1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
mayHaveIntegerOverflow(llvm::ConstantInt * LHS,llvm::ConstantInt * RHS,BinaryOperator::Opcode Opcode,bool Signed,llvm::APInt & Result)60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
mayHaveIntegerOverflow__anon75d0f0ad0111::BinOpInfo100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
isDivremOp__anon75d0f0ad0111::BinOpInfo113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
mayHaveIntegerDivisionByZero__anon75d0f0ad0111::BinOpInfo119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
mayHaveFloatDivisionByZero__anon75d0f0ad0111::BinOpInfo127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
isFixedPointOp__anon75d0f0ad0111::BinOpInfo137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
MustVisitNullValue(const Expr * E)151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
getUnwidenedIntegerType(const ASTContext & Ctx,const Expr * E)159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
IsWidenedIntegerOp(const ASTContext & Ctx,const Expr * E)174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
CanElideOverflowCheck(const ASTContext & Ctx,const BinOpInfo & Op)179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
TestAndClearIgnoreResultAssign()236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
ConvertType(QualType T)242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
EmitLoadOfLValue(LValue LV,SourceLocation Loc)251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
EmitLValueAlignmentAssumption(const Expr * E,Value * V)255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
EmitLoadOfLValue(const Expr * E)293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
ScalarConversionOpts__anon75d0f0ad0111::ScalarExprEmitter::ScalarConversionOpts339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
ScalarConversionOpts__anon75d0f0ad0111::ScalarExprEmitter::ScalarConversionOpts344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *
352   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
353                        SourceLocation Loc,
354                        ScalarConversionOpts Opts = ScalarConversionOpts());
355 
356   /// Convert between either a fixed point and other fixed point or fixed point
357   /// and an integer.
358   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
359                                   SourceLocation Loc);
360 
361   /// Emit a conversion from the specified complex type to the specified
362   /// destination type, where the destination type is an LLVM scalar type.
363   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
364                                        QualType SrcTy, QualType DstTy,
365                                        SourceLocation Loc);
366 
367   /// EmitNullValue - Emit a value that corresponds to null for the given type.
368   Value *EmitNullValue(QualType Ty);
369 
370   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)371   Value *EmitFloatToBoolConversion(Value *V) {
372     // Compare against 0.0 for fp scalars.
373     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
374     return Builder.CreateFCmpUNE(V, Zero, "tobool");
375   }
376 
377   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V,QualType QT)378   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
379     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
380 
381     return Builder.CreateICmpNE(V, Zero, "tobool");
382   }
383 
EmitIntToBoolConversion(Value * V)384   Value *EmitIntToBoolConversion(Value *V) {
385     // Because of the type rules of C, we often end up computing a
386     // logical value, then zero extending it to int, then wanting it
387     // as a logical value again.  Optimize this common case.
388     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
389       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
390         Value *Result = ZI->getOperand(0);
391         // If there aren't any more uses, zap the instruction to save space.
392         // Note that there can be more uses, for example if this
393         // is the result of an assignment.
394         if (ZI->use_empty())
395           ZI->eraseFromParent();
396         return Result;
397       }
398     }
399 
400     return Builder.CreateIsNotNull(V, "tobool");
401   }
402 
403   //===--------------------------------------------------------------------===//
404   //                            Visitor Methods
405   //===--------------------------------------------------------------------===//
406 
Visit(Expr * E)407   Value *Visit(Expr *E) {
408     ApplyDebugLocation DL(CGF, E);
409     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410   }
411 
VisitStmt(Stmt * S)412   Value *VisitStmt(Stmt *S) {
413     S->dump(llvm::errs(), CGF.getContext());
414     llvm_unreachable("Stmt can't have complex result type!");
415   }
416   Value *VisitExpr(Expr *S);
417 
VisitConstantExpr(ConstantExpr * E)418   Value *VisitConstantExpr(ConstantExpr *E) {
419     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
420       if (E->isGLValue())
421         return CGF.Builder.CreateLoad(Address(
422             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
423       return Result;
424     }
425     return Visit(E->getSubExpr());
426   }
VisitParenExpr(ParenExpr * PE)427   Value *VisitParenExpr(ParenExpr *PE) {
428     return Visit(PE->getSubExpr());
429   }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)430   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
431     return Visit(E->getReplacement());
432   }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)433   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
434     return Visit(GE->getResultExpr());
435   }
VisitCoawaitExpr(CoawaitExpr * S)436   Value *VisitCoawaitExpr(CoawaitExpr *S) {
437     return CGF.EmitCoawaitExpr(*S).getScalarVal();
438   }
VisitCoyieldExpr(CoyieldExpr * S)439   Value *VisitCoyieldExpr(CoyieldExpr *S) {
440     return CGF.EmitCoyieldExpr(*S).getScalarVal();
441   }
VisitUnaryCoawait(const UnaryOperator * E)442   Value *VisitUnaryCoawait(const UnaryOperator *E) {
443     return Visit(E->getSubExpr());
444   }
445 
446   // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)447   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
448     return Builder.getInt(E->getValue());
449   }
VisitFixedPointLiteral(const FixedPointLiteral * E)450   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
VisitFloatingLiteral(const FloatingLiteral * E)453   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
454     return llvm::ConstantFP::get(VMContext, E->getValue());
455   }
VisitCharacterLiteral(const CharacterLiteral * E)456   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
457     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
458   }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)459   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)462   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)465   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
466     return EmitNullValue(E->getType());
467   }
VisitGNUNullExpr(const GNUNullExpr * E)468   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
472   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)473   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
474     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
475     return Builder.CreateBitCast(V, ConvertType(E->getType()));
476   }
477 
VisitSizeOfPackExpr(SizeOfPackExpr * E)478   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
479     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
480   }
481 
VisitPseudoObjectExpr(PseudoObjectExpr * E)482   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
483     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
484   }
485 
VisitOpaqueValueExpr(OpaqueValueExpr * E)486   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
487     if (E->isGLValue())
488       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
489                               E->getExprLoc());
490 
491     // Otherwise, assume the mapping is the scalar directly.
492     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
493   }
494 
495   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)496   Value *VisitDeclRefExpr(DeclRefExpr *E) {
497     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
498       return CGF.emitScalarConstant(Constant, E);
499     return EmitLoadOfLValue(E);
500   }
501 
VisitObjCSelectorExpr(ObjCSelectorExpr * E)502   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
503     return CGF.EmitObjCSelectorExpr(E);
504   }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)505   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
506     return CGF.EmitObjCProtocolExpr(E);
507   }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)508   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
509     return EmitLoadOfLValue(E);
510   }
VisitObjCMessageExpr(ObjCMessageExpr * E)511   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
512     if (E->getMethodDecl() &&
513         E->getMethodDecl()->getReturnType()->isReferenceType())
514       return EmitLoadOfLValue(E);
515     return CGF.EmitObjCMessageExpr(E).getScalarVal();
516   }
517 
VisitObjCIsaExpr(ObjCIsaExpr * E)518   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
519     LValue LV = CGF.EmitObjCIsaExpr(E);
520     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
521     return V;
522   }
523 
VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr * E)524   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
525     VersionTuple Version = E->getVersion();
526 
527     // If we're checking for a platform older than our minimum deployment
528     // target, we can fold the check away.
529     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
530       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
531 
532     return CGF.EmitBuiltinAvailable(Version);
533   }
534 
535   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
536   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
537   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
538   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
539   Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)540   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)541   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
542     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
543     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
544     // literals aren't l-values in C++. We do so simply because that's the
545     // cleanest way to handle compound literals in C++.
546     // See the discussion here: https://reviews.llvm.org/D64464
547     return EmitLoadOfLValue(E);
548   }
549 
550   Value *VisitInitListExpr(InitListExpr *E);
551 
VisitArrayInitIndexExpr(ArrayInitIndexExpr * E)552   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
553     assert(CGF.getArrayInitIndex() &&
554            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
555     return CGF.getArrayInitIndex();
556   }
557 
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)558   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
559     return EmitNullValue(E->getType());
560   }
VisitExplicitCastExpr(ExplicitCastExpr * E)561   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
562     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
563     return VisitCastExpr(E);
564   }
565   Value *VisitCastExpr(CastExpr *E);
566 
VisitCallExpr(const CallExpr * E)567   Value *VisitCallExpr(const CallExpr *E) {
568     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
569       return EmitLoadOfLValue(E);
570 
571     Value *V = CGF.EmitCallExpr(E).getScalarVal();
572 
573     EmitLValueAlignmentAssumption(E, V);
574     return V;
575   }
576 
577   Value *VisitStmtExpr(const StmtExpr *E);
578 
579   // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)580   Value *VisitUnaryPostDec(const UnaryOperator *E) {
581     LValue LV = EmitLValue(E->getSubExpr());
582     return EmitScalarPrePostIncDec(E, LV, false, false);
583   }
VisitUnaryPostInc(const UnaryOperator * E)584   Value *VisitUnaryPostInc(const UnaryOperator *E) {
585     LValue LV = EmitLValue(E->getSubExpr());
586     return EmitScalarPrePostIncDec(E, LV, true, false);
587   }
VisitUnaryPreDec(const UnaryOperator * E)588   Value *VisitUnaryPreDec(const UnaryOperator *E) {
589     LValue LV = EmitLValue(E->getSubExpr());
590     return EmitScalarPrePostIncDec(E, LV, false, true);
591   }
VisitUnaryPreInc(const UnaryOperator * E)592   Value *VisitUnaryPreInc(const UnaryOperator *E) {
593     LValue LV = EmitLValue(E->getSubExpr());
594     return EmitScalarPrePostIncDec(E, LV, true, true);
595   }
596 
597   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
598                                                   llvm::Value *InVal,
599                                                   bool IsInc);
600 
601   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
602                                        bool isInc, bool isPre);
603 
604 
VisitUnaryAddrOf(const UnaryOperator * E)605   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
606     if (isa<MemberPointerType>(E->getType())) // never sugared
607       return CGF.CGM.getMemberPointerConstant(E);
608 
609     return EmitLValue(E->getSubExpr()).getPointer(CGF);
610   }
VisitUnaryDeref(const UnaryOperator * E)611   Value *VisitUnaryDeref(const UnaryOperator *E) {
612     if (E->getType()->isVoidType())
613       return Visit(E->getSubExpr()); // the actual value should be unused
614     return EmitLoadOfLValue(E);
615   }
VisitUnaryPlus(const UnaryOperator * E)616   Value *VisitUnaryPlus(const UnaryOperator *E) {
617     // This differs from gcc, though, most likely due to a bug in gcc.
618     TestAndClearIgnoreResultAssign();
619     return Visit(E->getSubExpr());
620   }
621   Value *VisitUnaryMinus    (const UnaryOperator *E);
622   Value *VisitUnaryNot      (const UnaryOperator *E);
623   Value *VisitUnaryLNot     (const UnaryOperator *E);
624   Value *VisitUnaryReal     (const UnaryOperator *E);
625   Value *VisitUnaryImag     (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)626   Value *VisitUnaryExtension(const UnaryOperator *E) {
627     return Visit(E->getSubExpr());
628   }
629 
630   // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)631   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
632     return EmitLoadOfLValue(E);
633   }
VisitSourceLocExpr(SourceLocExpr * SLE)634   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
635     auto &Ctx = CGF.getContext();
636     APValue Evaluated =
637         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
638     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
639                                              SLE->getType());
640   }
641 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)642   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
643     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
644     return Visit(DAE->getExpr());
645   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)646   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
647     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
648     return Visit(DIE->getExpr());
649   }
VisitCXXThisExpr(CXXThisExpr * TE)650   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
651     return CGF.LoadCXXThis();
652   }
653 
654   Value *VisitExprWithCleanups(ExprWithCleanups *E);
VisitCXXNewExpr(const CXXNewExpr * E)655   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
656     return CGF.EmitCXXNewExpr(E);
657   }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)658   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
659     CGF.EmitCXXDeleteExpr(E);
660     return nullptr;
661   }
662 
VisitTypeTraitExpr(const TypeTraitExpr * E)663   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
664     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
665   }
666 
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)667   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
668     return Builder.getInt1(E->isSatisfied());
669   }
670 
VisitRequiresExpr(const RequiresExpr * E)671   Value *VisitRequiresExpr(const RequiresExpr *E) {
672     return Builder.getInt1(E->isSatisfied());
673   }
674 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)675   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
676     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
677   }
678 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)679   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
680     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
681   }
682 
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)683   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
684     // C++ [expr.pseudo]p1:
685     //   The result shall only be used as the operand for the function call
686     //   operator (), and the result of such a call has type void. The only
687     //   effect is the evaluation of the postfix-expression before the dot or
688     //   arrow.
689     CGF.EmitScalarExpr(E->getBase());
690     return nullptr;
691   }
692 
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)693   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
694     return EmitNullValue(E->getType());
695   }
696 
VisitCXXThrowExpr(const CXXThrowExpr * E)697   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
698     CGF.EmitCXXThrowExpr(E);
699     return nullptr;
700   }
701 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)702   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
703     return Builder.getInt1(E->getValue());
704   }
705 
706   // Binary Operators.
EmitMul(const BinOpInfo & Ops)707   Value *EmitMul(const BinOpInfo &Ops) {
708     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
709       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
710       case LangOptions::SOB_Defined:
711         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
712       case LangOptions::SOB_Undefined:
713         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
714           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
715         LLVM_FALLTHROUGH;
716       case LangOptions::SOB_Trapping:
717         if (CanElideOverflowCheck(CGF.getContext(), Ops))
718           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
719         return EmitOverflowCheckedBinOp(Ops);
720       }
721     }
722 
723     if (Ops.Ty->isConstantMatrixType()) {
724       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
725       // We need to check the types of the operands of the operator to get the
726       // correct matrix dimensions.
727       auto *BO = cast<BinaryOperator>(Ops.E);
728       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
729           BO->getLHS()->getType().getCanonicalType());
730       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
731           BO->getRHS()->getType().getCanonicalType());
732       if (LHSMatTy && RHSMatTy)
733         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
734                                        LHSMatTy->getNumColumns(),
735                                        RHSMatTy->getNumColumns());
736       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
737     }
738 
739     if (Ops.Ty->isUnsignedIntegerType() &&
740         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
741         !CanElideOverflowCheck(CGF.getContext(), Ops))
742       return EmitOverflowCheckedBinOp(Ops);
743 
744     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
745       //  Preserve the old values
746       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
747       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
748     }
749     if (Ops.isFixedPointOp())
750       return EmitFixedPointBinOp(Ops);
751     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
752   }
753   /// Create a binary op that checks for overflow.
754   /// Currently only supports +, - and *.
755   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
756 
757   // Check for undefined division and modulus behaviors.
758   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
759                                                   llvm::Value *Zero,bool isDiv);
760   // Common helper for getting how wide LHS of shift is.
761   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
762 
763   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
764   // non powers of two.
765   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
766 
767   Value *EmitDiv(const BinOpInfo &Ops);
768   Value *EmitRem(const BinOpInfo &Ops);
769   Value *EmitAdd(const BinOpInfo &Ops);
770   Value *EmitSub(const BinOpInfo &Ops);
771   Value *EmitShl(const BinOpInfo &Ops);
772   Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)773   Value *EmitAnd(const BinOpInfo &Ops) {
774     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
775   }
EmitXor(const BinOpInfo & Ops)776   Value *EmitXor(const BinOpInfo &Ops) {
777     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
778   }
EmitOr(const BinOpInfo & Ops)779   Value *EmitOr (const BinOpInfo &Ops) {
780     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
781   }
782 
783   // Helper functions for fixed point binary operations.
784   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
785 
786   BinOpInfo EmitBinOps(const BinaryOperator *E);
787   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
788                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
789                                   Value *&Result);
790 
791   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
792                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
793 
794   // Binary operators and binary compound assignment operators.
795 #define HANDLEBINOP(OP) \
796   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
797     return Emit ## OP(EmitBinOps(E));                                      \
798   }                                                                        \
799   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
800     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
801   }
802   HANDLEBINOP(Mul)
803   HANDLEBINOP(Div)
804   HANDLEBINOP(Rem)
805   HANDLEBINOP(Add)
806   HANDLEBINOP(Sub)
807   HANDLEBINOP(Shl)
808   HANDLEBINOP(Shr)
809   HANDLEBINOP(And)
810   HANDLEBINOP(Xor)
811   HANDLEBINOP(Or)
812 #undef HANDLEBINOP
813 
814   // Comparisons.
815   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
816                      llvm::CmpInst::Predicate SICmpOpc,
817                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
818 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
819     Value *VisitBin##CODE(const BinaryOperator *E) { \
820       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
821                          llvm::FCmpInst::FP, SIG); }
822   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
823   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
824   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
825   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
826   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
827   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
828 #undef VISITCOMP
829 
830   Value *VisitBinAssign     (const BinaryOperator *E);
831 
832   Value *VisitBinLAnd       (const BinaryOperator *E);
833   Value *VisitBinLOr        (const BinaryOperator *E);
834   Value *VisitBinComma      (const BinaryOperator *E);
835 
VisitBinPtrMemD(const Expr * E)836   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)837   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
838 
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)839   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
840     return Visit(E->getSemanticForm());
841   }
842 
843   // Other Operators.
844   Value *VisitBlockExpr(const BlockExpr *BE);
845   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
846   Value *VisitChooseExpr(ChooseExpr *CE);
847   Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)848   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
849     return CGF.EmitObjCStringLiteral(E);
850   }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)851   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
852     return CGF.EmitObjCBoxedExpr(E);
853   }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)854   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
855     return CGF.EmitObjCArrayLiteral(E);
856   }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)857   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
858     return CGF.EmitObjCDictionaryLiteral(E);
859   }
860   Value *VisitAsTypeExpr(AsTypeExpr *CE);
861   Value *VisitAtomicExpr(AtomicExpr *AE);
862 };
863 }  // end anonymous namespace.
864 
865 //===----------------------------------------------------------------------===//
866 //                                Utilities
867 //===----------------------------------------------------------------------===//
868 
869 /// EmitConversionToBool - Convert the specified expression value to a
870 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)871 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
872   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
873 
874   if (SrcType->isRealFloatingType())
875     return EmitFloatToBoolConversion(Src);
876 
877   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
878     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
879 
880   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
881          "Unknown scalar type to convert");
882 
883   if (isa<llvm::IntegerType>(Src->getType()))
884     return EmitIntToBoolConversion(Src);
885 
886   assert(isa<llvm::PointerType>(Src->getType()));
887   return EmitPointerToBoolConversion(Src, SrcType);
888 }
889 
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy,SourceLocation Loc)890 void ScalarExprEmitter::EmitFloatConversionCheck(
891     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
892     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
893   assert(SrcType->isFloatingType() && "not a conversion from floating point");
894   if (!isa<llvm::IntegerType>(DstTy))
895     return;
896 
897   CodeGenFunction::SanitizerScope SanScope(&CGF);
898   using llvm::APFloat;
899   using llvm::APSInt;
900 
901   llvm::Value *Check = nullptr;
902   const llvm::fltSemantics &SrcSema =
903     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
904 
905   // Floating-point to integer. This has undefined behavior if the source is
906   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
907   // to an integer).
908   unsigned Width = CGF.getContext().getIntWidth(DstType);
909   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
910 
911   APSInt Min = APSInt::getMinValue(Width, Unsigned);
912   APFloat MinSrc(SrcSema, APFloat::uninitialized);
913   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
914       APFloat::opOverflow)
915     // Don't need an overflow check for lower bound. Just check for
916     // -Inf/NaN.
917     MinSrc = APFloat::getInf(SrcSema, true);
918   else
919     // Find the largest value which is too small to represent (before
920     // truncation toward zero).
921     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
922 
923   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
924   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
925   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
926       APFloat::opOverflow)
927     // Don't need an overflow check for upper bound. Just check for
928     // +Inf/NaN.
929     MaxSrc = APFloat::getInf(SrcSema, false);
930   else
931     // Find the smallest value which is too large to represent (before
932     // truncation toward zero).
933     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
934 
935   // If we're converting from __half, convert the range to float to match
936   // the type of src.
937   if (OrigSrcType->isHalfType()) {
938     const llvm::fltSemantics &Sema =
939       CGF.getContext().getFloatTypeSemantics(SrcType);
940     bool IsInexact;
941     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
942     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
943   }
944 
945   llvm::Value *GE =
946     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
947   llvm::Value *LE =
948     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
949   Check = Builder.CreateAnd(GE, LE);
950 
951   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
952                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
953                                   CGF.EmitCheckTypeDescriptor(DstType)};
954   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
955                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
956 }
957 
958 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
959 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
960 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
961                  std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerTruncationCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)962 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
963                                  QualType DstType, CGBuilderTy &Builder) {
964   llvm::Type *SrcTy = Src->getType();
965   llvm::Type *DstTy = Dst->getType();
966   (void)DstTy; // Only used in assert()
967 
968   // This should be truncation of integral types.
969   assert(Src != Dst);
970   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
971   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
972          "non-integer llvm type");
973 
974   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
975   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
976 
977   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
978   // Else, it is a signed truncation.
979   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
980   SanitizerMask Mask;
981   if (!SrcSigned && !DstSigned) {
982     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
983     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
984   } else {
985     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
986     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
987   }
988 
989   llvm::Value *Check = nullptr;
990   // 1. Extend the truncated value back to the same width as the Src.
991   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
992   // 2. Equality-compare with the original source value
993   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
994   // If the comparison result is 'i1 false', then the truncation was lossy.
995   return std::make_pair(Kind, std::make_pair(Check, Mask));
996 }
997 
PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(QualType SrcType,QualType DstType)998 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
999     QualType SrcType, QualType DstType) {
1000   return SrcType->isIntegerType() && DstType->isIntegerType();
1001 }
1002 
EmitIntegerTruncationCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1003 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1004                                                    Value *Dst, QualType DstType,
1005                                                    SourceLocation Loc) {
1006   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1007     return;
1008 
1009   // We only care about int->int conversions here.
1010   // We ignore conversions to/from pointer and/or bool.
1011   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1012                                                                        DstType))
1013     return;
1014 
1015   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1016   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1017   // This must be truncation. Else we do not care.
1018   if (SrcBits <= DstBits)
1019     return;
1020 
1021   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1022 
1023   // If the integer sign change sanitizer is enabled,
1024   // and we are truncating from larger unsigned type to smaller signed type,
1025   // let that next sanitizer deal with it.
1026   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1027   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1028   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1029       (!SrcSigned && DstSigned))
1030     return;
1031 
1032   CodeGenFunction::SanitizerScope SanScope(&CGF);
1033 
1034   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1035             std::pair<llvm::Value *, SanitizerMask>>
1036       Check =
1037           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1038   // If the comparison result is 'i1 false', then the truncation was lossy.
1039 
1040   // Do we care about this type of truncation?
1041   if (!CGF.SanOpts.has(Check.second.second))
1042     return;
1043 
1044   llvm::Constant *StaticArgs[] = {
1045       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1046       CGF.EmitCheckTypeDescriptor(DstType),
1047       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1048   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1049                 {Src, Dst});
1050 }
1051 
1052 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1053 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1054 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1055                  std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerSignChangeCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)1056 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1057                                  QualType DstType, CGBuilderTy &Builder) {
1058   llvm::Type *SrcTy = Src->getType();
1059   llvm::Type *DstTy = Dst->getType();
1060 
1061   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1062          "non-integer llvm type");
1063 
1064   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1065   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1066   (void)SrcSigned; // Only used in assert()
1067   (void)DstSigned; // Only used in assert()
1068   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1069   unsigned DstBits = DstTy->getScalarSizeInBits();
1070   (void)SrcBits; // Only used in assert()
1071   (void)DstBits; // Only used in assert()
1072 
1073   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1074          "either the widths should be different, or the signednesses.");
1075 
1076   // NOTE: zero value is considered to be non-negative.
1077   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1078                                        const char *Name) -> Value * {
1079     // Is this value a signed type?
1080     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1081     llvm::Type *VTy = V->getType();
1082     if (!VSigned) {
1083       // If the value is unsigned, then it is never negative.
1084       // FIXME: can we encounter non-scalar VTy here?
1085       return llvm::ConstantInt::getFalse(VTy->getContext());
1086     }
1087     // Get the zero of the same type with which we will be comparing.
1088     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1089     // %V.isnegative = icmp slt %V, 0
1090     // I.e is %V *strictly* less than zero, does it have negative value?
1091     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1092                               llvm::Twine(Name) + "." + V->getName() +
1093                                   ".negativitycheck");
1094   };
1095 
1096   // 1. Was the old Value negative?
1097   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1098   // 2. Is the new Value negative?
1099   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1100   // 3. Now, was the 'negativity status' preserved during the conversion?
1101   //    NOTE: conversion from negative to zero is considered to change the sign.
1102   //    (We want to get 'false' when the conversion changed the sign)
1103   //    So we should just equality-compare the negativity statuses.
1104   llvm::Value *Check = nullptr;
1105   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1106   // If the comparison result is 'false', then the conversion changed the sign.
1107   return std::make_pair(
1108       ScalarExprEmitter::ICCK_IntegerSignChange,
1109       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1110 }
1111 
EmitIntegerSignChangeCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1112 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1113                                                    Value *Dst, QualType DstType,
1114                                                    SourceLocation Loc) {
1115   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1116     return;
1117 
1118   llvm::Type *SrcTy = Src->getType();
1119   llvm::Type *DstTy = Dst->getType();
1120 
1121   // We only care about int->int conversions here.
1122   // We ignore conversions to/from pointer and/or bool.
1123   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1124                                                                        DstType))
1125     return;
1126 
1127   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1128   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1129   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1130   unsigned DstBits = DstTy->getScalarSizeInBits();
1131 
1132   // Now, we do not need to emit the check in *all* of the cases.
1133   // We can avoid emitting it in some obvious cases where it would have been
1134   // dropped by the opt passes (instcombine) always anyways.
1135   // If it's a cast between effectively the same type, no check.
1136   // NOTE: this is *not* equivalent to checking the canonical types.
1137   if (SrcSigned == DstSigned && SrcBits == DstBits)
1138     return;
1139   // At least one of the values needs to have signed type.
1140   // If both are unsigned, then obviously, neither of them can be negative.
1141   if (!SrcSigned && !DstSigned)
1142     return;
1143   // If the conversion is to *larger* *signed* type, then no check is needed.
1144   // Because either sign-extension happens (so the sign will remain),
1145   // or zero-extension will happen (the sign bit will be zero.)
1146   if ((DstBits > SrcBits) && DstSigned)
1147     return;
1148   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1149       (SrcBits > DstBits) && SrcSigned) {
1150     // If the signed integer truncation sanitizer is enabled,
1151     // and this is a truncation from signed type, then no check is needed.
1152     // Because here sign change check is interchangeable with truncation check.
1153     return;
1154   }
1155   // That's it. We can't rule out any more cases with the data we have.
1156 
1157   CodeGenFunction::SanitizerScope SanScope(&CGF);
1158 
1159   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1160             std::pair<llvm::Value *, SanitizerMask>>
1161       Check;
1162 
1163   // Each of these checks needs to return 'false' when an issue was detected.
1164   ImplicitConversionCheckKind CheckKind;
1165   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1166   // So we can 'and' all the checks together, and still get 'false',
1167   // if at least one of the checks detected an issue.
1168 
1169   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1170   CheckKind = Check.first;
1171   Checks.emplace_back(Check.second);
1172 
1173   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1174       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1175     // If the signed integer truncation sanitizer was enabled,
1176     // and we are truncating from larger unsigned type to smaller signed type,
1177     // let's handle the case we skipped in that check.
1178     Check =
1179         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1180     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1181     Checks.emplace_back(Check.second);
1182     // If the comparison result is 'i1 false', then the truncation was lossy.
1183   }
1184 
1185   llvm::Constant *StaticArgs[] = {
1186       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1187       CGF.EmitCheckTypeDescriptor(DstType),
1188       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1189   // EmitCheck() will 'and' all the checks together.
1190   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1191                 {Src, Dst});
1192 }
1193 
1194 /// Emit a conversion from the specified type to the specified destination type,
1195 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc,ScalarConversionOpts Opts)1196 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1197                                                QualType DstType,
1198                                                SourceLocation Loc,
1199                                                ScalarConversionOpts Opts) {
1200   // All conversions involving fixed point types should be handled by the
1201   // EmitFixedPoint family functions. This is done to prevent bloating up this
1202   // function more, and although fixed point numbers are represented by
1203   // integers, we do not want to follow any logic that assumes they should be
1204   // treated as integers.
1205   // TODO(leonardchan): When necessary, add another if statement checking for
1206   // conversions to fixed point types from other types.
1207   if (SrcType->isFixedPointType()) {
1208     if (DstType->isBooleanType())
1209       // It is important that we check this before checking if the dest type is
1210       // an integer because booleans are technically integer types.
1211       // We do not need to check the padding bit on unsigned types if unsigned
1212       // padding is enabled because overflow into this bit is undefined
1213       // behavior.
1214       return Builder.CreateIsNotNull(Src, "tobool");
1215     if (DstType->isFixedPointType() || DstType->isIntegerType())
1216       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1217 
1218     llvm_unreachable(
1219         "Unhandled scalar conversion from a fixed point type to another type.");
1220   } else if (DstType->isFixedPointType()) {
1221     if (SrcType->isIntegerType())
1222       // This also includes converting booleans and enums to fixed point types.
1223       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1224 
1225     llvm_unreachable(
1226         "Unhandled scalar conversion to a fixed point type from another type.");
1227   }
1228 
1229   QualType NoncanonicalSrcType = SrcType;
1230   QualType NoncanonicalDstType = DstType;
1231 
1232   SrcType = CGF.getContext().getCanonicalType(SrcType);
1233   DstType = CGF.getContext().getCanonicalType(DstType);
1234   if (SrcType == DstType) return Src;
1235 
1236   if (DstType->isVoidType()) return nullptr;
1237 
1238   llvm::Value *OrigSrc = Src;
1239   QualType OrigSrcType = SrcType;
1240   llvm::Type *SrcTy = Src->getType();
1241 
1242   // Handle conversions to bool first, they are special: comparisons against 0.
1243   if (DstType->isBooleanType())
1244     return EmitConversionToBool(Src, SrcType);
1245 
1246   llvm::Type *DstTy = ConvertType(DstType);
1247 
1248   // Cast from half through float if half isn't a native type.
1249   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1250     // Cast to FP using the intrinsic if the half type itself isn't supported.
1251     if (DstTy->isFloatingPointTy()) {
1252       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1253         return Builder.CreateCall(
1254             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1255             Src);
1256     } else {
1257       // Cast to other types through float, using either the intrinsic or FPExt,
1258       // depending on whether the half type itself is supported
1259       // (as opposed to operations on half, available with NativeHalfType).
1260       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1261         Src = Builder.CreateCall(
1262             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1263                                  CGF.CGM.FloatTy),
1264             Src);
1265       } else {
1266         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1267       }
1268       SrcType = CGF.getContext().FloatTy;
1269       SrcTy = CGF.FloatTy;
1270     }
1271   }
1272 
1273   // Ignore conversions like int -> uint.
1274   if (SrcTy == DstTy) {
1275     if (Opts.EmitImplicitIntegerSignChangeChecks)
1276       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1277                                  NoncanonicalDstType, Loc);
1278 
1279     return Src;
1280   }
1281 
1282   // Handle pointer conversions next: pointers can only be converted to/from
1283   // other pointers and integers. Check for pointer types in terms of LLVM, as
1284   // some native types (like Obj-C id) may map to a pointer type.
1285   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1286     // The source value may be an integer, or a pointer.
1287     if (isa<llvm::PointerType>(SrcTy))
1288       return Builder.CreateBitCast(Src, DstTy, "conv");
1289 
1290     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1291     // First, convert to the correct width so that we control the kind of
1292     // extension.
1293     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1294     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1295     llvm::Value* IntResult =
1296         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1297     // Then, cast to pointer.
1298     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1299   }
1300 
1301   if (isa<llvm::PointerType>(SrcTy)) {
1302     // Must be an ptr to int cast.
1303     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1304     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1305   }
1306 
1307   // A scalar can be splatted to an extended vector of the same element type
1308   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1309     // Sema should add casts to make sure that the source expression's type is
1310     // the same as the vector's element type (sans qualifiers)
1311     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1312                SrcType.getTypePtr() &&
1313            "Splatted expr doesn't match with vector element type?");
1314 
1315     // Splat the element across to all elements
1316     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1317     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1318   }
1319 
1320   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1321     // Allow bitcast from vector to integer/fp of the same size.
1322     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1323     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1324     if (SrcSize == DstSize)
1325       return Builder.CreateBitCast(Src, DstTy, "conv");
1326 
1327     // Conversions between vectors of different sizes are not allowed except
1328     // when vectors of half are involved. Operations on storage-only half
1329     // vectors require promoting half vector operands to float vectors and
1330     // truncating the result, which is either an int or float vector, to a
1331     // short or half vector.
1332 
1333     // Source and destination are both expected to be vectors.
1334     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1335     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1336     (void)DstElementTy;
1337 
1338     assert(((SrcElementTy->isIntegerTy() &&
1339              DstElementTy->isIntegerTy()) ||
1340             (SrcElementTy->isFloatingPointTy() &&
1341              DstElementTy->isFloatingPointTy())) &&
1342            "unexpected conversion between a floating-point vector and an "
1343            "integer vector");
1344 
1345     // Truncate an i32 vector to an i16 vector.
1346     if (SrcElementTy->isIntegerTy())
1347       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1348 
1349     // Truncate a float vector to a half vector.
1350     if (SrcSize > DstSize)
1351       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1352 
1353     // Promote a half vector to a float vector.
1354     return Builder.CreateFPExt(Src, DstTy, "conv");
1355   }
1356 
1357   // Finally, we have the arithmetic types: real int/float.
1358   Value *Res = nullptr;
1359   llvm::Type *ResTy = DstTy;
1360 
1361   // An overflowing conversion has undefined behavior if either the source type
1362   // or the destination type is a floating-point type. However, we consider the
1363   // range of representable values for all floating-point types to be
1364   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1365   // floating-point type.
1366   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1367       OrigSrcType->isFloatingType())
1368     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1369                              Loc);
1370 
1371   // Cast to half through float if half isn't a native type.
1372   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1373     // Make sure we cast in a single step if from another FP type.
1374     if (SrcTy->isFloatingPointTy()) {
1375       // Use the intrinsic if the half type itself isn't supported
1376       // (as opposed to operations on half, available with NativeHalfType).
1377       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1378         return Builder.CreateCall(
1379             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1380       // If the half type is supported, just use an fptrunc.
1381       return Builder.CreateFPTrunc(Src, DstTy);
1382     }
1383     DstTy = CGF.FloatTy;
1384   }
1385 
1386   if (isa<llvm::IntegerType>(SrcTy)) {
1387     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1388     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1389       InputSigned = true;
1390     }
1391     if (isa<llvm::IntegerType>(DstTy))
1392       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1393     else if (InputSigned)
1394       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1395     else
1396       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1397   } else if (isa<llvm::IntegerType>(DstTy)) {
1398     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1399     if (DstType->isSignedIntegerOrEnumerationType())
1400       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1401     else
1402       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1403   } else {
1404     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1405            "Unknown real conversion");
1406     if (DstTy->getTypeID() < SrcTy->getTypeID())
1407       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1408     else
1409       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1410   }
1411 
1412   if (DstTy != ResTy) {
1413     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1414       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1415       Res = Builder.CreateCall(
1416         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1417         Res);
1418     } else {
1419       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1420     }
1421   }
1422 
1423   if (Opts.EmitImplicitIntegerTruncationChecks)
1424     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1425                                NoncanonicalDstType, Loc);
1426 
1427   if (Opts.EmitImplicitIntegerSignChangeChecks)
1428     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1429                                NoncanonicalDstType, Loc);
1430 
1431   return Res;
1432 }
1433 
EmitFixedPointConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1434 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1435                                                    QualType DstTy,
1436                                                    SourceLocation Loc) {
1437   auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1438   auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1439   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1440   llvm::Value *Result;
1441   if (DstTy->isIntegerType())
1442     Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1443                                             DstFPSema.getWidth(),
1444                                             DstFPSema.isSigned());
1445   else if (SrcTy->isIntegerType())
1446     Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1447                                              DstFPSema);
1448   else
1449     Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1450   return Result;
1451 }
1452 
1453 /// Emit a conversion from the specified complex type to the specified
1454 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1455 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1456     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1457     SourceLocation Loc) {
1458   // Get the source element type.
1459   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1460 
1461   // Handle conversions to bool first, they are special: comparisons against 0.
1462   if (DstTy->isBooleanType()) {
1463     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1464     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1465     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1466     return Builder.CreateOr(Src.first, Src.second, "tobool");
1467   }
1468 
1469   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1470   // the imaginary part of the complex value is discarded and the value of the
1471   // real part is converted according to the conversion rules for the
1472   // corresponding real type.
1473   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1474 }
1475 
EmitNullValue(QualType Ty)1476 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1477   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1478 }
1479 
1480 /// Emit a sanitization check for the given "binary" operation (which
1481 /// might actually be a unary increment which has been lowered to a binary
1482 /// operation). The check passes if all values in \p Checks (which are \c i1),
1483 /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerMask>> Checks,const BinOpInfo & Info)1484 void ScalarExprEmitter::EmitBinOpCheck(
1485     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1486   assert(CGF.IsSanitizerScope);
1487   SanitizerHandler Check;
1488   SmallVector<llvm::Constant *, 4> StaticData;
1489   SmallVector<llvm::Value *, 2> DynamicData;
1490 
1491   BinaryOperatorKind Opcode = Info.Opcode;
1492   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1493     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1494 
1495   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1496   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1497   if (UO && UO->getOpcode() == UO_Minus) {
1498     Check = SanitizerHandler::NegateOverflow;
1499     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1500     DynamicData.push_back(Info.RHS);
1501   } else {
1502     if (BinaryOperator::isShiftOp(Opcode)) {
1503       // Shift LHS negative or too large, or RHS out of bounds.
1504       Check = SanitizerHandler::ShiftOutOfBounds;
1505       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1506       StaticData.push_back(
1507         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1508       StaticData.push_back(
1509         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1510     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1511       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1512       Check = SanitizerHandler::DivremOverflow;
1513       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1514     } else {
1515       // Arithmetic overflow (+, -, *).
1516       switch (Opcode) {
1517       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1518       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1519       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1520       default: llvm_unreachable("unexpected opcode for bin op check");
1521       }
1522       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1523     }
1524     DynamicData.push_back(Info.LHS);
1525     DynamicData.push_back(Info.RHS);
1526   }
1527 
1528   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 //                            Visitor Methods
1533 //===----------------------------------------------------------------------===//
1534 
VisitExpr(Expr * E)1535 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1536   CGF.ErrorUnsupported(E, "scalar expression");
1537   if (E->getType()->isVoidType())
1538     return nullptr;
1539   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1540 }
1541 
VisitShuffleVectorExpr(ShuffleVectorExpr * E)1542 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1543   // Vector Mask Case
1544   if (E->getNumSubExprs() == 2) {
1545     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1546     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1547     Value *Mask;
1548 
1549     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1550     unsigned LHSElts = LTy->getNumElements();
1551 
1552     Mask = RHS;
1553 
1554     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1555 
1556     // Mask off the high bits of each shuffle index.
1557     Value *MaskBits =
1558         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1559     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1560 
1561     // newv = undef
1562     // mask = mask & maskbits
1563     // for each elt
1564     //   n = extract mask i
1565     //   x = extract val n
1566     //   newv = insert newv, x, i
1567     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1568                                            MTy->getNumElements());
1569     Value* NewV = llvm::UndefValue::get(RTy);
1570     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1571       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1572       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1573 
1574       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1575       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1576     }
1577     return NewV;
1578   }
1579 
1580   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1581   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1582 
1583   SmallVector<int, 32> Indices;
1584   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1585     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1586     // Check for -1 and output it as undef in the IR.
1587     if (Idx.isSigned() && Idx.isAllOnesValue())
1588       Indices.push_back(-1);
1589     else
1590       Indices.push_back(Idx.getZExtValue());
1591   }
1592 
1593   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1594 }
1595 
VisitConvertVectorExpr(ConvertVectorExpr * E)1596 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1597   QualType SrcType = E->getSrcExpr()->getType(),
1598            DstType = E->getType();
1599 
1600   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1601 
1602   SrcType = CGF.getContext().getCanonicalType(SrcType);
1603   DstType = CGF.getContext().getCanonicalType(DstType);
1604   if (SrcType == DstType) return Src;
1605 
1606   assert(SrcType->isVectorType() &&
1607          "ConvertVector source type must be a vector");
1608   assert(DstType->isVectorType() &&
1609          "ConvertVector destination type must be a vector");
1610 
1611   llvm::Type *SrcTy = Src->getType();
1612   llvm::Type *DstTy = ConvertType(DstType);
1613 
1614   // Ignore conversions like int -> uint.
1615   if (SrcTy == DstTy)
1616     return Src;
1617 
1618   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1619            DstEltType = DstType->castAs<VectorType>()->getElementType();
1620 
1621   assert(SrcTy->isVectorTy() &&
1622          "ConvertVector source IR type must be a vector");
1623   assert(DstTy->isVectorTy() &&
1624          "ConvertVector destination IR type must be a vector");
1625 
1626   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1627              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1628 
1629   if (DstEltType->isBooleanType()) {
1630     assert((SrcEltTy->isFloatingPointTy() ||
1631             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1632 
1633     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1634     if (SrcEltTy->isFloatingPointTy()) {
1635       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1636     } else {
1637       return Builder.CreateICmpNE(Src, Zero, "tobool");
1638     }
1639   }
1640 
1641   // We have the arithmetic types: real int/float.
1642   Value *Res = nullptr;
1643 
1644   if (isa<llvm::IntegerType>(SrcEltTy)) {
1645     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1646     if (isa<llvm::IntegerType>(DstEltTy))
1647       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1648     else if (InputSigned)
1649       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1650     else
1651       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1652   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1653     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1654     if (DstEltType->isSignedIntegerOrEnumerationType())
1655       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1656     else
1657       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1658   } else {
1659     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1660            "Unknown real conversion");
1661     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1662       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1663     else
1664       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1665   }
1666 
1667   return Res;
1668 }
1669 
VisitMemberExpr(MemberExpr * E)1670 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1671   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1672     CGF.EmitIgnoredExpr(E->getBase());
1673     return CGF.emitScalarConstant(Constant, E);
1674   } else {
1675     Expr::EvalResult Result;
1676     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1677       llvm::APSInt Value = Result.Val.getInt();
1678       CGF.EmitIgnoredExpr(E->getBase());
1679       return Builder.getInt(Value);
1680     }
1681   }
1682 
1683   return EmitLoadOfLValue(E);
1684 }
1685 
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1686 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1687   TestAndClearIgnoreResultAssign();
1688 
1689   // Emit subscript expressions in rvalue context's.  For most cases, this just
1690   // loads the lvalue formed by the subscript expr.  However, we have to be
1691   // careful, because the base of a vector subscript is occasionally an rvalue,
1692   // so we can't get it as an lvalue.
1693   if (!E->getBase()->getType()->isVectorType())
1694     return EmitLoadOfLValue(E);
1695 
1696   // Handle the vector case.  The base must be a vector, the index must be an
1697   // integer value.
1698   Value *Base = Visit(E->getBase());
1699   Value *Idx  = Visit(E->getIdx());
1700   QualType IdxTy = E->getIdx()->getType();
1701 
1702   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1703     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1704 
1705   return Builder.CreateExtractElement(Base, Idx, "vecext");
1706 }
1707 
VisitMatrixSubscriptExpr(MatrixSubscriptExpr * E)1708 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1709   TestAndClearIgnoreResultAssign();
1710 
1711   // Handle the vector case.  The base must be a vector, the index must be an
1712   // integer value.
1713   Value *RowIdx = Visit(E->getRowIdx());
1714   Value *ColumnIdx = Visit(E->getColumnIdx());
1715   Value *Matrix = Visit(E->getBase());
1716 
1717   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1718   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1719   return MB.CreateExtractElement(
1720       Matrix, RowIdx, ColumnIdx,
1721       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1722 }
1723 
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off)1724 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1725                       unsigned Off) {
1726   int MV = SVI->getMaskValue(Idx);
1727   if (MV == -1)
1728     return -1;
1729   return Off + MV;
1730 }
1731 
getAsInt32(llvm::ConstantInt * C,llvm::Type * I32Ty)1732 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1733   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1734          "Index operand too large for shufflevector mask!");
1735   return C->getZExtValue();
1736 }
1737 
VisitInitListExpr(InitListExpr * E)1738 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1739   bool Ignore = TestAndClearIgnoreResultAssign();
1740   (void)Ignore;
1741   assert (Ignore == false && "init list ignored");
1742   unsigned NumInitElements = E->getNumInits();
1743 
1744   if (E->hadArrayRangeDesignator())
1745     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1746 
1747   llvm::VectorType *VType =
1748     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1749 
1750   if (!VType) {
1751     if (NumInitElements == 0) {
1752       // C++11 value-initialization for the scalar.
1753       return EmitNullValue(E->getType());
1754     }
1755     // We have a scalar in braces. Just use the first element.
1756     return Visit(E->getInit(0));
1757   }
1758 
1759   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1760 
1761   // Loop over initializers collecting the Value for each, and remembering
1762   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1763   // us to fold the shuffle for the swizzle into the shuffle for the vector
1764   // initializer, since LLVM optimizers generally do not want to touch
1765   // shuffles.
1766   unsigned CurIdx = 0;
1767   bool VIsUndefShuffle = false;
1768   llvm::Value *V = llvm::UndefValue::get(VType);
1769   for (unsigned i = 0; i != NumInitElements; ++i) {
1770     Expr *IE = E->getInit(i);
1771     Value *Init = Visit(IE);
1772     SmallVector<int, 16> Args;
1773 
1774     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1775 
1776     // Handle scalar elements.  If the scalar initializer is actually one
1777     // element of a different vector of the same width, use shuffle instead of
1778     // extract+insert.
1779     if (!VVT) {
1780       if (isa<ExtVectorElementExpr>(IE)) {
1781         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1782 
1783         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1784                 ->getNumElements() == ResElts) {
1785           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1786           Value *LHS = nullptr, *RHS = nullptr;
1787           if (CurIdx == 0) {
1788             // insert into undef -> shuffle (src, undef)
1789             // shufflemask must use an i32
1790             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1791             Args.resize(ResElts, -1);
1792 
1793             LHS = EI->getVectorOperand();
1794             RHS = V;
1795             VIsUndefShuffle = true;
1796           } else if (VIsUndefShuffle) {
1797             // insert into undefshuffle && size match -> shuffle (v, src)
1798             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1799             for (unsigned j = 0; j != CurIdx; ++j)
1800               Args.push_back(getMaskElt(SVV, j, 0));
1801             Args.push_back(ResElts + C->getZExtValue());
1802             Args.resize(ResElts, -1);
1803 
1804             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1805             RHS = EI->getVectorOperand();
1806             VIsUndefShuffle = false;
1807           }
1808           if (!Args.empty()) {
1809             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1810             ++CurIdx;
1811             continue;
1812           }
1813         }
1814       }
1815       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1816                                       "vecinit");
1817       VIsUndefShuffle = false;
1818       ++CurIdx;
1819       continue;
1820     }
1821 
1822     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1823 
1824     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1825     // input is the same width as the vector being constructed, generate an
1826     // optimized shuffle of the swizzle input into the result.
1827     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1828     if (isa<ExtVectorElementExpr>(IE)) {
1829       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1830       Value *SVOp = SVI->getOperand(0);
1831       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1832 
1833       if (OpTy->getNumElements() == ResElts) {
1834         for (unsigned j = 0; j != CurIdx; ++j) {
1835           // If the current vector initializer is a shuffle with undef, merge
1836           // this shuffle directly into it.
1837           if (VIsUndefShuffle) {
1838             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1839           } else {
1840             Args.push_back(j);
1841           }
1842         }
1843         for (unsigned j = 0, je = InitElts; j != je; ++j)
1844           Args.push_back(getMaskElt(SVI, j, Offset));
1845         Args.resize(ResElts, -1);
1846 
1847         if (VIsUndefShuffle)
1848           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1849 
1850         Init = SVOp;
1851       }
1852     }
1853 
1854     // Extend init to result vector length, and then shuffle its contribution
1855     // to the vector initializer into V.
1856     if (Args.empty()) {
1857       for (unsigned j = 0; j != InitElts; ++j)
1858         Args.push_back(j);
1859       Args.resize(ResElts, -1);
1860       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1861                                          "vext");
1862 
1863       Args.clear();
1864       for (unsigned j = 0; j != CurIdx; ++j)
1865         Args.push_back(j);
1866       for (unsigned j = 0; j != InitElts; ++j)
1867         Args.push_back(j + Offset);
1868       Args.resize(ResElts, -1);
1869     }
1870 
1871     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1872     // merging subsequent shuffles into this one.
1873     if (CurIdx == 0)
1874       std::swap(V, Init);
1875     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1876     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1877     CurIdx += InitElts;
1878   }
1879 
1880   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1881   // Emit remaining default initializers.
1882   llvm::Type *EltTy = VType->getElementType();
1883 
1884   // Emit remaining default initializers
1885   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1886     Value *Idx = Builder.getInt32(CurIdx);
1887     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1888     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1889   }
1890   return V;
1891 }
1892 
ShouldNullCheckClassCastValue(const CastExpr * CE)1893 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1894   const Expr *E = CE->getSubExpr();
1895 
1896   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1897     return false;
1898 
1899   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1900     // We always assume that 'this' is never null.
1901     return false;
1902   }
1903 
1904   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1905     // And that glvalue casts are never null.
1906     if (ICE->getValueKind() != VK_RValue)
1907       return false;
1908   }
1909 
1910   return true;
1911 }
1912 
1913 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1914 // have to handle a more broad range of conversions than explicit casts, as they
1915 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1916 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1917   Expr *E = CE->getSubExpr();
1918   QualType DestTy = CE->getType();
1919   CastKind Kind = CE->getCastKind();
1920 
1921   // These cases are generally not written to ignore the result of
1922   // evaluating their sub-expressions, so we clear this now.
1923   bool Ignored = TestAndClearIgnoreResultAssign();
1924 
1925   // Since almost all cast kinds apply to scalars, this switch doesn't have
1926   // a default case, so the compiler will warn on a missing case.  The cases
1927   // are in the same order as in the CastKind enum.
1928   switch (Kind) {
1929   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1930   case CK_BuiltinFnToFnPtr:
1931     llvm_unreachable("builtin functions are handled elsewhere");
1932 
1933   case CK_LValueBitCast:
1934   case CK_ObjCObjectLValueCast: {
1935     Address Addr = EmitLValue(E).getAddress(CGF);
1936     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1937     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1938     return EmitLoadOfLValue(LV, CE->getExprLoc());
1939   }
1940 
1941   case CK_LValueToRValueBitCast: {
1942     LValue SourceLVal = CGF.EmitLValue(E);
1943     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1944                                                 CGF.ConvertTypeForMem(DestTy));
1945     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1946     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1947     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1948   }
1949 
1950   case CK_CPointerToObjCPointerCast:
1951   case CK_BlockPointerToObjCPointerCast:
1952   case CK_AnyPointerToBlockPointerCast:
1953   case CK_BitCast: {
1954     Value *Src = Visit(const_cast<Expr*>(E));
1955     llvm::Type *SrcTy = Src->getType();
1956     llvm::Type *DstTy = ConvertType(DestTy);
1957     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1958         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1959       llvm_unreachable("wrong cast for pointers in different address spaces"
1960                        "(must be an address space cast)!");
1961     }
1962 
1963     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1964       if (auto PT = DestTy->getAs<PointerType>())
1965         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1966                                       /*MayBeNull=*/true,
1967                                       CodeGenFunction::CFITCK_UnrelatedCast,
1968                                       CE->getBeginLoc());
1969     }
1970 
1971     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1972       const QualType SrcType = E->getType();
1973 
1974       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1975         // Casting to pointer that could carry dynamic information (provided by
1976         // invariant.group) requires launder.
1977         Src = Builder.CreateLaunderInvariantGroup(Src);
1978       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1979         // Casting to pointer that does not carry dynamic information (provided
1980         // by invariant.group) requires stripping it.  Note that we don't do it
1981         // if the source could not be dynamic type and destination could be
1982         // dynamic because dynamic information is already laundered.  It is
1983         // because launder(strip(src)) == launder(src), so there is no need to
1984         // add extra strip before launder.
1985         Src = Builder.CreateStripInvariantGroup(Src);
1986       }
1987     }
1988 
1989     // Update heapallocsite metadata when there is an explicit pointer cast.
1990     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
1991       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
1992         QualType PointeeType = DestTy->getPointeeType();
1993         if (!PointeeType.isNull())
1994           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
1995                                                        CE->getExprLoc());
1996       }
1997     }
1998 
1999     // Perform VLAT <-> VLST bitcast through memory.
2000     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2001          isa<llvm::ScalableVectorType>(DstTy)) ||
2002         (isa<llvm::ScalableVectorType>(SrcTy) &&
2003          isa<llvm::FixedVectorType>(DstTy))) {
2004       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2005         // Call expressions can't have a scalar return unless the return type
2006         // is a reference type so an lvalue can't be emitted. Create a temp
2007         // alloca to store the call, bitcast the address then load.
2008         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2009         Address Addr =
2010             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2011         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2012         CGF.EmitStoreOfScalar(Src, LV);
2013         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2014                                             "castFixedSve");
2015         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2016         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2017         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2018       }
2019 
2020       Address Addr = EmitLValue(E).getAddress(CGF);
2021       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2022       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2023       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2024       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2025     }
2026 
2027     return Builder.CreateBitCast(Src, DstTy);
2028   }
2029   case CK_AddressSpaceConversion: {
2030     Expr::EvalResult Result;
2031     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2032         Result.Val.isNullPointer()) {
2033       // If E has side effect, it is emitted even if its final result is a
2034       // null pointer. In that case, a DCE pass should be able to
2035       // eliminate the useless instructions emitted during translating E.
2036       if (Result.HasSideEffects)
2037         Visit(E);
2038       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2039           ConvertType(DestTy)), DestTy);
2040     }
2041     // Since target may map different address spaces in AST to the same address
2042     // space, an address space conversion may end up as a bitcast.
2043     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2044         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2045         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2046   }
2047   case CK_AtomicToNonAtomic:
2048   case CK_NonAtomicToAtomic:
2049   case CK_NoOp:
2050   case CK_UserDefinedConversion:
2051     return Visit(const_cast<Expr*>(E));
2052 
2053   case CK_BaseToDerived: {
2054     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2055     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2056 
2057     Address Base = CGF.EmitPointerWithAlignment(E);
2058     Address Derived =
2059       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2060                                    CE->path_begin(), CE->path_end(),
2061                                    CGF.ShouldNullCheckClassCastValue(CE));
2062 
2063     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2064     // performed and the object is not of the derived type.
2065     if (CGF.sanitizePerformTypeCheck())
2066       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2067                         Derived.getPointer(), DestTy->getPointeeType());
2068 
2069     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2070       CGF.EmitVTablePtrCheckForCast(
2071           DestTy->getPointeeType(), Derived.getPointer(),
2072           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2073           CE->getBeginLoc());
2074 
2075     return Derived.getPointer();
2076   }
2077   case CK_UncheckedDerivedToBase:
2078   case CK_DerivedToBase: {
2079     // The EmitPointerWithAlignment path does this fine; just discard
2080     // the alignment.
2081     return CGF.EmitPointerWithAlignment(CE).getPointer();
2082   }
2083 
2084   case CK_Dynamic: {
2085     Address V = CGF.EmitPointerWithAlignment(E);
2086     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2087     return CGF.EmitDynamicCast(V, DCE);
2088   }
2089 
2090   case CK_ArrayToPointerDecay:
2091     return CGF.EmitArrayToPointerDecay(E).getPointer();
2092   case CK_FunctionToPointerDecay:
2093     return EmitLValue(E).getPointer(CGF);
2094 
2095   case CK_NullToPointer:
2096     if (MustVisitNullValue(E))
2097       CGF.EmitIgnoredExpr(E);
2098 
2099     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2100                               DestTy);
2101 
2102   case CK_NullToMemberPointer: {
2103     if (MustVisitNullValue(E))
2104       CGF.EmitIgnoredExpr(E);
2105 
2106     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2107     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2108   }
2109 
2110   case CK_ReinterpretMemberPointer:
2111   case CK_BaseToDerivedMemberPointer:
2112   case CK_DerivedToBaseMemberPointer: {
2113     Value *Src = Visit(E);
2114 
2115     // Note that the AST doesn't distinguish between checked and
2116     // unchecked member pointer conversions, so we always have to
2117     // implement checked conversions here.  This is inefficient when
2118     // actual control flow may be required in order to perform the
2119     // check, which it is for data member pointers (but not member
2120     // function pointers on Itanium and ARM).
2121     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2122   }
2123 
2124   case CK_ARCProduceObject:
2125     return CGF.EmitARCRetainScalarExpr(E);
2126   case CK_ARCConsumeObject:
2127     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2128   case CK_ARCReclaimReturnedObject:
2129     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2130   case CK_ARCExtendBlockObject:
2131     return CGF.EmitARCExtendBlockObject(E);
2132 
2133   case CK_CopyAndAutoreleaseBlockObject:
2134     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2135 
2136   case CK_FloatingRealToComplex:
2137   case CK_FloatingComplexCast:
2138   case CK_IntegralRealToComplex:
2139   case CK_IntegralComplexCast:
2140   case CK_IntegralComplexToFloatingComplex:
2141   case CK_FloatingComplexToIntegralComplex:
2142   case CK_ConstructorConversion:
2143   case CK_ToUnion:
2144     llvm_unreachable("scalar cast to non-scalar value");
2145 
2146   case CK_LValueToRValue:
2147     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2148     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2149     return Visit(const_cast<Expr*>(E));
2150 
2151   case CK_IntegralToPointer: {
2152     Value *Src = Visit(const_cast<Expr*>(E));
2153 
2154     // First, convert to the correct width so that we control the kind of
2155     // extension.
2156     auto DestLLVMTy = ConvertType(DestTy);
2157     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2158     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2159     llvm::Value* IntResult =
2160       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2161 
2162     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2163 
2164     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2165       // Going from integer to pointer that could be dynamic requires reloading
2166       // dynamic information from invariant.group.
2167       if (DestTy.mayBeDynamicClass())
2168         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2169     }
2170     return IntToPtr;
2171   }
2172   case CK_PointerToIntegral: {
2173     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2174     auto *PtrExpr = Visit(E);
2175 
2176     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2177       const QualType SrcType = E->getType();
2178 
2179       // Casting to integer requires stripping dynamic information as it does
2180       // not carries it.
2181       if (SrcType.mayBeDynamicClass())
2182         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2183     }
2184 
2185     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2186   }
2187   case CK_ToVoid: {
2188     CGF.EmitIgnoredExpr(E);
2189     return nullptr;
2190   }
2191   case CK_VectorSplat: {
2192     llvm::Type *DstTy = ConvertType(DestTy);
2193     Value *Elt = Visit(const_cast<Expr*>(E));
2194     // Splat the element across to all elements
2195     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2196     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2197   }
2198 
2199   case CK_FixedPointCast:
2200     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2201                                 CE->getExprLoc());
2202 
2203   case CK_FixedPointToBoolean:
2204     assert(E->getType()->isFixedPointType() &&
2205            "Expected src type to be fixed point type");
2206     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2207     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2208                                 CE->getExprLoc());
2209 
2210   case CK_FixedPointToIntegral:
2211     assert(E->getType()->isFixedPointType() &&
2212            "Expected src type to be fixed point type");
2213     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2214     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2215                                 CE->getExprLoc());
2216 
2217   case CK_IntegralToFixedPoint:
2218     assert(E->getType()->isIntegerType() &&
2219            "Expected src type to be an integer");
2220     assert(DestTy->isFixedPointType() &&
2221            "Expected dest type to be fixed point type");
2222     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2223                                 CE->getExprLoc());
2224 
2225   case CK_IntegralCast: {
2226     ScalarConversionOpts Opts;
2227     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2228       if (!ICE->isPartOfExplicitCast())
2229         Opts = ScalarConversionOpts(CGF.SanOpts);
2230     }
2231     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2232                                 CE->getExprLoc(), Opts);
2233   }
2234   case CK_IntegralToFloating:
2235   case CK_FloatingToIntegral:
2236   case CK_FloatingCast:
2237   case CK_FixedPointToFloating:
2238   case CK_FloatingToFixedPoint: {
2239     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2240     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2241                                 CE->getExprLoc());
2242   }
2243   case CK_BooleanToSignedIntegral: {
2244     ScalarConversionOpts Opts;
2245     Opts.TreatBooleanAsSigned = true;
2246     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2247                                 CE->getExprLoc(), Opts);
2248   }
2249   case CK_IntegralToBoolean:
2250     return EmitIntToBoolConversion(Visit(E));
2251   case CK_PointerToBoolean:
2252     return EmitPointerToBoolConversion(Visit(E), E->getType());
2253   case CK_FloatingToBoolean: {
2254     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2255     return EmitFloatToBoolConversion(Visit(E));
2256   }
2257   case CK_MemberPointerToBoolean: {
2258     llvm::Value *MemPtr = Visit(E);
2259     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2260     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2261   }
2262 
2263   case CK_FloatingComplexToReal:
2264   case CK_IntegralComplexToReal:
2265     return CGF.EmitComplexExpr(E, false, true).first;
2266 
2267   case CK_FloatingComplexToBoolean:
2268   case CK_IntegralComplexToBoolean: {
2269     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2270 
2271     // TODO: kill this function off, inline appropriate case here
2272     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2273                                          CE->getExprLoc());
2274   }
2275 
2276   case CK_ZeroToOCLOpaqueType: {
2277     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2278             DestTy->isOCLIntelSubgroupAVCType()) &&
2279            "CK_ZeroToOCLEvent cast on non-event type");
2280     return llvm::Constant::getNullValue(ConvertType(DestTy));
2281   }
2282 
2283   case CK_IntToOCLSampler:
2284     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2285 
2286   } // end of switch
2287 
2288   llvm_unreachable("unknown scalar cast");
2289 }
2290 
VisitStmtExpr(const StmtExpr * E)2291 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2292   CodeGenFunction::StmtExprEvaluation eval(CGF);
2293   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2294                                            !E->getType()->isVoidType());
2295   if (!RetAlloca.isValid())
2296     return nullptr;
2297   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2298                               E->getExprLoc());
2299 }
2300 
VisitExprWithCleanups(ExprWithCleanups * E)2301 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2302   CodeGenFunction::RunCleanupsScope Scope(CGF);
2303   Value *V = Visit(E->getSubExpr());
2304   // Defend against dominance problems caused by jumps out of expression
2305   // evaluation through the shared cleanup block.
2306   Scope.ForceCleanup({&V});
2307   return V;
2308 }
2309 
2310 //===----------------------------------------------------------------------===//
2311 //                             Unary Operators
2312 //===----------------------------------------------------------------------===//
2313 
createBinOpInfoFromIncDec(const UnaryOperator * E,llvm::Value * InVal,bool IsInc,FPOptions FPFeatures)2314 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2315                                            llvm::Value *InVal, bool IsInc,
2316                                            FPOptions FPFeatures) {
2317   BinOpInfo BinOp;
2318   BinOp.LHS = InVal;
2319   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2320   BinOp.Ty = E->getType();
2321   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2322   BinOp.FPFeatures = FPFeatures;
2323   BinOp.E = E;
2324   return BinOp;
2325 }
2326 
EmitIncDecConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)2327 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2328     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2329   llvm::Value *Amount =
2330       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2331   StringRef Name = IsInc ? "inc" : "dec";
2332   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2333   case LangOptions::SOB_Defined:
2334     return Builder.CreateAdd(InVal, Amount, Name);
2335   case LangOptions::SOB_Undefined:
2336     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2337       return Builder.CreateNSWAdd(InVal, Amount, Name);
2338     LLVM_FALLTHROUGH;
2339   case LangOptions::SOB_Trapping:
2340     if (!E->canOverflow())
2341       return Builder.CreateNSWAdd(InVal, Amount, Name);
2342     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2343         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2344   }
2345   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2346 }
2347 
2348 namespace {
2349 /// Handles check and update for lastprivate conditional variables.
2350 class OMPLastprivateConditionalUpdateRAII {
2351 private:
2352   CodeGenFunction &CGF;
2353   const UnaryOperator *E;
2354 
2355 public:
OMPLastprivateConditionalUpdateRAII(CodeGenFunction & CGF,const UnaryOperator * E)2356   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2357                                       const UnaryOperator *E)
2358       : CGF(CGF), E(E) {}
~OMPLastprivateConditionalUpdateRAII()2359   ~OMPLastprivateConditionalUpdateRAII() {
2360     if (CGF.getLangOpts().OpenMP)
2361       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2362           CGF, E->getSubExpr());
2363   }
2364 };
2365 } // namespace
2366 
2367 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)2368 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2369                                            bool isInc, bool isPre) {
2370   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2371   QualType type = E->getSubExpr()->getType();
2372   llvm::PHINode *atomicPHI = nullptr;
2373   llvm::Value *value;
2374   llvm::Value *input;
2375 
2376   int amount = (isInc ? 1 : -1);
2377   bool isSubtraction = !isInc;
2378 
2379   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2380     type = atomicTy->getValueType();
2381     if (isInc && type->isBooleanType()) {
2382       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2383       if (isPre) {
2384         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2385             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2386         return Builder.getTrue();
2387       }
2388       // For atomic bool increment, we just store true and return it for
2389       // preincrement, do an atomic swap with true for postincrement
2390       return Builder.CreateAtomicRMW(
2391           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2392           llvm::AtomicOrdering::SequentiallyConsistent);
2393     }
2394     // Special case for atomic increment / decrement on integers, emit
2395     // atomicrmw instructions.  We skip this if we want to be doing overflow
2396     // checking, and fall into the slow path with the atomic cmpxchg loop.
2397     if (!type->isBooleanType() && type->isIntegerType() &&
2398         !(type->isUnsignedIntegerType() &&
2399           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2400         CGF.getLangOpts().getSignedOverflowBehavior() !=
2401             LangOptions::SOB_Trapping) {
2402       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2403         llvm::AtomicRMWInst::Sub;
2404       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2405         llvm::Instruction::Sub;
2406       llvm::Value *amt = CGF.EmitToMemory(
2407           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2408       llvm::Value *old =
2409           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2410                                   llvm::AtomicOrdering::SequentiallyConsistent);
2411       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2412     }
2413     value = EmitLoadOfLValue(LV, E->getExprLoc());
2414     input = value;
2415     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2416     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2417     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2418     value = CGF.EmitToMemory(value, type);
2419     Builder.CreateBr(opBB);
2420     Builder.SetInsertPoint(opBB);
2421     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2422     atomicPHI->addIncoming(value, startBB);
2423     value = atomicPHI;
2424   } else {
2425     value = EmitLoadOfLValue(LV, E->getExprLoc());
2426     input = value;
2427   }
2428 
2429   // Special case of integer increment that we have to check first: bool++.
2430   // Due to promotion rules, we get:
2431   //   bool++ -> bool = bool + 1
2432   //          -> bool = (int)bool + 1
2433   //          -> bool = ((int)bool + 1 != 0)
2434   // An interesting aspect of this is that increment is always true.
2435   // Decrement does not have this property.
2436   if (isInc && type->isBooleanType()) {
2437     value = Builder.getTrue();
2438 
2439   // Most common case by far: integer increment.
2440   } else if (type->isIntegerType()) {
2441     QualType promotedType;
2442     bool canPerformLossyDemotionCheck = false;
2443     if (type->isPromotableIntegerType()) {
2444       promotedType = CGF.getContext().getPromotedIntegerType(type);
2445       assert(promotedType != type && "Shouldn't promote to the same type.");
2446       canPerformLossyDemotionCheck = true;
2447       canPerformLossyDemotionCheck &=
2448           CGF.getContext().getCanonicalType(type) !=
2449           CGF.getContext().getCanonicalType(promotedType);
2450       canPerformLossyDemotionCheck &=
2451           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2452               type, promotedType);
2453       assert((!canPerformLossyDemotionCheck ||
2454               type->isSignedIntegerOrEnumerationType() ||
2455               promotedType->isSignedIntegerOrEnumerationType() ||
2456               ConvertType(type)->getScalarSizeInBits() ==
2457                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2458              "The following check expects that if we do promotion to different "
2459              "underlying canonical type, at least one of the types (either "
2460              "base or promoted) will be signed, or the bitwidths will match.");
2461     }
2462     if (CGF.SanOpts.hasOneOf(
2463             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2464         canPerformLossyDemotionCheck) {
2465       // While `x += 1` (for `x` with width less than int) is modeled as
2466       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2467       // ease; inc/dec with width less than int can't overflow because of
2468       // promotion rules, so we omit promotion+demotion, which means that we can
2469       // not catch lossy "demotion". Because we still want to catch these cases
2470       // when the sanitizer is enabled, we perform the promotion, then perform
2471       // the increment/decrement in the wider type, and finally
2472       // perform the demotion. This will catch lossy demotions.
2473 
2474       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2475       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2476       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2477       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2478       // emitted.
2479       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2480                                    ScalarConversionOpts(CGF.SanOpts));
2481 
2482       // Note that signed integer inc/dec with width less than int can't
2483       // overflow because of promotion rules; we're just eliding a few steps
2484       // here.
2485     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2486       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2487     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2488                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2489       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2490           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2491     } else {
2492       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2493       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2494     }
2495 
2496   // Next most common: pointer increment.
2497   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2498     QualType type = ptr->getPointeeType();
2499 
2500     // VLA types don't have constant size.
2501     if (const VariableArrayType *vla
2502           = CGF.getContext().getAsVariableArrayType(type)) {
2503       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2504       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2505       if (CGF.getLangOpts().isSignedOverflowDefined())
2506         value = Builder.CreateGEP(value, numElts, "vla.inc");
2507       else
2508         value = CGF.EmitCheckedInBoundsGEP(
2509             value, numElts, /*SignedIndices=*/false, isSubtraction,
2510             E->getExprLoc(), "vla.inc");
2511 
2512     // Arithmetic on function pointers (!) is just +-1.
2513     } else if (type->isFunctionType()) {
2514       llvm::Value *amt = Builder.getInt32(amount);
2515 
2516       value = CGF.EmitCastToVoidPtr(value);
2517       if (CGF.getLangOpts().isSignedOverflowDefined())
2518         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2519       else
2520         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2521                                            isSubtraction, E->getExprLoc(),
2522                                            "incdec.funcptr");
2523       value = Builder.CreateBitCast(value, input->getType());
2524 
2525     // For everything else, we can just do a simple increment.
2526     } else {
2527       llvm::Value *amt = Builder.getInt32(amount);
2528       if (CGF.getLangOpts().isSignedOverflowDefined())
2529         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2530       else
2531         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2532                                            isSubtraction, E->getExprLoc(),
2533                                            "incdec.ptr");
2534     }
2535 
2536   // Vector increment/decrement.
2537   } else if (type->isVectorType()) {
2538     if (type->hasIntegerRepresentation()) {
2539       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2540 
2541       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2542     } else {
2543       value = Builder.CreateFAdd(
2544                   value,
2545                   llvm::ConstantFP::get(value->getType(), amount),
2546                   isInc ? "inc" : "dec");
2547     }
2548 
2549   // Floating point.
2550   } else if (type->isRealFloatingType()) {
2551     // Add the inc/dec to the real part.
2552     llvm::Value *amt;
2553     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2554 
2555     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2556       // Another special case: half FP increment should be done via float
2557       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2558         value = Builder.CreateCall(
2559             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2560                                  CGF.CGM.FloatTy),
2561             input, "incdec.conv");
2562       } else {
2563         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2564       }
2565     }
2566 
2567     if (value->getType()->isFloatTy())
2568       amt = llvm::ConstantFP::get(VMContext,
2569                                   llvm::APFloat(static_cast<float>(amount)));
2570     else if (value->getType()->isDoubleTy())
2571       amt = llvm::ConstantFP::get(VMContext,
2572                                   llvm::APFloat(static_cast<double>(amount)));
2573     else {
2574       // Remaining types are Half, LongDouble or __float128. Convert from float.
2575       llvm::APFloat F(static_cast<float>(amount));
2576       bool ignored;
2577       const llvm::fltSemantics *FS;
2578       // Don't use getFloatTypeSemantics because Half isn't
2579       // necessarily represented using the "half" LLVM type.
2580       if (value->getType()->isFP128Ty())
2581         FS = &CGF.getTarget().getFloat128Format();
2582       else if (value->getType()->isHalfTy())
2583         FS = &CGF.getTarget().getHalfFormat();
2584       else
2585         FS = &CGF.getTarget().getLongDoubleFormat();
2586       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2587       amt = llvm::ConstantFP::get(VMContext, F);
2588     }
2589     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2590 
2591     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2592       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2593         value = Builder.CreateCall(
2594             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2595                                  CGF.CGM.FloatTy),
2596             value, "incdec.conv");
2597       } else {
2598         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2599       }
2600     }
2601 
2602   // Fixed-point types.
2603   } else if (type->isFixedPointType()) {
2604     // Fixed-point types are tricky. In some cases, it isn't possible to
2605     // represent a 1 or a -1 in the type at all. Piggyback off of
2606     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2607     BinOpInfo Info;
2608     Info.E = E;
2609     Info.Ty = E->getType();
2610     Info.Opcode = isInc ? BO_Add : BO_Sub;
2611     Info.LHS = value;
2612     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2613     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2614     // since -1 is guaranteed to be representable.
2615     if (type->isSignedFixedPointType()) {
2616       Info.Opcode = isInc ? BO_Sub : BO_Add;
2617       Info.RHS = Builder.CreateNeg(Info.RHS);
2618     }
2619     // Now, convert from our invented integer literal to the type of the unary
2620     // op. This will upscale and saturate if necessary. This value can become
2621     // undef in some cases.
2622     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2623     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2624     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2625     value = EmitFixedPointBinOp(Info);
2626 
2627   // Objective-C pointer types.
2628   } else {
2629     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2630     value = CGF.EmitCastToVoidPtr(value);
2631 
2632     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2633     if (!isInc) size = -size;
2634     llvm::Value *sizeValue =
2635       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2636 
2637     if (CGF.getLangOpts().isSignedOverflowDefined())
2638       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2639     else
2640       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2641                                          /*SignedIndices=*/false, isSubtraction,
2642                                          E->getExprLoc(), "incdec.objptr");
2643     value = Builder.CreateBitCast(value, input->getType());
2644   }
2645 
2646   if (atomicPHI) {
2647     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2648     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2649     auto Pair = CGF.EmitAtomicCompareExchange(
2650         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2651     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2652     llvm::Value *success = Pair.second;
2653     atomicPHI->addIncoming(old, curBlock);
2654     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2655     Builder.SetInsertPoint(contBB);
2656     return isPre ? value : input;
2657   }
2658 
2659   // Store the updated result through the lvalue.
2660   if (LV.isBitField())
2661     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2662   else
2663     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2664 
2665   // If this is a postinc, return the value read from memory, otherwise use the
2666   // updated value.
2667   return isPre ? value : input;
2668 }
2669 
2670 
2671 
VisitUnaryMinus(const UnaryOperator * E)2672 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2673   TestAndClearIgnoreResultAssign();
2674   Value *Op = Visit(E->getSubExpr());
2675 
2676   // Generate a unary FNeg for FP ops.
2677   if (Op->getType()->isFPOrFPVectorTy())
2678     return Builder.CreateFNeg(Op, "fneg");
2679 
2680   // Emit unary minus with EmitSub so we handle overflow cases etc.
2681   BinOpInfo BinOp;
2682   BinOp.RHS = Op;
2683   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2684   BinOp.Ty = E->getType();
2685   BinOp.Opcode = BO_Sub;
2686   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2687   BinOp.E = E;
2688   return EmitSub(BinOp);
2689 }
2690 
VisitUnaryNot(const UnaryOperator * E)2691 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2692   TestAndClearIgnoreResultAssign();
2693   Value *Op = Visit(E->getSubExpr());
2694   return Builder.CreateNot(Op, "neg");
2695 }
2696 
VisitUnaryLNot(const UnaryOperator * E)2697 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2698   // Perform vector logical not on comparison with zero vector.
2699   if (E->getType()->isVectorType() &&
2700       E->getType()->castAs<VectorType>()->getVectorKind() ==
2701           VectorType::GenericVector) {
2702     Value *Oper = Visit(E->getSubExpr());
2703     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2704     Value *Result;
2705     if (Oper->getType()->isFPOrFPVectorTy()) {
2706       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2707           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2708       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2709     } else
2710       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2711     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2712   }
2713 
2714   // Compare operand to zero.
2715   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2716 
2717   // Invert value.
2718   // TODO: Could dynamically modify easy computations here.  For example, if
2719   // the operand is an icmp ne, turn into icmp eq.
2720   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2721 
2722   // ZExt result to the expr type.
2723   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2724 }
2725 
VisitOffsetOfExpr(OffsetOfExpr * E)2726 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2727   // Try folding the offsetof to a constant.
2728   Expr::EvalResult EVResult;
2729   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2730     llvm::APSInt Value = EVResult.Val.getInt();
2731     return Builder.getInt(Value);
2732   }
2733 
2734   // Loop over the components of the offsetof to compute the value.
2735   unsigned n = E->getNumComponents();
2736   llvm::Type* ResultType = ConvertType(E->getType());
2737   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2738   QualType CurrentType = E->getTypeSourceInfo()->getType();
2739   for (unsigned i = 0; i != n; ++i) {
2740     OffsetOfNode ON = E->getComponent(i);
2741     llvm::Value *Offset = nullptr;
2742     switch (ON.getKind()) {
2743     case OffsetOfNode::Array: {
2744       // Compute the index
2745       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2746       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2747       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2748       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2749 
2750       // Save the element type
2751       CurrentType =
2752           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2753 
2754       // Compute the element size
2755       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2756           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2757 
2758       // Multiply out to compute the result
2759       Offset = Builder.CreateMul(Idx, ElemSize);
2760       break;
2761     }
2762 
2763     case OffsetOfNode::Field: {
2764       FieldDecl *MemberDecl = ON.getField();
2765       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2766       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2767 
2768       // Compute the index of the field in its parent.
2769       unsigned i = 0;
2770       // FIXME: It would be nice if we didn't have to loop here!
2771       for (RecordDecl::field_iterator Field = RD->field_begin(),
2772                                       FieldEnd = RD->field_end();
2773            Field != FieldEnd; ++Field, ++i) {
2774         if (*Field == MemberDecl)
2775           break;
2776       }
2777       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2778 
2779       // Compute the offset to the field
2780       int64_t OffsetInt = RL.getFieldOffset(i) /
2781                           CGF.getContext().getCharWidth();
2782       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2783 
2784       // Save the element type.
2785       CurrentType = MemberDecl->getType();
2786       break;
2787     }
2788 
2789     case OffsetOfNode::Identifier:
2790       llvm_unreachable("dependent __builtin_offsetof");
2791 
2792     case OffsetOfNode::Base: {
2793       if (ON.getBase()->isVirtual()) {
2794         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2795         continue;
2796       }
2797 
2798       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2799       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2800 
2801       // Save the element type.
2802       CurrentType = ON.getBase()->getType();
2803 
2804       // Compute the offset to the base.
2805       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2806       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2807       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2808       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2809       break;
2810     }
2811     }
2812     Result = Builder.CreateAdd(Result, Offset);
2813   }
2814   return Result;
2815 }
2816 
2817 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2818 /// argument of the sizeof expression as an integer.
2819 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)2820 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2821                               const UnaryExprOrTypeTraitExpr *E) {
2822   QualType TypeToSize = E->getTypeOfArgument();
2823   if (E->getKind() == UETT_SizeOf) {
2824     if (const VariableArrayType *VAT =
2825           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2826       if (E->isArgumentType()) {
2827         // sizeof(type) - make sure to emit the VLA size.
2828         CGF.EmitVariablyModifiedType(TypeToSize);
2829       } else {
2830         // C99 6.5.3.4p2: If the argument is an expression of type
2831         // VLA, it is evaluated.
2832         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2833       }
2834 
2835       auto VlaSize = CGF.getVLASize(VAT);
2836       llvm::Value *size = VlaSize.NumElts;
2837 
2838       // Scale the number of non-VLA elements by the non-VLA element size.
2839       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2840       if (!eltSize.isOne())
2841         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2842 
2843       return size;
2844     }
2845   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2846     auto Alignment =
2847         CGF.getContext()
2848             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2849                 E->getTypeOfArgument()->getPointeeType()))
2850             .getQuantity();
2851     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2852   }
2853 
2854   // If this isn't sizeof(vla), the result must be constant; use the constant
2855   // folding logic so we don't have to duplicate it here.
2856   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2857 }
2858 
VisitUnaryReal(const UnaryOperator * E)2859 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2860   Expr *Op = E->getSubExpr();
2861   if (Op->getType()->isAnyComplexType()) {
2862     // If it's an l-value, load through the appropriate subobject l-value.
2863     // Note that we have to ask E because Op might be an l-value that
2864     // this won't work for, e.g. an Obj-C property.
2865     if (E->isGLValue())
2866       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2867                                   E->getExprLoc()).getScalarVal();
2868 
2869     // Otherwise, calculate and project.
2870     return CGF.EmitComplexExpr(Op, false, true).first;
2871   }
2872 
2873   return Visit(Op);
2874 }
2875 
VisitUnaryImag(const UnaryOperator * E)2876 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2877   Expr *Op = E->getSubExpr();
2878   if (Op->getType()->isAnyComplexType()) {
2879     // If it's an l-value, load through the appropriate subobject l-value.
2880     // Note that we have to ask E because Op might be an l-value that
2881     // this won't work for, e.g. an Obj-C property.
2882     if (Op->isGLValue())
2883       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2884                                   E->getExprLoc()).getScalarVal();
2885 
2886     // Otherwise, calculate and project.
2887     return CGF.EmitComplexExpr(Op, true, false).second;
2888   }
2889 
2890   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2891   // effects are evaluated, but not the actual value.
2892   if (Op->isGLValue())
2893     CGF.EmitLValue(Op);
2894   else
2895     CGF.EmitScalarExpr(Op, true);
2896   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2897 }
2898 
2899 //===----------------------------------------------------------------------===//
2900 //                           Binary Operators
2901 //===----------------------------------------------------------------------===//
2902 
EmitBinOps(const BinaryOperator * E)2903 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2904   TestAndClearIgnoreResultAssign();
2905   BinOpInfo Result;
2906   Result.LHS = Visit(E->getLHS());
2907   Result.RHS = Visit(E->getRHS());
2908   Result.Ty  = E->getType();
2909   Result.Opcode = E->getOpcode();
2910   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2911   Result.E = E;
2912   return Result;
2913 }
2914 
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)2915 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2916                                               const CompoundAssignOperator *E,
2917                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2918                                                    Value *&Result) {
2919   QualType LHSTy = E->getLHS()->getType();
2920   BinOpInfo OpInfo;
2921 
2922   if (E->getComputationResultType()->isAnyComplexType())
2923     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2924 
2925   // Emit the RHS first.  __block variables need to have the rhs evaluated
2926   // first, plus this should improve codegen a little.
2927   OpInfo.RHS = Visit(E->getRHS());
2928   OpInfo.Ty = E->getComputationResultType();
2929   OpInfo.Opcode = E->getOpcode();
2930   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2931   OpInfo.E = E;
2932   // Load/convert the LHS.
2933   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2934 
2935   llvm::PHINode *atomicPHI = nullptr;
2936   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2937     QualType type = atomicTy->getValueType();
2938     if (!type->isBooleanType() && type->isIntegerType() &&
2939         !(type->isUnsignedIntegerType() &&
2940           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2941         CGF.getLangOpts().getSignedOverflowBehavior() !=
2942             LangOptions::SOB_Trapping) {
2943       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2944       llvm::Instruction::BinaryOps Op;
2945       switch (OpInfo.Opcode) {
2946         // We don't have atomicrmw operands for *, %, /, <<, >>
2947         case BO_MulAssign: case BO_DivAssign:
2948         case BO_RemAssign:
2949         case BO_ShlAssign:
2950         case BO_ShrAssign:
2951           break;
2952         case BO_AddAssign:
2953           AtomicOp = llvm::AtomicRMWInst::Add;
2954           Op = llvm::Instruction::Add;
2955           break;
2956         case BO_SubAssign:
2957           AtomicOp = llvm::AtomicRMWInst::Sub;
2958           Op = llvm::Instruction::Sub;
2959           break;
2960         case BO_AndAssign:
2961           AtomicOp = llvm::AtomicRMWInst::And;
2962           Op = llvm::Instruction::And;
2963           break;
2964         case BO_XorAssign:
2965           AtomicOp = llvm::AtomicRMWInst::Xor;
2966           Op = llvm::Instruction::Xor;
2967           break;
2968         case BO_OrAssign:
2969           AtomicOp = llvm::AtomicRMWInst::Or;
2970           Op = llvm::Instruction::Or;
2971           break;
2972         default:
2973           llvm_unreachable("Invalid compound assignment type");
2974       }
2975       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2976         llvm::Value *Amt = CGF.EmitToMemory(
2977             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2978                                  E->getExprLoc()),
2979             LHSTy);
2980         Value *OldVal = Builder.CreateAtomicRMW(
2981             AtomicOp, LHSLV.getPointer(CGF), Amt,
2982             llvm::AtomicOrdering::SequentiallyConsistent);
2983 
2984         // Since operation is atomic, the result type is guaranteed to be the
2985         // same as the input in LLVM terms.
2986         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2987         return LHSLV;
2988       }
2989     }
2990     // FIXME: For floating point types, we should be saving and restoring the
2991     // floating point environment in the loop.
2992     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2993     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2994     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2995     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2996     Builder.CreateBr(opBB);
2997     Builder.SetInsertPoint(opBB);
2998     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2999     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3000     OpInfo.LHS = atomicPHI;
3001   }
3002   else
3003     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3004 
3005   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3006   SourceLocation Loc = E->getExprLoc();
3007   OpInfo.LHS =
3008       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3009 
3010   // Expand the binary operator.
3011   Result = (this->*Func)(OpInfo);
3012 
3013   // Convert the result back to the LHS type,
3014   // potentially with Implicit Conversion sanitizer check.
3015   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3016                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3017 
3018   if (atomicPHI) {
3019     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3020     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3021     auto Pair = CGF.EmitAtomicCompareExchange(
3022         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3023     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3024     llvm::Value *success = Pair.second;
3025     atomicPHI->addIncoming(old, curBlock);
3026     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3027     Builder.SetInsertPoint(contBB);
3028     return LHSLV;
3029   }
3030 
3031   // Store the result value into the LHS lvalue. Bit-fields are handled
3032   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3033   // 'An assignment expression has the value of the left operand after the
3034   // assignment...'.
3035   if (LHSLV.isBitField())
3036     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3037   else
3038     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3039 
3040   if (CGF.getLangOpts().OpenMP)
3041     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3042                                                                   E->getLHS());
3043   return LHSLV;
3044 }
3045 
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))3046 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3047                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3048   bool Ignore = TestAndClearIgnoreResultAssign();
3049   Value *RHS = nullptr;
3050   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3051 
3052   // If the result is clearly ignored, return now.
3053   if (Ignore)
3054     return nullptr;
3055 
3056   // The result of an assignment in C is the assigned r-value.
3057   if (!CGF.getLangOpts().CPlusPlus)
3058     return RHS;
3059 
3060   // If the lvalue is non-volatile, return the computed value of the assignment.
3061   if (!LHS.isVolatileQualified())
3062     return RHS;
3063 
3064   // Otherwise, reload the value.
3065   return EmitLoadOfLValue(LHS, E->getExprLoc());
3066 }
3067 
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)3068 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3069     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3070   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3071 
3072   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3073     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3074                                     SanitizerKind::IntegerDivideByZero));
3075   }
3076 
3077   const auto *BO = cast<BinaryOperator>(Ops.E);
3078   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3079       Ops.Ty->hasSignedIntegerRepresentation() &&
3080       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3081       Ops.mayHaveIntegerOverflow()) {
3082     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3083 
3084     llvm::Value *IntMin =
3085       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3086     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3087 
3088     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3089     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3090     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3091     Checks.push_back(
3092         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3093   }
3094 
3095   if (Checks.size() > 0)
3096     EmitBinOpCheck(Checks, Ops);
3097 }
3098 
EmitDiv(const BinOpInfo & Ops)3099 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3100   {
3101     CodeGenFunction::SanitizerScope SanScope(&CGF);
3102     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3103          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3104         Ops.Ty->isIntegerType() &&
3105         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3106       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3107       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3108     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3109                Ops.Ty->isRealFloatingType() &&
3110                Ops.mayHaveFloatDivisionByZero()) {
3111       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3112       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3113       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3114                      Ops);
3115     }
3116   }
3117 
3118   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3119     llvm::Value *Val;
3120     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3121     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3122     if (CGF.getLangOpts().OpenCL &&
3123         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3124       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3125       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3126       // build option allows an application to specify that single precision
3127       // floating-point divide (x/y and 1/x) and sqrt used in the program
3128       // source are correctly rounded.
3129       llvm::Type *ValTy = Val->getType();
3130       if (ValTy->isFloatTy() ||
3131           (isa<llvm::VectorType>(ValTy) &&
3132            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3133         CGF.SetFPAccuracy(Val, 2.5);
3134     }
3135     return Val;
3136   }
3137   else if (Ops.isFixedPointOp())
3138     return EmitFixedPointBinOp(Ops);
3139   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3140     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3141   else
3142     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3143 }
3144 
EmitRem(const BinOpInfo & Ops)3145 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3146   // Rem in C can't be a floating point type: C99 6.5.5p2.
3147   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3148        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3149       Ops.Ty->isIntegerType() &&
3150       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3151     CodeGenFunction::SanitizerScope SanScope(&CGF);
3152     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3153     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3154   }
3155 
3156   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3157     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3158   else
3159     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3160 }
3161 
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)3162 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3163   unsigned IID;
3164   unsigned OpID = 0;
3165   SanitizerHandler OverflowKind;
3166 
3167   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3168   switch (Ops.Opcode) {
3169   case BO_Add:
3170   case BO_AddAssign:
3171     OpID = 1;
3172     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3173                      llvm::Intrinsic::uadd_with_overflow;
3174     OverflowKind = SanitizerHandler::AddOverflow;
3175     break;
3176   case BO_Sub:
3177   case BO_SubAssign:
3178     OpID = 2;
3179     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3180                      llvm::Intrinsic::usub_with_overflow;
3181     OverflowKind = SanitizerHandler::SubOverflow;
3182     break;
3183   case BO_Mul:
3184   case BO_MulAssign:
3185     OpID = 3;
3186     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3187                      llvm::Intrinsic::umul_with_overflow;
3188     OverflowKind = SanitizerHandler::MulOverflow;
3189     break;
3190   default:
3191     llvm_unreachable("Unsupported operation for overflow detection");
3192   }
3193   OpID <<= 1;
3194   if (isSigned)
3195     OpID |= 1;
3196 
3197   CodeGenFunction::SanitizerScope SanScope(&CGF);
3198   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3199 
3200   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3201 
3202   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3203   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3204   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3205 
3206   // Handle overflow with llvm.trap if no custom handler has been specified.
3207   const std::string *handlerName =
3208     &CGF.getLangOpts().OverflowHandler;
3209   if (handlerName->empty()) {
3210     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3211     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3212     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3213       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3214       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3215                               : SanitizerKind::UnsignedIntegerOverflow;
3216       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3217     } else
3218       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3219     return result;
3220   }
3221 
3222   // Branch in case of overflow.
3223   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3224   llvm::BasicBlock *continueBB =
3225       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3226   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3227 
3228   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3229 
3230   // If an overflow handler is set, then we want to call it and then use its
3231   // result, if it returns.
3232   Builder.SetInsertPoint(overflowBB);
3233 
3234   // Get the overflow handler.
3235   llvm::Type *Int8Ty = CGF.Int8Ty;
3236   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3237   llvm::FunctionType *handlerTy =
3238       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3239   llvm::FunctionCallee handler =
3240       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3241 
3242   // Sign extend the args to 64-bit, so that we can use the same handler for
3243   // all types of overflow.
3244   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3245   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3246 
3247   // Call the handler with the two arguments, the operation, and the size of
3248   // the result.
3249   llvm::Value *handlerArgs[] = {
3250     lhs,
3251     rhs,
3252     Builder.getInt8(OpID),
3253     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3254   };
3255   llvm::Value *handlerResult =
3256     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3257 
3258   // Truncate the result back to the desired size.
3259   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3260   Builder.CreateBr(continueBB);
3261 
3262   Builder.SetInsertPoint(continueBB);
3263   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3264   phi->addIncoming(result, initialBB);
3265   phi->addIncoming(handlerResult, overflowBB);
3266 
3267   return phi;
3268 }
3269 
3270 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)3271 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3272                                     const BinOpInfo &op,
3273                                     bool isSubtraction) {
3274   // Must have binary (not unary) expr here.  Unary pointer
3275   // increment/decrement doesn't use this path.
3276   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3277 
3278   Value *pointer = op.LHS;
3279   Expr *pointerOperand = expr->getLHS();
3280   Value *index = op.RHS;
3281   Expr *indexOperand = expr->getRHS();
3282 
3283   // In a subtraction, the LHS is always the pointer.
3284   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3285     std::swap(pointer, index);
3286     std::swap(pointerOperand, indexOperand);
3287   }
3288 
3289   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3290 
3291   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3292   auto &DL = CGF.CGM.getDataLayout();
3293   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3294 
3295   // Some versions of glibc and gcc use idioms (particularly in their malloc
3296   // routines) that add a pointer-sized integer (known to be a pointer value)
3297   // to a null pointer in order to cast the value back to an integer or as
3298   // part of a pointer alignment algorithm.  This is undefined behavior, but
3299   // we'd like to be able to compile programs that use it.
3300   //
3301   // Normally, we'd generate a GEP with a null-pointer base here in response
3302   // to that code, but it's also UB to dereference a pointer created that
3303   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3304   // generate a direct cast of the integer value to a pointer.
3305   //
3306   // The idiom (p = nullptr + N) is not met if any of the following are true:
3307   //
3308   //   The operation is subtraction.
3309   //   The index is not pointer-sized.
3310   //   The pointer type is not byte-sized.
3311   //
3312   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3313                                                        op.Opcode,
3314                                                        expr->getLHS(),
3315                                                        expr->getRHS()))
3316     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3317 
3318   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3319     // Zero-extend or sign-extend the pointer value according to
3320     // whether the index is signed or not.
3321     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3322                                       "idx.ext");
3323   }
3324 
3325   // If this is subtraction, negate the index.
3326   if (isSubtraction)
3327     index = CGF.Builder.CreateNeg(index, "idx.neg");
3328 
3329   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3330     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3331                         /*Accessed*/ false);
3332 
3333   const PointerType *pointerType
3334     = pointerOperand->getType()->getAs<PointerType>();
3335   if (!pointerType) {
3336     QualType objectType = pointerOperand->getType()
3337                                         ->castAs<ObjCObjectPointerType>()
3338                                         ->getPointeeType();
3339     llvm::Value *objectSize
3340       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3341 
3342     index = CGF.Builder.CreateMul(index, objectSize);
3343 
3344     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3345     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3346     return CGF.Builder.CreateBitCast(result, pointer->getType());
3347   }
3348 
3349   QualType elementType = pointerType->getPointeeType();
3350   if (const VariableArrayType *vla
3351         = CGF.getContext().getAsVariableArrayType(elementType)) {
3352     // The element count here is the total number of non-VLA elements.
3353     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3354 
3355     // Effectively, the multiply by the VLA size is part of the GEP.
3356     // GEP indexes are signed, and scaling an index isn't permitted to
3357     // signed-overflow, so we use the same semantics for our explicit
3358     // multiply.  We suppress this if overflow is not undefined behavior.
3359     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3360       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3361       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3362     } else {
3363       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3364       pointer =
3365           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3366                                      op.E->getExprLoc(), "add.ptr");
3367     }
3368     return pointer;
3369   }
3370 
3371   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3372   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3373   // future proof.
3374   if (elementType->isVoidType() || elementType->isFunctionType()) {
3375     Value *result = CGF.EmitCastToVoidPtr(pointer);
3376     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3377     return CGF.Builder.CreateBitCast(result, pointer->getType());
3378   }
3379 
3380   if (CGF.getLangOpts().isSignedOverflowDefined())
3381     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3382 
3383   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3384                                     op.E->getExprLoc(), "add.ptr");
3385 }
3386 
3387 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3388 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3389 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3390 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3391 // efficient operations.
buildFMulAdd(llvm::Instruction * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)3392 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3393                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3394                            bool negMul, bool negAdd) {
3395   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3396 
3397   Value *MulOp0 = MulOp->getOperand(0);
3398   Value *MulOp1 = MulOp->getOperand(1);
3399   if (negMul)
3400     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3401   if (negAdd)
3402     Addend = Builder.CreateFNeg(Addend, "neg");
3403 
3404   Value *FMulAdd = nullptr;
3405   if (Builder.getIsFPConstrained()) {
3406     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3407            "Only constrained operation should be created when Builder is in FP "
3408            "constrained mode");
3409     FMulAdd = Builder.CreateConstrainedFPCall(
3410         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3411                              Addend->getType()),
3412         {MulOp0, MulOp1, Addend});
3413   } else {
3414     FMulAdd = Builder.CreateCall(
3415         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3416         {MulOp0, MulOp1, Addend});
3417   }
3418   MulOp->eraseFromParent();
3419 
3420   return FMulAdd;
3421 }
3422 
3423 // Check whether it would be legal to emit an fmuladd intrinsic call to
3424 // represent op and if so, build the fmuladd.
3425 //
3426 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3427 // Does NOT check the type of the operation - it's assumed that this function
3428 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)3429 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3430                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3431                          bool isSub=false) {
3432 
3433   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3434           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3435          "Only fadd/fsub can be the root of an fmuladd.");
3436 
3437   // Check whether this op is marked as fusable.
3438   if (!op.FPFeatures.allowFPContractWithinStatement())
3439     return nullptr;
3440 
3441   // We have a potentially fusable op. Look for a mul on one of the operands.
3442   // Also, make sure that the mul result isn't used directly. In that case,
3443   // there's no point creating a muladd operation.
3444   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3445     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3446         LHSBinOp->use_empty())
3447       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3448   }
3449   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3450     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3451         RHSBinOp->use_empty())
3452       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3453   }
3454 
3455   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3456     if (LHSBinOp->getIntrinsicID() ==
3457             llvm::Intrinsic::experimental_constrained_fmul &&
3458         LHSBinOp->use_empty())
3459       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3460   }
3461   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3462     if (RHSBinOp->getIntrinsicID() ==
3463             llvm::Intrinsic::experimental_constrained_fmul &&
3464         RHSBinOp->use_empty())
3465       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3466   }
3467 
3468   return nullptr;
3469 }
3470 
EmitAdd(const BinOpInfo & op)3471 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3472   if (op.LHS->getType()->isPointerTy() ||
3473       op.RHS->getType()->isPointerTy())
3474     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3475 
3476   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3477     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3478     case LangOptions::SOB_Defined:
3479       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3480     case LangOptions::SOB_Undefined:
3481       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3482         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3483       LLVM_FALLTHROUGH;
3484     case LangOptions::SOB_Trapping:
3485       if (CanElideOverflowCheck(CGF.getContext(), op))
3486         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3487       return EmitOverflowCheckedBinOp(op);
3488     }
3489   }
3490 
3491   if (op.Ty->isConstantMatrixType()) {
3492     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3493     return MB.CreateAdd(op.LHS, op.RHS);
3494   }
3495 
3496   if (op.Ty->isUnsignedIntegerType() &&
3497       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3498       !CanElideOverflowCheck(CGF.getContext(), op))
3499     return EmitOverflowCheckedBinOp(op);
3500 
3501   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3502     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3503     // Try to form an fmuladd.
3504     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3505       return FMulAdd;
3506 
3507     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3508   }
3509 
3510   if (op.isFixedPointOp())
3511     return EmitFixedPointBinOp(op);
3512 
3513   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3514 }
3515 
3516 /// The resulting value must be calculated with exact precision, so the operands
3517 /// may not be the same type.
EmitFixedPointBinOp(const BinOpInfo & op)3518 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3519   using llvm::APSInt;
3520   using llvm::ConstantInt;
3521 
3522   // This is either a binary operation where at least one of the operands is
3523   // a fixed-point type, or a unary operation where the operand is a fixed-point
3524   // type. The result type of a binary operation is determined by
3525   // Sema::handleFixedPointConversions().
3526   QualType ResultTy = op.Ty;
3527   QualType LHSTy, RHSTy;
3528   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3529     RHSTy = BinOp->getRHS()->getType();
3530     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3531       // For compound assignment, the effective type of the LHS at this point
3532       // is the computation LHS type, not the actual LHS type, and the final
3533       // result type is not the type of the expression but rather the
3534       // computation result type.
3535       LHSTy = CAO->getComputationLHSType();
3536       ResultTy = CAO->getComputationResultType();
3537     } else
3538       LHSTy = BinOp->getLHS()->getType();
3539   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3540     LHSTy = UnOp->getSubExpr()->getType();
3541     RHSTy = UnOp->getSubExpr()->getType();
3542   }
3543   ASTContext &Ctx = CGF.getContext();
3544   Value *LHS = op.LHS;
3545   Value *RHS = op.RHS;
3546 
3547   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3548   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3549   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3550   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3551 
3552   // Perform the actual operation.
3553   Value *Result;
3554   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3555   switch (op.Opcode) {
3556   case BO_AddAssign:
3557   case BO_Add:
3558     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3559     break;
3560   case BO_SubAssign:
3561   case BO_Sub:
3562     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3563     break;
3564   case BO_MulAssign:
3565   case BO_Mul:
3566     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3567     break;
3568   case BO_DivAssign:
3569   case BO_Div:
3570     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3571     break;
3572   case BO_ShlAssign:
3573   case BO_Shl:
3574     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3575     break;
3576   case BO_ShrAssign:
3577   case BO_Shr:
3578     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3579     break;
3580   case BO_LT:
3581     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3582   case BO_GT:
3583     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3584   case BO_LE:
3585     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3586   case BO_GE:
3587     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3588   case BO_EQ:
3589     // For equality operations, we assume any padding bits on unsigned types are
3590     // zero'd out. They could be overwritten through non-saturating operations
3591     // that cause overflow, but this leads to undefined behavior.
3592     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3593   case BO_NE:
3594     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3595   case BO_Cmp:
3596   case BO_LAnd:
3597   case BO_LOr:
3598     llvm_unreachable("Found unimplemented fixed point binary operation");
3599   case BO_PtrMemD:
3600   case BO_PtrMemI:
3601   case BO_Rem:
3602   case BO_Xor:
3603   case BO_And:
3604   case BO_Or:
3605   case BO_Assign:
3606   case BO_RemAssign:
3607   case BO_AndAssign:
3608   case BO_XorAssign:
3609   case BO_OrAssign:
3610   case BO_Comma:
3611     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3612   }
3613 
3614   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3615                  BinaryOperator::isShiftAssignOp(op.Opcode);
3616   // Convert to the result type.
3617   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3618                                                       : CommonFixedSema,
3619                                       ResultFixedSema);
3620 }
3621 
EmitSub(const BinOpInfo & op)3622 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3623   // The LHS is always a pointer if either side is.
3624   if (!op.LHS->getType()->isPointerTy()) {
3625     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3626       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3627       case LangOptions::SOB_Defined:
3628         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3629       case LangOptions::SOB_Undefined:
3630         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3631           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3632         LLVM_FALLTHROUGH;
3633       case LangOptions::SOB_Trapping:
3634         if (CanElideOverflowCheck(CGF.getContext(), op))
3635           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3636         return EmitOverflowCheckedBinOp(op);
3637       }
3638     }
3639 
3640     if (op.Ty->isConstantMatrixType()) {
3641       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3642       return MB.CreateSub(op.LHS, op.RHS);
3643     }
3644 
3645     if (op.Ty->isUnsignedIntegerType() &&
3646         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3647         !CanElideOverflowCheck(CGF.getContext(), op))
3648       return EmitOverflowCheckedBinOp(op);
3649 
3650     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3651       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3652       // Try to form an fmuladd.
3653       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3654         return FMulAdd;
3655       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3656     }
3657 
3658     if (op.isFixedPointOp())
3659       return EmitFixedPointBinOp(op);
3660 
3661     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3662   }
3663 
3664   // If the RHS is not a pointer, then we have normal pointer
3665   // arithmetic.
3666   if (!op.RHS->getType()->isPointerTy())
3667     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3668 
3669   // Otherwise, this is a pointer subtraction.
3670 
3671   // Do the raw subtraction part.
3672   llvm::Value *LHS
3673     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3674   llvm::Value *RHS
3675     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3676   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3677 
3678   // Okay, figure out the element size.
3679   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3680   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3681 
3682   llvm::Value *divisor = nullptr;
3683 
3684   // For a variable-length array, this is going to be non-constant.
3685   if (const VariableArrayType *vla
3686         = CGF.getContext().getAsVariableArrayType(elementType)) {
3687     auto VlaSize = CGF.getVLASize(vla);
3688     elementType = VlaSize.Type;
3689     divisor = VlaSize.NumElts;
3690 
3691     // Scale the number of non-VLA elements by the non-VLA element size.
3692     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3693     if (!eltSize.isOne())
3694       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3695 
3696   // For everything elese, we can just compute it, safe in the
3697   // assumption that Sema won't let anything through that we can't
3698   // safely compute the size of.
3699   } else {
3700     CharUnits elementSize;
3701     // Handle GCC extension for pointer arithmetic on void* and
3702     // function pointer types.
3703     if (elementType->isVoidType() || elementType->isFunctionType())
3704       elementSize = CharUnits::One();
3705     else
3706       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3707 
3708     // Don't even emit the divide for element size of 1.
3709     if (elementSize.isOne())
3710       return diffInChars;
3711 
3712     divisor = CGF.CGM.getSize(elementSize);
3713   }
3714 
3715   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3716   // pointer difference in C is only defined in the case where both operands
3717   // are pointing to elements of an array.
3718   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3719 }
3720 
GetWidthMinusOneValue(Value * LHS,Value * RHS)3721 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3722   llvm::IntegerType *Ty;
3723   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3724     Ty = cast<llvm::IntegerType>(VT->getElementType());
3725   else
3726     Ty = cast<llvm::IntegerType>(LHS->getType());
3727   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3728 }
3729 
ConstrainShiftValue(Value * LHS,Value * RHS,const Twine & Name)3730 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3731                                               const Twine &Name) {
3732   llvm::IntegerType *Ty;
3733   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3734     Ty = cast<llvm::IntegerType>(VT->getElementType());
3735   else
3736     Ty = cast<llvm::IntegerType>(LHS->getType());
3737 
3738   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3739         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3740 
3741   return Builder.CreateURem(
3742       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3743 }
3744 
EmitShl(const BinOpInfo & Ops)3745 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3746   // TODO: This misses out on the sanitizer check below.
3747   if (Ops.isFixedPointOp())
3748     return EmitFixedPointBinOp(Ops);
3749 
3750   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3751   // RHS to the same size as the LHS.
3752   Value *RHS = Ops.RHS;
3753   if (Ops.LHS->getType() != RHS->getType())
3754     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3755 
3756   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3757                             Ops.Ty->hasSignedIntegerRepresentation() &&
3758                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3759                             !CGF.getLangOpts().CPlusPlus20;
3760   bool SanitizeUnsignedBase =
3761       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3762       Ops.Ty->hasUnsignedIntegerRepresentation();
3763   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3764   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3765   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3766   if (CGF.getLangOpts().OpenCL)
3767     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3768   else if ((SanitizeBase || SanitizeExponent) &&
3769            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3770     CodeGenFunction::SanitizerScope SanScope(&CGF);
3771     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3772     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3773     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3774 
3775     if (SanitizeExponent) {
3776       Checks.push_back(
3777           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3778     }
3779 
3780     if (SanitizeBase) {
3781       // Check whether we are shifting any non-zero bits off the top of the
3782       // integer. We only emit this check if exponent is valid - otherwise
3783       // instructions below will have undefined behavior themselves.
3784       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3785       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3786       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3787       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3788       llvm::Value *PromotedWidthMinusOne =
3789           (RHS == Ops.RHS) ? WidthMinusOne
3790                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3791       CGF.EmitBlock(CheckShiftBase);
3792       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3793           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3794                                      /*NUW*/ true, /*NSW*/ true),
3795           "shl.check");
3796       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3797         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3798         // Under C++11's rules, shifting a 1 bit into the sign bit is
3799         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3800         // define signed left shifts, so we use the C99 and C++11 rules there).
3801         // Unsigned shifts can always shift into the top bit.
3802         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3803         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3804       }
3805       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3806       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3807       CGF.EmitBlock(Cont);
3808       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3809       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3810       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3811       Checks.push_back(std::make_pair(
3812           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3813                                         : SanitizerKind::UnsignedShiftBase));
3814     }
3815 
3816     assert(!Checks.empty());
3817     EmitBinOpCheck(Checks, Ops);
3818   }
3819 
3820   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3821 }
3822 
EmitShr(const BinOpInfo & Ops)3823 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3824   // TODO: This misses out on the sanitizer check below.
3825   if (Ops.isFixedPointOp())
3826     return EmitFixedPointBinOp(Ops);
3827 
3828   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3829   // RHS to the same size as the LHS.
3830   Value *RHS = Ops.RHS;
3831   if (Ops.LHS->getType() != RHS->getType())
3832     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3833 
3834   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3835   if (CGF.getLangOpts().OpenCL)
3836     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3837   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3838            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3839     CodeGenFunction::SanitizerScope SanScope(&CGF);
3840     llvm::Value *Valid =
3841         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3842     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3843   }
3844 
3845   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3846     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3847   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3848 }
3849 
3850 enum IntrinsicType { VCMPEQ, VCMPGT };
3851 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)3852 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3853                                         BuiltinType::Kind ElemKind) {
3854   switch (ElemKind) {
3855   default: llvm_unreachable("unexpected element type");
3856   case BuiltinType::Char_U:
3857   case BuiltinType::UChar:
3858     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3859                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3860   case BuiltinType::Char_S:
3861   case BuiltinType::SChar:
3862     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3863                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3864   case BuiltinType::UShort:
3865     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3866                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3867   case BuiltinType::Short:
3868     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3869                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3870   case BuiltinType::UInt:
3871     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3872                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3873   case BuiltinType::Int:
3874     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3875                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3876   case BuiltinType::ULong:
3877   case BuiltinType::ULongLong:
3878     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3879                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3880   case BuiltinType::Long:
3881   case BuiltinType::LongLong:
3882     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3883                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3884   case BuiltinType::Float:
3885     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3886                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3887   case BuiltinType::Double:
3888     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3889                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3890   case BuiltinType::UInt128:
3891     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3892                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3893   case BuiltinType::Int128:
3894     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3895                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
3896   }
3897 }
3898 
EmitCompare(const BinaryOperator * E,llvm::CmpInst::Predicate UICmpOpc,llvm::CmpInst::Predicate SICmpOpc,llvm::CmpInst::Predicate FCmpOpc,bool IsSignaling)3899 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3900                                       llvm::CmpInst::Predicate UICmpOpc,
3901                                       llvm::CmpInst::Predicate SICmpOpc,
3902                                       llvm::CmpInst::Predicate FCmpOpc,
3903                                       bool IsSignaling) {
3904   TestAndClearIgnoreResultAssign();
3905   Value *Result;
3906   QualType LHSTy = E->getLHS()->getType();
3907   QualType RHSTy = E->getRHS()->getType();
3908   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3909     assert(E->getOpcode() == BO_EQ ||
3910            E->getOpcode() == BO_NE);
3911     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3912     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3913     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3914                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3915   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3916     BinOpInfo BOInfo = EmitBinOps(E);
3917     Value *LHS = BOInfo.LHS;
3918     Value *RHS = BOInfo.RHS;
3919 
3920     // If AltiVec, the comparison results in a numeric type, so we use
3921     // intrinsics comparing vectors and giving 0 or 1 as a result
3922     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3923       // constants for mapping CR6 register bits to predicate result
3924       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3925 
3926       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3927 
3928       // in several cases vector arguments order will be reversed
3929       Value *FirstVecArg = LHS,
3930             *SecondVecArg = RHS;
3931 
3932       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3933       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3934 
3935       switch(E->getOpcode()) {
3936       default: llvm_unreachable("is not a comparison operation");
3937       case BO_EQ:
3938         CR6 = CR6_LT;
3939         ID = GetIntrinsic(VCMPEQ, ElementKind);
3940         break;
3941       case BO_NE:
3942         CR6 = CR6_EQ;
3943         ID = GetIntrinsic(VCMPEQ, ElementKind);
3944         break;
3945       case BO_LT:
3946         CR6 = CR6_LT;
3947         ID = GetIntrinsic(VCMPGT, ElementKind);
3948         std::swap(FirstVecArg, SecondVecArg);
3949         break;
3950       case BO_GT:
3951         CR6 = CR6_LT;
3952         ID = GetIntrinsic(VCMPGT, ElementKind);
3953         break;
3954       case BO_LE:
3955         if (ElementKind == BuiltinType::Float) {
3956           CR6 = CR6_LT;
3957           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3958           std::swap(FirstVecArg, SecondVecArg);
3959         }
3960         else {
3961           CR6 = CR6_EQ;
3962           ID = GetIntrinsic(VCMPGT, ElementKind);
3963         }
3964         break;
3965       case BO_GE:
3966         if (ElementKind == BuiltinType::Float) {
3967           CR6 = CR6_LT;
3968           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3969         }
3970         else {
3971           CR6 = CR6_EQ;
3972           ID = GetIntrinsic(VCMPGT, ElementKind);
3973           std::swap(FirstVecArg, SecondVecArg);
3974         }
3975         break;
3976       }
3977 
3978       Value *CR6Param = Builder.getInt32(CR6);
3979       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3980       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3981 
3982       // The result type of intrinsic may not be same as E->getType().
3983       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3984       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3985       // do nothing, if ResultTy is not i1 at the same time, it will cause
3986       // crash later.
3987       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3988       if (ResultTy->getBitWidth() > 1 &&
3989           E->getType() == CGF.getContext().BoolTy)
3990         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3991       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3992                                   E->getExprLoc());
3993     }
3994 
3995     if (BOInfo.isFixedPointOp()) {
3996       Result = EmitFixedPointBinOp(BOInfo);
3997     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3998       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
3999       if (!IsSignaling)
4000         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4001       else
4002         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4003     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4004       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4005     } else {
4006       // Unsigned integers and pointers.
4007 
4008       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4009           !isa<llvm::ConstantPointerNull>(LHS) &&
4010           !isa<llvm::ConstantPointerNull>(RHS)) {
4011 
4012         // Dynamic information is required to be stripped for comparisons,
4013         // because it could leak the dynamic information.  Based on comparisons
4014         // of pointers to dynamic objects, the optimizer can replace one pointer
4015         // with another, which might be incorrect in presence of invariant
4016         // groups. Comparison with null is safe because null does not carry any
4017         // dynamic information.
4018         if (LHSTy.mayBeDynamicClass())
4019           LHS = Builder.CreateStripInvariantGroup(LHS);
4020         if (RHSTy.mayBeDynamicClass())
4021           RHS = Builder.CreateStripInvariantGroup(RHS);
4022       }
4023 
4024       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4025     }
4026 
4027     // If this is a vector comparison, sign extend the result to the appropriate
4028     // vector integer type and return it (don't convert to bool).
4029     if (LHSTy->isVectorType())
4030       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4031 
4032   } else {
4033     // Complex Comparison: can only be an equality comparison.
4034     CodeGenFunction::ComplexPairTy LHS, RHS;
4035     QualType CETy;
4036     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4037       LHS = CGF.EmitComplexExpr(E->getLHS());
4038       CETy = CTy->getElementType();
4039     } else {
4040       LHS.first = Visit(E->getLHS());
4041       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4042       CETy = LHSTy;
4043     }
4044     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4045       RHS = CGF.EmitComplexExpr(E->getRHS());
4046       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4047                                                      CTy->getElementType()) &&
4048              "The element types must always match.");
4049       (void)CTy;
4050     } else {
4051       RHS.first = Visit(E->getRHS());
4052       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4053       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4054              "The element types must always match.");
4055     }
4056 
4057     Value *ResultR, *ResultI;
4058     if (CETy->isRealFloatingType()) {
4059       // As complex comparisons can only be equality comparisons, they
4060       // are never signaling comparisons.
4061       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4062       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4063     } else {
4064       // Complex comparisons can only be equality comparisons.  As such, signed
4065       // and unsigned opcodes are the same.
4066       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4067       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4068     }
4069 
4070     if (E->getOpcode() == BO_EQ) {
4071       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4072     } else {
4073       assert(E->getOpcode() == BO_NE &&
4074              "Complex comparison other than == or != ?");
4075       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4076     }
4077   }
4078 
4079   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4080                               E->getExprLoc());
4081 }
4082 
VisitBinAssign(const BinaryOperator * E)4083 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4084   bool Ignore = TestAndClearIgnoreResultAssign();
4085 
4086   Value *RHS;
4087   LValue LHS;
4088 
4089   switch (E->getLHS()->getType().getObjCLifetime()) {
4090   case Qualifiers::OCL_Strong:
4091     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4092     break;
4093 
4094   case Qualifiers::OCL_Autoreleasing:
4095     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4096     break;
4097 
4098   case Qualifiers::OCL_ExplicitNone:
4099     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4100     break;
4101 
4102   case Qualifiers::OCL_Weak:
4103     RHS = Visit(E->getRHS());
4104     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4105     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4106     break;
4107 
4108   case Qualifiers::OCL_None:
4109     // __block variables need to have the rhs evaluated first, plus
4110     // this should improve codegen just a little.
4111     RHS = Visit(E->getRHS());
4112     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4113 
4114     // Store the value into the LHS.  Bit-fields are handled specially
4115     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4116     // 'An assignment expression has the value of the left operand after
4117     // the assignment...'.
4118     if (LHS.isBitField()) {
4119       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4120     } else {
4121       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4122       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4123     }
4124   }
4125 
4126   // If the result is clearly ignored, return now.
4127   if (Ignore)
4128     return nullptr;
4129 
4130   // The result of an assignment in C is the assigned r-value.
4131   if (!CGF.getLangOpts().CPlusPlus)
4132     return RHS;
4133 
4134   // If the lvalue is non-volatile, return the computed value of the assignment.
4135   if (!LHS.isVolatileQualified())
4136     return RHS;
4137 
4138   // Otherwise, reload the value.
4139   return EmitLoadOfLValue(LHS, E->getExprLoc());
4140 }
4141 
VisitBinLAnd(const BinaryOperator * E)4142 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4143   // Perform vector logical and on comparisons with zero vectors.
4144   if (E->getType()->isVectorType()) {
4145     CGF.incrementProfileCounter(E);
4146 
4147     Value *LHS = Visit(E->getLHS());
4148     Value *RHS = Visit(E->getRHS());
4149     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4150     if (LHS->getType()->isFPOrFPVectorTy()) {
4151       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4152           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4153       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4154       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4155     } else {
4156       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4157       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4158     }
4159     Value *And = Builder.CreateAnd(LHS, RHS);
4160     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4161   }
4162 
4163   llvm::Type *ResTy = ConvertType(E->getType());
4164 
4165   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4166   // If we have 1 && X, just emit X without inserting the control flow.
4167   bool LHSCondVal;
4168   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4169     if (LHSCondVal) { // If we have 1 && X, just emit X.
4170       CGF.incrementProfileCounter(E);
4171 
4172       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4173       // ZExt result to int or bool.
4174       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4175     }
4176 
4177     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4178     if (!CGF.ContainsLabel(E->getRHS()))
4179       return llvm::Constant::getNullValue(ResTy);
4180   }
4181 
4182   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4183   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4184 
4185   CodeGenFunction::ConditionalEvaluation eval(CGF);
4186 
4187   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4188   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4189                            CGF.getProfileCount(E->getRHS()));
4190 
4191   // Any edges into the ContBlock are now from an (indeterminate number of)
4192   // edges from this first condition.  All of these values will be false.  Start
4193   // setting up the PHI node in the Cont Block for this.
4194   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4195                                             "", ContBlock);
4196   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4197        PI != PE; ++PI)
4198     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4199 
4200   eval.begin(CGF);
4201   CGF.EmitBlock(RHSBlock);
4202   CGF.incrementProfileCounter(E);
4203   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4204   eval.end(CGF);
4205 
4206   // Reaquire the RHS block, as there may be subblocks inserted.
4207   RHSBlock = Builder.GetInsertBlock();
4208 
4209   // Emit an unconditional branch from this block to ContBlock.
4210   {
4211     // There is no need to emit line number for unconditional branch.
4212     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4213     CGF.EmitBlock(ContBlock);
4214   }
4215   // Insert an entry into the phi node for the edge with the value of RHSCond.
4216   PN->addIncoming(RHSCond, RHSBlock);
4217 
4218   // Artificial location to preserve the scope information
4219   {
4220     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4221     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4222   }
4223 
4224   // ZExt result to int.
4225   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4226 }
4227 
VisitBinLOr(const BinaryOperator * E)4228 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4229   // Perform vector logical or on comparisons with zero vectors.
4230   if (E->getType()->isVectorType()) {
4231     CGF.incrementProfileCounter(E);
4232 
4233     Value *LHS = Visit(E->getLHS());
4234     Value *RHS = Visit(E->getRHS());
4235     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4236     if (LHS->getType()->isFPOrFPVectorTy()) {
4237       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4238           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4239       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4240       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4241     } else {
4242       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4243       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4244     }
4245     Value *Or = Builder.CreateOr(LHS, RHS);
4246     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4247   }
4248 
4249   llvm::Type *ResTy = ConvertType(E->getType());
4250 
4251   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4252   // If we have 0 || X, just emit X without inserting the control flow.
4253   bool LHSCondVal;
4254   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4255     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4256       CGF.incrementProfileCounter(E);
4257 
4258       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4259       // ZExt result to int or bool.
4260       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4261     }
4262 
4263     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4264     if (!CGF.ContainsLabel(E->getRHS()))
4265       return llvm::ConstantInt::get(ResTy, 1);
4266   }
4267 
4268   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4269   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4270 
4271   CodeGenFunction::ConditionalEvaluation eval(CGF);
4272 
4273   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4274   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4275                            CGF.getCurrentProfileCount() -
4276                                CGF.getProfileCount(E->getRHS()));
4277 
4278   // Any edges into the ContBlock are now from an (indeterminate number of)
4279   // edges from this first condition.  All of these values will be true.  Start
4280   // setting up the PHI node in the Cont Block for this.
4281   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4282                                             "", ContBlock);
4283   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4284        PI != PE; ++PI)
4285     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4286 
4287   eval.begin(CGF);
4288 
4289   // Emit the RHS condition as a bool value.
4290   CGF.EmitBlock(RHSBlock);
4291   CGF.incrementProfileCounter(E);
4292   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4293 
4294   eval.end(CGF);
4295 
4296   // Reaquire the RHS block, as there may be subblocks inserted.
4297   RHSBlock = Builder.GetInsertBlock();
4298 
4299   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4300   // into the phi node for the edge with the value of RHSCond.
4301   CGF.EmitBlock(ContBlock);
4302   PN->addIncoming(RHSCond, RHSBlock);
4303 
4304   // ZExt result to int.
4305   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4306 }
4307 
VisitBinComma(const BinaryOperator * E)4308 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4309   CGF.EmitIgnoredExpr(E->getLHS());
4310   CGF.EnsureInsertPoint();
4311   return Visit(E->getRHS());
4312 }
4313 
4314 //===----------------------------------------------------------------------===//
4315 //                             Other Operators
4316 //===----------------------------------------------------------------------===//
4317 
4318 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4319 /// expression is cheap enough and side-effect-free enough to evaluate
4320 /// unconditionally instead of conditionally.  This is used to convert control
4321 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)4322 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4323                                                    CodeGenFunction &CGF) {
4324   // Anything that is an integer or floating point constant is fine.
4325   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4326 
4327   // Even non-volatile automatic variables can't be evaluated unconditionally.
4328   // Referencing a thread_local may cause non-trivial initialization work to
4329   // occur. If we're inside a lambda and one of the variables is from the scope
4330   // outside the lambda, that function may have returned already. Reading its
4331   // locals is a bad idea. Also, these reads may introduce races there didn't
4332   // exist in the source-level program.
4333 }
4334 
4335 
4336 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)4337 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4338   TestAndClearIgnoreResultAssign();
4339 
4340   // Bind the common expression if necessary.
4341   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4342 
4343   Expr *condExpr = E->getCond();
4344   Expr *lhsExpr = E->getTrueExpr();
4345   Expr *rhsExpr = E->getFalseExpr();
4346 
4347   // If the condition constant folds and can be elided, try to avoid emitting
4348   // the condition and the dead arm.
4349   bool CondExprBool;
4350   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4351     Expr *live = lhsExpr, *dead = rhsExpr;
4352     if (!CondExprBool) std::swap(live, dead);
4353 
4354     // If the dead side doesn't have labels we need, just emit the Live part.
4355     if (!CGF.ContainsLabel(dead)) {
4356       if (CondExprBool)
4357         CGF.incrementProfileCounter(E);
4358       Value *Result = Visit(live);
4359 
4360       // If the live part is a throw expression, it acts like it has a void
4361       // type, so evaluating it returns a null Value*.  However, a conditional
4362       // with non-void type must return a non-null Value*.
4363       if (!Result && !E->getType()->isVoidType())
4364         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4365 
4366       return Result;
4367     }
4368   }
4369 
4370   // OpenCL: If the condition is a vector, we can treat this condition like
4371   // the select function.
4372   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4373       condExpr->getType()->isExtVectorType()) {
4374     CGF.incrementProfileCounter(E);
4375 
4376     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4377     llvm::Value *LHS = Visit(lhsExpr);
4378     llvm::Value *RHS = Visit(rhsExpr);
4379 
4380     llvm::Type *condType = ConvertType(condExpr->getType());
4381     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4382 
4383     unsigned numElem = vecTy->getNumElements();
4384     llvm::Type *elemType = vecTy->getElementType();
4385 
4386     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4387     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4388     llvm::Value *tmp = Builder.CreateSExt(
4389         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4390     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4391 
4392     // Cast float to int to perform ANDs if necessary.
4393     llvm::Value *RHSTmp = RHS;
4394     llvm::Value *LHSTmp = LHS;
4395     bool wasCast = false;
4396     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4397     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4398       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4399       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4400       wasCast = true;
4401     }
4402 
4403     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4404     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4405     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4406     if (wasCast)
4407       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4408 
4409     return tmp5;
4410   }
4411 
4412   if (condExpr->getType()->isVectorType()) {
4413     CGF.incrementProfileCounter(E);
4414 
4415     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4416     llvm::Value *LHS = Visit(lhsExpr);
4417     llvm::Value *RHS = Visit(rhsExpr);
4418 
4419     llvm::Type *CondType = ConvertType(condExpr->getType());
4420     auto *VecTy = cast<llvm::VectorType>(CondType);
4421     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4422 
4423     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4424     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4425   }
4426 
4427   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4428   // select instead of as control flow.  We can only do this if it is cheap and
4429   // safe to evaluate the LHS and RHS unconditionally.
4430   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4431       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4432     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4433     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4434 
4435     CGF.incrementProfileCounter(E, StepV);
4436 
4437     llvm::Value *LHS = Visit(lhsExpr);
4438     llvm::Value *RHS = Visit(rhsExpr);
4439     if (!LHS) {
4440       // If the conditional has void type, make sure we return a null Value*.
4441       assert(!RHS && "LHS and RHS types must match");
4442       return nullptr;
4443     }
4444     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4445   }
4446 
4447   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4448   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4449   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4450 
4451   CodeGenFunction::ConditionalEvaluation eval(CGF);
4452   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4453                            CGF.getProfileCount(lhsExpr));
4454 
4455   CGF.EmitBlock(LHSBlock);
4456   CGF.incrementProfileCounter(E);
4457   eval.begin(CGF);
4458   Value *LHS = Visit(lhsExpr);
4459   eval.end(CGF);
4460 
4461   LHSBlock = Builder.GetInsertBlock();
4462   Builder.CreateBr(ContBlock);
4463 
4464   CGF.EmitBlock(RHSBlock);
4465   eval.begin(CGF);
4466   Value *RHS = Visit(rhsExpr);
4467   eval.end(CGF);
4468 
4469   RHSBlock = Builder.GetInsertBlock();
4470   CGF.EmitBlock(ContBlock);
4471 
4472   // If the LHS or RHS is a throw expression, it will be legitimately null.
4473   if (!LHS)
4474     return RHS;
4475   if (!RHS)
4476     return LHS;
4477 
4478   // Create a PHI node for the real part.
4479   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4480   PN->addIncoming(LHS, LHSBlock);
4481   PN->addIncoming(RHS, RHSBlock);
4482   return PN;
4483 }
4484 
VisitChooseExpr(ChooseExpr * E)4485 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4486   return Visit(E->getChosenSubExpr());
4487 }
4488 
VisitVAArgExpr(VAArgExpr * VE)4489 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4490   QualType Ty = VE->getType();
4491 
4492   if (Ty->isVariablyModifiedType())
4493     CGF.EmitVariablyModifiedType(Ty);
4494 
4495   Address ArgValue = Address::invalid();
4496   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4497 
4498   llvm::Type *ArgTy = ConvertType(VE->getType());
4499 
4500   // If EmitVAArg fails, emit an error.
4501   if (!ArgPtr.isValid()) {
4502     CGF.ErrorUnsupported(VE, "va_arg expression");
4503     return llvm::UndefValue::get(ArgTy);
4504   }
4505 
4506   // FIXME Volatility.
4507   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4508 
4509   // If EmitVAArg promoted the type, we must truncate it.
4510   if (ArgTy != Val->getType()) {
4511     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4512       Val = Builder.CreateIntToPtr(Val, ArgTy);
4513     else
4514       Val = Builder.CreateTrunc(Val, ArgTy);
4515   }
4516 
4517   return Val;
4518 }
4519 
VisitBlockExpr(const BlockExpr * block)4520 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4521   return CGF.EmitBlockLiteral(block);
4522 }
4523 
4524 // Convert a vec3 to vec4, or vice versa.
ConvertVec3AndVec4(CGBuilderTy & Builder,CodeGenFunction & CGF,Value * Src,unsigned NumElementsDst)4525 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4526                                  Value *Src, unsigned NumElementsDst) {
4527   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4528   static constexpr int Mask[] = {0, 1, 2, -1};
4529   return Builder.CreateShuffleVector(Src, UnV,
4530                                      llvm::makeArrayRef(Mask, NumElementsDst));
4531 }
4532 
4533 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4534 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4535 // but could be scalar or vectors of different lengths, and either can be
4536 // pointer.
4537 // There are 4 cases:
4538 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4539 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4540 // 3. pointer -> non-pointer
4541 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4542 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4543 // 4. non-pointer -> pointer
4544 //   a) intptr_t -> pointer       : needs 1 inttoptr
4545 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4546 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4547 // allow casting directly between pointer types and non-integer non-pointer
4548 // types.
createCastsForTypeOfSameSize(CGBuilderTy & Builder,const llvm::DataLayout & DL,Value * Src,llvm::Type * DstTy,StringRef Name="")4549 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4550                                            const llvm::DataLayout &DL,
4551                                            Value *Src, llvm::Type *DstTy,
4552                                            StringRef Name = "") {
4553   auto SrcTy = Src->getType();
4554 
4555   // Case 1.
4556   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4557     return Builder.CreateBitCast(Src, DstTy, Name);
4558 
4559   // Case 2.
4560   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4561     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4562 
4563   // Case 3.
4564   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4565     // Case 3b.
4566     if (!DstTy->isIntegerTy())
4567       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4568     // Cases 3a and 3b.
4569     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4570   }
4571 
4572   // Case 4b.
4573   if (!SrcTy->isIntegerTy())
4574     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4575   // Cases 4a and 4b.
4576   return Builder.CreateIntToPtr(Src, DstTy, Name);
4577 }
4578 
VisitAsTypeExpr(AsTypeExpr * E)4579 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4580   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4581   llvm::Type *DstTy = ConvertType(E->getType());
4582 
4583   llvm::Type *SrcTy = Src->getType();
4584   unsigned NumElementsSrc =
4585       isa<llvm::VectorType>(SrcTy)
4586           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4587           : 0;
4588   unsigned NumElementsDst =
4589       isa<llvm::VectorType>(DstTy)
4590           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4591           : 0;
4592 
4593   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4594   // vector to get a vec4, then a bitcast if the target type is different.
4595   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4596     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4597 
4598     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4599       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4600                                          DstTy);
4601     }
4602 
4603     Src->setName("astype");
4604     return Src;
4605   }
4606 
4607   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4608   // to vec4 if the original type is not vec4, then a shuffle vector to
4609   // get a vec3.
4610   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4611     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4612       auto *Vec4Ty = llvm::FixedVectorType::get(
4613           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4614       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4615                                          Vec4Ty);
4616     }
4617 
4618     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4619     Src->setName("astype");
4620     return Src;
4621   }
4622 
4623   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4624                                       Src, DstTy, "astype");
4625 }
4626 
VisitAtomicExpr(AtomicExpr * E)4627 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4628   return CGF.EmitAtomicExpr(E).getScalarVal();
4629 }
4630 
4631 //===----------------------------------------------------------------------===//
4632 //                         Entry Point into this File
4633 //===----------------------------------------------------------------------===//
4634 
4635 /// Emit the computation of the specified expression of scalar type, ignoring
4636 /// the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)4637 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4638   assert(E && hasScalarEvaluationKind(E->getType()) &&
4639          "Invalid scalar expression to emit");
4640 
4641   return ScalarExprEmitter(*this, IgnoreResultAssign)
4642       .Visit(const_cast<Expr *>(E));
4643 }
4644 
4645 /// Emit a conversion from the specified type to the specified destination type,
4646 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)4647 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4648                                              QualType DstTy,
4649                                              SourceLocation Loc) {
4650   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4651          "Invalid scalar expression to emit");
4652   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4653 }
4654 
4655 /// Emit a conversion from the specified complex type to the specified
4656 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)4657 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4658                                                       QualType SrcTy,
4659                                                       QualType DstTy,
4660                                                       SourceLocation Loc) {
4661   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4662          "Invalid complex -> scalar conversion");
4663   return ScalarExprEmitter(*this)
4664       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4665 }
4666 
4667 
4668 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)4669 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4670                         bool isInc, bool isPre) {
4671   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4672 }
4673 
EmitObjCIsaExpr(const ObjCIsaExpr * E)4674 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4675   // object->isa or (*object).isa
4676   // Generate code as for: *(Class*)object
4677 
4678   Expr *BaseExpr = E->getBase();
4679   Address Addr = Address::invalid();
4680   if (BaseExpr->isRValue()) {
4681     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4682   } else {
4683     Addr = EmitLValue(BaseExpr).getAddress(*this);
4684   }
4685 
4686   // Cast the address to Class*.
4687   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4688   return MakeAddrLValue(Addr, E->getType());
4689 }
4690 
4691 
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)4692 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4693                                             const CompoundAssignOperator *E) {
4694   ScalarExprEmitter Scalar(*this);
4695   Value *Result = nullptr;
4696   switch (E->getOpcode()) {
4697 #define COMPOUND_OP(Op)                                                       \
4698     case BO_##Op##Assign:                                                     \
4699       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4700                                              Result)
4701   COMPOUND_OP(Mul);
4702   COMPOUND_OP(Div);
4703   COMPOUND_OP(Rem);
4704   COMPOUND_OP(Add);
4705   COMPOUND_OP(Sub);
4706   COMPOUND_OP(Shl);
4707   COMPOUND_OP(Shr);
4708   COMPOUND_OP(And);
4709   COMPOUND_OP(Xor);
4710   COMPOUND_OP(Or);
4711 #undef COMPOUND_OP
4712 
4713   case BO_PtrMemD:
4714   case BO_PtrMemI:
4715   case BO_Mul:
4716   case BO_Div:
4717   case BO_Rem:
4718   case BO_Add:
4719   case BO_Sub:
4720   case BO_Shl:
4721   case BO_Shr:
4722   case BO_LT:
4723   case BO_GT:
4724   case BO_LE:
4725   case BO_GE:
4726   case BO_EQ:
4727   case BO_NE:
4728   case BO_Cmp:
4729   case BO_And:
4730   case BO_Xor:
4731   case BO_Or:
4732   case BO_LAnd:
4733   case BO_LOr:
4734   case BO_Assign:
4735   case BO_Comma:
4736     llvm_unreachable("Not valid compound assignment operators");
4737   }
4738 
4739   llvm_unreachable("Unhandled compound assignment operator");
4740 }
4741 
4742 struct GEPOffsetAndOverflow {
4743   // The total (signed) byte offset for the GEP.
4744   llvm::Value *TotalOffset;
4745   // The offset overflow flag - true if the total offset overflows.
4746   llvm::Value *OffsetOverflows;
4747 };
4748 
4749 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4750 /// and compute the total offset it applies from it's base pointer BasePtr.
4751 /// Returns offset in bytes and a boolean flag whether an overflow happened
4752 /// during evaluation.
EmitGEPOffsetInBytes(Value * BasePtr,Value * GEPVal,llvm::LLVMContext & VMContext,CodeGenModule & CGM,CGBuilderTy & Builder)4753 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4754                                                  llvm::LLVMContext &VMContext,
4755                                                  CodeGenModule &CGM,
4756                                                  CGBuilderTy &Builder) {
4757   const auto &DL = CGM.getDataLayout();
4758 
4759   // The total (signed) byte offset for the GEP.
4760   llvm::Value *TotalOffset = nullptr;
4761 
4762   // Was the GEP already reduced to a constant?
4763   if (isa<llvm::Constant>(GEPVal)) {
4764     // Compute the offset by casting both pointers to integers and subtracting:
4765     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4766     Value *BasePtr_int =
4767         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4768     Value *GEPVal_int =
4769         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4770     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4771     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4772   }
4773 
4774   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4775   assert(GEP->getPointerOperand() == BasePtr &&
4776          "BasePtr must be the the base of the GEP.");
4777   assert(GEP->isInBounds() && "Expected inbounds GEP");
4778 
4779   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4780 
4781   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4782   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4783   auto *SAddIntrinsic =
4784       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4785   auto *SMulIntrinsic =
4786       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4787 
4788   // The offset overflow flag - true if the total offset overflows.
4789   llvm::Value *OffsetOverflows = Builder.getFalse();
4790 
4791   /// Return the result of the given binary operation.
4792   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4793                   llvm::Value *RHS) -> llvm::Value * {
4794     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4795 
4796     // If the operands are constants, return a constant result.
4797     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4798       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4799         llvm::APInt N;
4800         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4801                                                   /*Signed=*/true, N);
4802         if (HasOverflow)
4803           OffsetOverflows = Builder.getTrue();
4804         return llvm::ConstantInt::get(VMContext, N);
4805       }
4806     }
4807 
4808     // Otherwise, compute the result with checked arithmetic.
4809     auto *ResultAndOverflow = Builder.CreateCall(
4810         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4811     OffsetOverflows = Builder.CreateOr(
4812         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4813     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4814   };
4815 
4816   // Determine the total byte offset by looking at each GEP operand.
4817   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4818        GTI != GTE; ++GTI) {
4819     llvm::Value *LocalOffset;
4820     auto *Index = GTI.getOperand();
4821     // Compute the local offset contributed by this indexing step:
4822     if (auto *STy = GTI.getStructTypeOrNull()) {
4823       // For struct indexing, the local offset is the byte position of the
4824       // specified field.
4825       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4826       LocalOffset = llvm::ConstantInt::get(
4827           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4828     } else {
4829       // Otherwise this is array-like indexing. The local offset is the index
4830       // multiplied by the element size.
4831       auto *ElementSize = llvm::ConstantInt::get(
4832           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4833       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4834       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4835     }
4836 
4837     // If this is the first offset, set it as the total offset. Otherwise, add
4838     // the local offset into the running total.
4839     if (!TotalOffset || TotalOffset == Zero)
4840       TotalOffset = LocalOffset;
4841     else
4842       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4843   }
4844 
4845   return {TotalOffset, OffsetOverflows};
4846 }
4847 
4848 Value *
EmitCheckedInBoundsGEP(Value * Ptr,ArrayRef<Value * > IdxList,bool SignedIndices,bool IsSubtraction,SourceLocation Loc,const Twine & Name)4849 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4850                                         bool SignedIndices, bool IsSubtraction,
4851                                         SourceLocation Loc, const Twine &Name) {
4852   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4853 
4854   // If the pointer overflow sanitizer isn't enabled, do nothing.
4855   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4856     return GEPVal;
4857 
4858   llvm::Type *PtrTy = Ptr->getType();
4859 
4860   // Perform nullptr-and-offset check unless the nullptr is defined.
4861   bool PerformNullCheck = !NullPointerIsDefined(
4862       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4863   // Check for overflows unless the GEP got constant-folded,
4864   // and only in the default address space
4865   bool PerformOverflowCheck =
4866       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4867 
4868   if (!(PerformNullCheck || PerformOverflowCheck))
4869     return GEPVal;
4870 
4871   const auto &DL = CGM.getDataLayout();
4872 
4873   SanitizerScope SanScope(this);
4874   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4875 
4876   GEPOffsetAndOverflow EvaluatedGEP =
4877       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4878 
4879   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4880           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4881          "If the offset got constant-folded, we don't expect that there was an "
4882          "overflow.");
4883 
4884   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4885 
4886   // Common case: if the total offset is zero, and we are using C++ semantics,
4887   // where nullptr+0 is defined, don't emit a check.
4888   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4889     return GEPVal;
4890 
4891   // Now that we've computed the total offset, add it to the base pointer (with
4892   // wrapping semantics).
4893   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4894   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4895 
4896   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4897 
4898   if (PerformNullCheck) {
4899     // In C++, if the base pointer evaluates to a null pointer value,
4900     // the only valid  pointer this inbounds GEP can produce is also
4901     // a null pointer, so the offset must also evaluate to zero.
4902     // Likewise, if we have non-zero base pointer, we can not get null pointer
4903     // as a result, so the offset can not be -intptr_t(BasePtr).
4904     // In other words, both pointers are either null, or both are non-null,
4905     // or the behaviour is undefined.
4906     //
4907     // C, however, is more strict in this regard, and gives more
4908     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4909     // So both the input to the 'gep inbounds' AND the output must not be null.
4910     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4911     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4912     auto *Valid =
4913         CGM.getLangOpts().CPlusPlus
4914             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4915             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4916     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4917   }
4918 
4919   if (PerformOverflowCheck) {
4920     // The GEP is valid if:
4921     // 1) The total offset doesn't overflow, and
4922     // 2) The sign of the difference between the computed address and the base
4923     // pointer matches the sign of the total offset.
4924     llvm::Value *ValidGEP;
4925     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4926     if (SignedIndices) {
4927       // GEP is computed as `unsigned base + signed offset`, therefore:
4928       // * If offset was positive, then the computed pointer can not be
4929       //   [unsigned] less than the base pointer, unless it overflowed.
4930       // * If offset was negative, then the computed pointer can not be
4931       //   [unsigned] greater than the bas pointere, unless it overflowed.
4932       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4933       auto *PosOrZeroOffset =
4934           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4935       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4936       ValidGEP =
4937           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4938     } else if (!IsSubtraction) {
4939       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4940       // computed pointer can not be [unsigned] less than base pointer,
4941       // unless there was an overflow.
4942       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4943       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4944     } else {
4945       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4946       // computed pointer can not be [unsigned] greater than base pointer,
4947       // unless there was an overflow.
4948       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4949       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4950     }
4951     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4952     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4953   }
4954 
4955   assert(!Checks.empty() && "Should have produced some checks.");
4956 
4957   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4958   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4959   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4960   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4961 
4962   return GEPVal;
4963 }
4964