1# Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
2#
3# Use of this source code is governed by a BSD-style license
4# that can be found in the LICENSE file in the root of the source
5# tree. An additional intellectual property rights grant can be found
6# in the file PATENTS.  All contributing project authors may
7# be found in the AUTHORS file in the root of the source tree.
8
9"""Extraction of annotations from audio files.
10"""
11
12from __future__ import division
13import logging
14import os
15import shutil
16import struct
17import subprocess
18import sys
19import tempfile
20
21try:
22  import numpy as np
23except ImportError:
24  logging.critical('Cannot import the third-party Python package numpy')
25  sys.exit(1)
26
27from . import external_vad
28from . import exceptions
29from . import signal_processing
30
31
32class AudioAnnotationsExtractor(object):
33  """Extracts annotations from audio files.
34  """
35
36  class VadType(object):
37    ENERGY_THRESHOLD = 1  # TODO(alessiob): Consider switching to P56 standard.
38    WEBRTC_COMMON_AUDIO = 2  # common_audio/vad/include/vad.h
39    WEBRTC_APM = 4  # modules/audio_processing/vad/vad.h
40
41    def __init__(self, value):
42      if (not isinstance(value, int)) or not 0 <= value <= 7:
43        raise exceptions.InitializationException(
44            'Invalid vad type: ' + value)
45      self._value = value
46
47    def Contains(self, vad_type):
48      return self._value | vad_type == self._value
49
50    def __str__(self):
51      vads = []
52      if self.Contains(self.ENERGY_THRESHOLD):
53        vads.append("energy")
54      if self.Contains(self.WEBRTC_COMMON_AUDIO):
55        vads.append("common_audio")
56      if self.Contains(self.WEBRTC_APM):
57        vads.append("apm")
58      return "VadType({})".format(", ".join(vads))
59
60  _OUTPUT_FILENAME_TEMPLATE = '{}annotations.npz'
61
62  # Level estimation params.
63  _ONE_DB_REDUCTION = np.power(10.0, -1.0 / 20.0)
64  _LEVEL_FRAME_SIZE_MS = 1.0
65  # The time constants in ms indicate the time it takes for the level estimate
66  # to go down/up by 1 db if the signal is zero.
67  _LEVEL_ATTACK_MS = 5.0
68  _LEVEL_DECAY_MS = 20.0
69
70  # VAD params.
71  _VAD_THRESHOLD = 1
72  _VAD_WEBRTC_PATH = os.path.join(os.path.dirname(
73      os.path.abspath(__file__)), os.pardir, os.pardir)
74  _VAD_WEBRTC_COMMON_AUDIO_PATH = os.path.join(_VAD_WEBRTC_PATH, 'vad')
75
76  _VAD_WEBRTC_APM_PATH = os.path.join(
77      _VAD_WEBRTC_PATH, 'apm_vad')
78
79  def __init__(self, vad_type, external_vads=None):
80    self._signal = None
81    self._level = None
82    self._level_frame_size = None
83    self._common_audio_vad = None
84    self._energy_vad = None
85    self._apm_vad_probs = None
86    self._apm_vad_rms = None
87    self._vad_frame_size = None
88    self._vad_frame_size_ms = None
89    self._c_attack = None
90    self._c_decay = None
91
92    self._vad_type = self.VadType(vad_type)
93    logging.info('VADs used for annotations: ' + str(self._vad_type))
94
95    if external_vads is None:
96      external_vads = {}
97    self._external_vads = external_vads
98
99    assert len(self._external_vads) == len(external_vads), (
100        'The external VAD names must be unique.')
101    for vad in external_vads.values():
102      if not isinstance(vad, external_vad.ExternalVad):
103        raise exceptions.InitializationException(
104            'Invalid vad type: ' + str(type(vad)))
105      logging.info('External VAD used for annotation: ' +
106                   str(vad.name))
107
108    assert os.path.exists(self._VAD_WEBRTC_COMMON_AUDIO_PATH), \
109      self._VAD_WEBRTC_COMMON_AUDIO_PATH
110    assert os.path.exists(self._VAD_WEBRTC_APM_PATH), \
111      self._VAD_WEBRTC_APM_PATH
112
113  @classmethod
114  def GetOutputFileNameTemplate(cls):
115    return cls._OUTPUT_FILENAME_TEMPLATE
116
117  def GetLevel(self):
118    return self._level
119
120  def GetLevelFrameSize(self):
121    return self._level_frame_size
122
123  @classmethod
124  def GetLevelFrameSizeMs(cls):
125    return cls._LEVEL_FRAME_SIZE_MS
126
127  def GetVadOutput(self, vad_type):
128    if vad_type == self.VadType.ENERGY_THRESHOLD:
129      return self._energy_vad
130    elif vad_type == self.VadType.WEBRTC_COMMON_AUDIO:
131      return self._common_audio_vad
132    elif vad_type == self.VadType.WEBRTC_APM:
133      return (self._apm_vad_probs, self._apm_vad_rms)
134    else:
135      raise exceptions.InitializationException(
136            'Invalid vad type: ' + vad_type)
137
138  def GetVadFrameSize(self):
139    return self._vad_frame_size
140
141  def GetVadFrameSizeMs(self):
142    return self._vad_frame_size_ms
143
144  def Extract(self, filepath):
145    # Load signal.
146    self._signal = signal_processing.SignalProcessingUtils.LoadWav(filepath)
147    if self._signal.channels != 1:
148      raise NotImplementedError('Multiple-channel annotations not implemented')
149
150    # Level estimation params.
151    self._level_frame_size = int(self._signal.frame_rate / 1000 * (
152        self._LEVEL_FRAME_SIZE_MS))
153    self._c_attack = 0.0 if self._LEVEL_ATTACK_MS == 0 else (
154        self._ONE_DB_REDUCTION ** (
155            self._LEVEL_FRAME_SIZE_MS / self._LEVEL_ATTACK_MS))
156    self._c_decay = 0.0 if self._LEVEL_DECAY_MS == 0 else (
157        self._ONE_DB_REDUCTION ** (
158            self._LEVEL_FRAME_SIZE_MS / self._LEVEL_DECAY_MS))
159
160    # Compute level.
161    self._LevelEstimation()
162
163    # Ideal VAD output, it requires clean speech with high SNR as input.
164    if self._vad_type.Contains(self.VadType.ENERGY_THRESHOLD):
165      # Naive VAD based on level thresholding.
166      vad_threshold = np.percentile(self._level, self._VAD_THRESHOLD)
167      self._energy_vad = np.uint8(self._level > vad_threshold)
168      self._vad_frame_size = self._level_frame_size
169      self._vad_frame_size_ms = self._LEVEL_FRAME_SIZE_MS
170    if self._vad_type.Contains(self.VadType.WEBRTC_COMMON_AUDIO):
171      # WebRTC common_audio/ VAD.
172      self._RunWebRtcCommonAudioVad(filepath, self._signal.frame_rate)
173    if self._vad_type.Contains(self.VadType.WEBRTC_APM):
174      # WebRTC modules/audio_processing/ VAD.
175      self._RunWebRtcApmVad(filepath)
176    for extvad_name in self._external_vads:
177      self._external_vads[extvad_name].Run(filepath)
178
179  def Save(self, output_path, annotation_name=""):
180    ext_kwargs = {'extvad_conf-' + ext_vad:
181                  self._external_vads[ext_vad].GetVadOutput()
182                  for ext_vad in self._external_vads}
183    np.savez_compressed(
184        file=os.path.join(
185            output_path,
186            self.GetOutputFileNameTemplate().format(annotation_name)),
187        level=self._level,
188        level_frame_size=self._level_frame_size,
189        level_frame_size_ms=self._LEVEL_FRAME_SIZE_MS,
190        vad_output=self._common_audio_vad,
191        vad_energy_output=self._energy_vad,
192        vad_frame_size=self._vad_frame_size,
193        vad_frame_size_ms=self._vad_frame_size_ms,
194        vad_probs=self._apm_vad_probs,
195        vad_rms=self._apm_vad_rms,
196        **ext_kwargs
197    )
198
199  def _LevelEstimation(self):
200    # Read samples.
201    samples = signal_processing.SignalProcessingUtils.AudioSegmentToRawData(
202        self._signal).astype(np.float32) / 32768.0
203    num_frames = len(samples) // self._level_frame_size
204    num_samples = num_frames * self._level_frame_size
205
206    # Envelope.
207    self._level = np.max(np.reshape(np.abs(samples[:num_samples]), (
208        num_frames, self._level_frame_size)), axis=1)
209    assert len(self._level) == num_frames
210
211    # Envelope smoothing.
212    smooth = lambda curr, prev, k: (1 - k) * curr  + k * prev
213    self._level[0] = smooth(self._level[0], 0.0, self._c_attack)
214    for i in range(1, num_frames):
215      self._level[i] = smooth(
216          self._level[i], self._level[i - 1], self._c_attack if (
217              self._level[i] > self._level[i - 1]) else self._c_decay)
218
219  def _RunWebRtcCommonAudioVad(self, wav_file_path, sample_rate):
220    self._common_audio_vad = None
221    self._vad_frame_size = None
222
223    # Create temporary output path.
224    tmp_path = tempfile.mkdtemp()
225    output_file_path = os.path.join(
226        tmp_path, os.path.split(wav_file_path)[1] + '_vad.tmp')
227
228    # Call WebRTC VAD.
229    try:
230      subprocess.call([
231          self._VAD_WEBRTC_COMMON_AUDIO_PATH,
232          '-i', wav_file_path,
233          '-o', output_file_path
234      ], cwd=self._VAD_WEBRTC_PATH)
235
236      # Read bytes.
237      with open(output_file_path, 'rb') as f:
238        raw_data = f.read()
239
240      # Parse side information.
241      self._vad_frame_size_ms = struct.unpack('B', raw_data[0])[0]
242      self._vad_frame_size = self._vad_frame_size_ms * sample_rate / 1000
243      assert self._vad_frame_size_ms in [10, 20, 30]
244      extra_bits = struct.unpack('B', raw_data[-1])[0]
245      assert 0 <= extra_bits <= 8
246
247      # Init VAD vector.
248      num_bytes = len(raw_data)
249      num_frames = 8 * (num_bytes - 2) - extra_bits  # 8 frames for each byte.
250      self._common_audio_vad = np.zeros(num_frames, np.uint8)
251
252      # Read VAD decisions.
253      for i, byte in enumerate(raw_data[1:-1]):
254        byte = struct.unpack('B', byte)[0]
255        for j in range(8 if i < num_bytes - 3 else (8 - extra_bits)):
256          self._common_audio_vad[i * 8 + j] = int(byte & 1)
257          byte = byte >> 1
258    except Exception as e:
259      logging.error('Error while running the WebRTC VAD (' + e.message + ')')
260    finally:
261      if os.path.exists(tmp_path):
262        shutil.rmtree(tmp_path)
263
264  def _RunWebRtcApmVad(self, wav_file_path):
265    # Create temporary output path.
266    tmp_path = tempfile.mkdtemp()
267    output_file_path_probs = os.path.join(
268        tmp_path, os.path.split(wav_file_path)[1] + '_vad_probs.tmp')
269    output_file_path_rms = os.path.join(
270        tmp_path, os.path.split(wav_file_path)[1] + '_vad_rms.tmp')
271
272    # Call WebRTC VAD.
273    try:
274      subprocess.call([
275          self._VAD_WEBRTC_APM_PATH,
276          '-i', wav_file_path,
277          '-o_probs', output_file_path_probs,
278          '-o_rms', output_file_path_rms
279      ], cwd=self._VAD_WEBRTC_PATH)
280
281      # Parse annotations.
282      self._apm_vad_probs = np.fromfile(output_file_path_probs, np.double)
283      self._apm_vad_rms = np.fromfile(output_file_path_rms, np.double)
284      assert len(self._apm_vad_rms) == len(self._apm_vad_probs)
285
286    except Exception as e:
287      logging.error('Error while running the WebRTC APM VAD (' +
288                    e.message + ')')
289    finally:
290      if os.path.exists(tmp_path):
291        shutil.rmtree(tmp_path)
292