIdx best_cost;
222   Isle best_isle;
223   size_t min_count = num_samples;
224 
225   while (true) {
226     TextIdx max_match = static_cast<TextIdx>(dictionary_size_limit) - total;
227     buildFullText(&data, &full_text, &file_map, &file_offset, &next_terminator);
228     sa.resize(full_text.size());
229     /* Hopefully, non-negative TextSaIdx is the same sa TextIdx counterpart. */
230     saisxx(full_text.data(), reinterpret_cast<TextSaIdx*>(sa.data()),
231         static_cast<TextChar>(full_text.size()), next_terminator);
232     invese_sa.resize(full_text.size());
233     for (TextIdx i = 0; i < full_text.size(); ++i) {
234       invese_sa[sa[i]] = i;
235     }
236     buildLcp(&full_text, &sa, &lcp, &invese_sa);
237 
238     /* Do not rebuild SA/LCP, just use different selection. */
239   retry:
240     best_cost = 0;
241     best_isle = {0, 0, 0, {{0}}};
242     isles.resize(0);
243     isles.push_back(best_isle);
244 
245     for (TextIdx i = 0; i < lcp.size(); ++i) {
246       TextIdx l = i;
247       Coverage cov = {{0}};
248       size_t f = file_map[sa[i] / CHUNK_SIZE];
249       cov[f >> 6] = (static_cast<uint64_t>(1)) << (f & 63);
250       while (lcp[i] < isles.back().lcp) {
251         Isle& top = isles.back();
252         top.r = i;
253         l = top.l;
254         for (size_t x = 0; x < cov.size(); ++x) cov[x] |= top.coverage[x];
255         size_t count = 0;
256         for (size_t x = 0; x < cov.size(); ++x) count += popcount(cov[x]);
257         TextIdx effective_lcp = top.lcp;
258         /* Restrict (last) dictionary entry length. */
259         if (effective_lcp > max_match) effective_lcp = max_match;
260         TextIdx cost = count * effective_lcp;
261         if (cost > best_cost && count >= min_count &&
262             effective_lcp >= MIN_MATCH) {
263           best_cost = cost;
264           best_isle = top;
265           best_isle.lcp = effective_lcp;
266         }
267         isles.pop_back();
268         for (size_t x = 0; x < cov.size(); ++x) {
269           isles.back().coverage[x] |= cov[x];
270         }
271       }
272       if (lcp[i] > isles.back().lcp) isles.push_back({lcp[i], l, 0, {{0}}});
273       for (size_t x = 0; x < cov.size(); ++x) {
274         isles.back().coverage[x] |= cov[x];
275       }
276     }
277 
278     /* When saturated matches do not match length restrictions, lower the
279        saturation requirements. */
280     if (best_cost == 0 || best_isle.lcp < MIN_MATCH) {
281       if (min_count >= 8) {
282         min_count = (min_count * 7) / 8;
283         fprintf(stderr, "Retry: min_count=%zu\n", min_count);
284         goto retry;
285       }
286       break;
287     }
288 
289     /* Save the entry. */
290     fprintf(stderr, "Savings: %d+%d, dictionary: %d+%d\n",
291         total_cost, best_cost, total, best_isle.lcp);
292     int* piece = &full_text[sa[best_isle.l]];
293     output.insert(output.end(), piece, piece + best_isle.lcp);
294     total += best_isle.lcp;
295     total_cost += best_cost;
296     cutMatch(&data, best_isle.l, best_isle.lcp, &sa, &lcp, &invese_sa,
297         &next_terminator, &file_map, &file_offset);
298     if (total >= dictionary_size_limit) break;
299   }
300 
301   return output;
302 }
303