1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/BinaryFormat/MachO.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/InlineAsm.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
33 static TryEmitResult
34 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
35 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
36 QualType ET,
37 RValue Result);
38
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
getNullForVariable(Address addr)41 static llvm::Constant *getNullForVariable(Address addr) {
42 llvm::Type *type = addr.getElementType();
43 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
44 }
45
46 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)47 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
48 {
49 llvm::Constant *C =
50 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
51 // FIXME: This bitcast should just be made an invariant on the Runtime.
52 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
53 }
54
55 /// EmitObjCBoxedExpr - This routine generates code to call
56 /// the appropriate expression boxing method. This will either be
57 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
58 /// or [NSValue valueWithBytes:objCType:].
59 ///
60 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62 // Generate the correct selector for this literal's concrete type.
63 // Get the method.
64 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
65 const Expr *SubExpr = E->getSubExpr();
66
67 if (E->isExpressibleAsConstantInitializer()) {
68 ConstantEmitter ConstEmitter(CGM);
69 return ConstEmitter.tryEmitAbstract(E, E->getType());
70 }
71
72 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
73 Selector Sel = BoxingMethod->getSelector();
74
75 // Generate a reference to the class pointer, which will be the receiver.
76 // Assumes that the method was introduced in the class that should be
77 // messaged (avoids pulling it out of the result type).
78 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
79 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
80 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
81
82 CallArgList Args;
83 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
84 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
85
86 // ObjCBoxedExpr supports boxing of structs and unions
87 // via [NSValue valueWithBytes:objCType:]
88 const QualType ValueType(SubExpr->getType().getCanonicalType());
89 if (ValueType->isObjCBoxableRecordType()) {
90 // Emit CodeGen for first parameter
91 // and cast value to correct type
92 Address Temporary = CreateMemTemp(SubExpr->getType());
93 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
94 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
95 Args.add(RValue::get(BitCast.getPointer()), ArgQT);
96
97 // Create char array to store type encoding
98 std::string Str;
99 getContext().getObjCEncodingForType(ValueType, Str);
100 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
101
102 // Cast type encoding to correct type
103 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
104 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
105 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
106
107 Args.add(RValue::get(Cast), EncodingQT);
108 } else {
109 Args.add(EmitAnyExpr(SubExpr), ArgQT);
110 }
111
112 RValue result = Runtime.GenerateMessageSend(
113 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
114 Args, ClassDecl, BoxingMethod);
115 return Builder.CreateBitCast(result.getScalarVal(),
116 ConvertType(E->getType()));
117 }
118
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)119 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
120 const ObjCMethodDecl *MethodWithObjects) {
121 ASTContext &Context = CGM.getContext();
122 const ObjCDictionaryLiteral *DLE = nullptr;
123 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
124 if (!ALE)
125 DLE = cast<ObjCDictionaryLiteral>(E);
126
127 // Optimize empty collections by referencing constants, when available.
128 uint64_t NumElements =
129 ALE ? ALE->getNumElements() : DLE->getNumElements();
130 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
131 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
132 QualType IdTy(CGM.getContext().getObjCIdType());
133 llvm::Constant *Constant =
134 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
135 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
136 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
137 cast<llvm::LoadInst>(Ptr)->setMetadata(
138 CGM.getModule().getMDKindID("invariant.load"),
139 llvm::MDNode::get(getLLVMContext(), None));
140 return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
141 }
142
143 // Compute the type of the array we're initializing.
144 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
145 NumElements);
146 QualType ElementType = Context.getObjCIdType().withConst();
147 QualType ElementArrayType
148 = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
149 ArrayType::Normal, /*IndexTypeQuals=*/0);
150
151 // Allocate the temporary array(s).
152 Address Objects = CreateMemTemp(ElementArrayType, "objects");
153 Address Keys = Address::invalid();
154 if (DLE)
155 Keys = CreateMemTemp(ElementArrayType, "keys");
156
157 // In ARC, we may need to do extra work to keep all the keys and
158 // values alive until after the call.
159 SmallVector<llvm::Value *, 16> NeededObjects;
160 bool TrackNeededObjects =
161 (getLangOpts().ObjCAutoRefCount &&
162 CGM.getCodeGenOpts().OptimizationLevel != 0);
163
164 // Perform the actual initialialization of the array(s).
165 for (uint64_t i = 0; i < NumElements; i++) {
166 if (ALE) {
167 // Emit the element and store it to the appropriate array slot.
168 const Expr *Rhs = ALE->getElement(i);
169 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
170 ElementType, AlignmentSource::Decl);
171
172 llvm::Value *value = EmitScalarExpr(Rhs);
173 EmitStoreThroughLValue(RValue::get(value), LV, true);
174 if (TrackNeededObjects) {
175 NeededObjects.push_back(value);
176 }
177 } else {
178 // Emit the key and store it to the appropriate array slot.
179 const Expr *Key = DLE->getKeyValueElement(i).Key;
180 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
181 ElementType, AlignmentSource::Decl);
182 llvm::Value *keyValue = EmitScalarExpr(Key);
183 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
184
185 // Emit the value and store it to the appropriate array slot.
186 const Expr *Value = DLE->getKeyValueElement(i).Value;
187 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
188 ElementType, AlignmentSource::Decl);
189 llvm::Value *valueValue = EmitScalarExpr(Value);
190 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
191 if (TrackNeededObjects) {
192 NeededObjects.push_back(keyValue);
193 NeededObjects.push_back(valueValue);
194 }
195 }
196 }
197
198 // Generate the argument list.
199 CallArgList Args;
200 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
201 const ParmVarDecl *argDecl = *PI++;
202 QualType ArgQT = argDecl->getType().getUnqualifiedType();
203 Args.add(RValue::get(Objects.getPointer()), ArgQT);
204 if (DLE) {
205 argDecl = *PI++;
206 ArgQT = argDecl->getType().getUnqualifiedType();
207 Args.add(RValue::get(Keys.getPointer()), ArgQT);
208 }
209 argDecl = *PI;
210 ArgQT = argDecl->getType().getUnqualifiedType();
211 llvm::Value *Count =
212 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
213 Args.add(RValue::get(Count), ArgQT);
214
215 // Generate a reference to the class pointer, which will be the receiver.
216 Selector Sel = MethodWithObjects->getSelector();
217 QualType ResultType = E->getType();
218 const ObjCObjectPointerType *InterfacePointerType
219 = ResultType->getAsObjCInterfacePointerType();
220 ObjCInterfaceDecl *Class
221 = InterfacePointerType->getObjectType()->getInterface();
222 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
223 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
224
225 // Generate the message send.
226 RValue result = Runtime.GenerateMessageSend(
227 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
228 Receiver, Args, Class, MethodWithObjects);
229
230 // The above message send needs these objects, but in ARC they are
231 // passed in a buffer that is essentially __unsafe_unretained.
232 // Therefore we must prevent the optimizer from releasing them until
233 // after the call.
234 if (TrackNeededObjects) {
235 EmitARCIntrinsicUse(NeededObjects);
236 }
237
238 return Builder.CreateBitCast(result.getScalarVal(),
239 ConvertType(E->getType()));
240 }
241
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)242 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
243 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
244 }
245
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)246 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
247 const ObjCDictionaryLiteral *E) {
248 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
249 }
250
251 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)252 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
253 // Untyped selector.
254 // Note that this implementation allows for non-constant strings to be passed
255 // as arguments to @selector(). Currently, the only thing preventing this
256 // behaviour is the type checking in the front end.
257 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
258 }
259
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)260 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
261 // FIXME: This should pass the Decl not the name.
262 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
263 }
264
265 /// Adjust the type of an Objective-C object that doesn't match up due
266 /// to type erasure at various points, e.g., related result types or the use
267 /// of parameterized classes.
AdjustObjCObjectType(CodeGenFunction & CGF,QualType ExpT,RValue Result)268 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
269 RValue Result) {
270 if (!ExpT->isObjCRetainableType())
271 return Result;
272
273 // If the converted types are the same, we're done.
274 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
275 if (ExpLLVMTy == Result.getScalarVal()->getType())
276 return Result;
277
278 // We have applied a substitution. Cast the rvalue appropriately.
279 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
280 ExpLLVMTy));
281 }
282
283 /// Decide whether to extend the lifetime of the receiver of a
284 /// returns-inner-pointer message.
285 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)286 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
287 switch (message->getReceiverKind()) {
288
289 // For a normal instance message, we should extend unless the
290 // receiver is loaded from a variable with precise lifetime.
291 case ObjCMessageExpr::Instance: {
292 const Expr *receiver = message->getInstanceReceiver();
293
294 // Look through OVEs.
295 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
296 if (opaque->getSourceExpr())
297 receiver = opaque->getSourceExpr()->IgnoreParens();
298 }
299
300 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
301 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
302 receiver = ice->getSubExpr()->IgnoreParens();
303
304 // Look through OVEs.
305 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
306 if (opaque->getSourceExpr())
307 receiver = opaque->getSourceExpr()->IgnoreParens();
308 }
309
310 // Only __strong variables.
311 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
312 return true;
313
314 // All ivars and fields have precise lifetime.
315 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
316 return false;
317
318 // Otherwise, check for variables.
319 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
320 if (!declRef) return true;
321 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
322 if (!var) return true;
323
324 // All variables have precise lifetime except local variables with
325 // automatic storage duration that aren't specially marked.
326 return (var->hasLocalStorage() &&
327 !var->hasAttr<ObjCPreciseLifetimeAttr>());
328 }
329
330 case ObjCMessageExpr::Class:
331 case ObjCMessageExpr::SuperClass:
332 // It's never necessary for class objects.
333 return false;
334
335 case ObjCMessageExpr::SuperInstance:
336 // We generally assume that 'self' lives throughout a method call.
337 return false;
338 }
339
340 llvm_unreachable("invalid receiver kind");
341 }
342
343 /// Given an expression of ObjC pointer type, check whether it was
344 /// immediately loaded from an ARC __weak l-value.
findWeakLValue(const Expr * E)345 static const Expr *findWeakLValue(const Expr *E) {
346 assert(E->getType()->isObjCRetainableType());
347 E = E->IgnoreParens();
348 if (auto CE = dyn_cast<CastExpr>(E)) {
349 if (CE->getCastKind() == CK_LValueToRValue) {
350 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
351 return CE->getSubExpr();
352 }
353 }
354
355 return nullptr;
356 }
357
358 /// The ObjC runtime may provide entrypoints that are likely to be faster
359 /// than an ordinary message send of the appropriate selector.
360 ///
361 /// The entrypoints are guaranteed to be equivalent to just sending the
362 /// corresponding message. If the entrypoint is implemented naively as just a
363 /// message send, using it is a trade-off: it sacrifices a few cycles of
364 /// overhead to save a small amount of code. However, it's possible for
365 /// runtimes to detect and special-case classes that use "standard"
366 /// behavior; if that's dynamically a large proportion of all objects, using
367 /// the entrypoint will also be faster than using a message send.
368 ///
369 /// If the runtime does support a required entrypoint, then this method will
370 /// generate a call and return the resulting value. Otherwise it will return
371 /// None and the caller can generate a msgSend instead.
372 static Optional<llvm::Value *>
tryGenerateSpecializedMessageSend(CodeGenFunction & CGF,QualType ResultType,llvm::Value * Receiver,const CallArgList & Args,Selector Sel,const ObjCMethodDecl * method,bool isClassMessage)373 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
374 llvm::Value *Receiver,
375 const CallArgList& Args, Selector Sel,
376 const ObjCMethodDecl *method,
377 bool isClassMessage) {
378 auto &CGM = CGF.CGM;
379 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
380 return None;
381
382 auto &Runtime = CGM.getLangOpts().ObjCRuntime;
383 switch (Sel.getMethodFamily()) {
384 case OMF_alloc:
385 if (isClassMessage &&
386 Runtime.shouldUseRuntimeFunctionsForAlloc() &&
387 ResultType->isObjCObjectPointerType()) {
388 // [Foo alloc] -> objc_alloc(Foo) or
389 // [self alloc] -> objc_alloc(self)
390 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
391 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
392 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
393 // [self allocWithZone:nil] -> objc_allocWithZone(self)
394 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
395 Args.size() == 1 && Args.front().getType()->isPointerType() &&
396 Sel.getNameForSlot(0) == "allocWithZone") {
397 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
398 if (isa<llvm::ConstantPointerNull>(arg))
399 return CGF.EmitObjCAllocWithZone(Receiver,
400 CGF.ConvertType(ResultType));
401 return None;
402 }
403 }
404 break;
405
406 case OMF_autorelease:
407 if (ResultType->isObjCObjectPointerType() &&
408 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
409 Runtime.shouldUseARCFunctionsForRetainRelease())
410 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
411 break;
412
413 case OMF_retain:
414 if (ResultType->isObjCObjectPointerType() &&
415 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
416 Runtime.shouldUseARCFunctionsForRetainRelease())
417 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
418 break;
419
420 case OMF_release:
421 if (ResultType->isVoidType() &&
422 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
423 Runtime.shouldUseARCFunctionsForRetainRelease()) {
424 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
425 return nullptr;
426 }
427 break;
428
429 default:
430 break;
431 }
432 return None;
433 }
434
GeneratePossiblySpecializedMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & Args,const ObjCInterfaceDecl * OID,const ObjCMethodDecl * Method,bool isClassMessage)435 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
436 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
437 Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
438 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
439 bool isClassMessage) {
440 if (Optional<llvm::Value *> SpecializedResult =
441 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
442 Sel, Method, isClassMessage)) {
443 return RValue::get(SpecializedResult.getValue());
444 }
445 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
446 Method);
447 }
448
AppendFirstImpliedRuntimeProtocols(const ObjCProtocolDecl * PD,llvm::UniqueVector<const ObjCProtocolDecl * > & PDs)449 static void AppendFirstImpliedRuntimeProtocols(
450 const ObjCProtocolDecl *PD,
451 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
452 if (!PD->isNonRuntimeProtocol()) {
453 const auto *Can = PD->getCanonicalDecl();
454 PDs.insert(Can);
455 return;
456 }
457
458 for (const auto *ParentPD : PD->protocols())
459 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
460 }
461
462 std::vector<const ObjCProtocolDecl *>
GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,ObjCProtocolDecl::protocol_iterator end)463 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
464 ObjCProtocolDecl::protocol_iterator end) {
465 std::vector<const ObjCProtocolDecl *> RuntimePds;
466 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
467
468 for (; begin != end; ++begin) {
469 const auto *It = *begin;
470 const auto *Can = It->getCanonicalDecl();
471 if (Can->isNonRuntimeProtocol())
472 NonRuntimePDs.insert(Can);
473 else
474 RuntimePds.push_back(Can);
475 }
476
477 // If there are no non-runtime protocols then we can just stop now.
478 if (NonRuntimePDs.empty())
479 return RuntimePds;
480
481 // Else we have to search through the non-runtime protocol's inheritancy
482 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
483 // a non-runtime protocol without any parents. These are the "first-implied"
484 // protocols from a non-runtime protocol.
485 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
486 for (const auto *PD : NonRuntimePDs)
487 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
488
489 // Walk the Runtime list to get all protocols implied via the inclusion of
490 // this protocol, e.g. all protocols it inherits from including itself.
491 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
492 for (const auto *PD : RuntimePds) {
493 const auto *Can = PD->getCanonicalDecl();
494 AllImpliedProtocols.insert(Can);
495 Can->getImpliedProtocols(AllImpliedProtocols);
496 }
497
498 // Similar to above, walk the list of first-implied protocols to find the set
499 // all the protocols implied excluding the listed protocols themselves since
500 // they are not yet a part of the `RuntimePds` list.
501 for (const auto *PD : FirstImpliedProtos) {
502 PD->getImpliedProtocols(AllImpliedProtocols);
503 }
504
505 // From the first-implied list we have to finish building the final protocol
506 // list. If a protocol in the first-implied list was already implied via some
507 // inheritance path through some other protocols then it would be redundant to
508 // add it here and so we skip over it.
509 for (const auto *PD : FirstImpliedProtos) {
510 if (!AllImpliedProtocols.contains(PD)) {
511 RuntimePds.push_back(PD);
512 }
513 }
514
515 return RuntimePds;
516 }
517
518 /// Instead of '[[MyClass alloc] init]', try to generate
519 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
520 /// caller side, as well as the optimized objc_alloc.
521 static Optional<llvm::Value *>
tryEmitSpecializedAllocInit(CodeGenFunction & CGF,const ObjCMessageExpr * OME)522 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
523 auto &Runtime = CGF.getLangOpts().ObjCRuntime;
524 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
525 return None;
526
527 // Match the exact pattern '[[MyClass alloc] init]'.
528 Selector Sel = OME->getSelector();
529 if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
530 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
531 Sel.getNameForSlot(0) != "init")
532 return None;
533
534 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
535 // with 'cls' a Class.
536 auto *SubOME =
537 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
538 if (!SubOME)
539 return None;
540 Selector SubSel = SubOME->getSelector();
541
542 if (!SubOME->getType()->isObjCObjectPointerType() ||
543 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
544 return None;
545
546 llvm::Value *Receiver = nullptr;
547 switch (SubOME->getReceiverKind()) {
548 case ObjCMessageExpr::Instance:
549 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
550 return None;
551 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
552 break;
553
554 case ObjCMessageExpr::Class: {
555 QualType ReceiverType = SubOME->getClassReceiver();
556 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
557 const ObjCInterfaceDecl *ID = ObjTy->getInterface();
558 assert(ID && "null interface should be impossible here");
559 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
560 break;
561 }
562 case ObjCMessageExpr::SuperInstance:
563 case ObjCMessageExpr::SuperClass:
564 return None;
565 }
566
567 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
568 }
569
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)570 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
571 ReturnValueSlot Return) {
572 // Only the lookup mechanism and first two arguments of the method
573 // implementation vary between runtimes. We can get the receiver and
574 // arguments in generic code.
575
576 bool isDelegateInit = E->isDelegateInitCall();
577
578 const ObjCMethodDecl *method = E->getMethodDecl();
579
580 // If the method is -retain, and the receiver's being loaded from
581 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
582 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
583 method->getMethodFamily() == OMF_retain) {
584 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
585 LValue lvalue = EmitLValue(lvalueExpr);
586 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
587 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
588 }
589 }
590
591 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
592 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
593
594 // We don't retain the receiver in delegate init calls, and this is
595 // safe because the receiver value is always loaded from 'self',
596 // which we zero out. We don't want to Block_copy block receivers,
597 // though.
598 bool retainSelf =
599 (!isDelegateInit &&
600 CGM.getLangOpts().ObjCAutoRefCount &&
601 method &&
602 method->hasAttr<NSConsumesSelfAttr>());
603
604 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
605 bool isSuperMessage = false;
606 bool isClassMessage = false;
607 ObjCInterfaceDecl *OID = nullptr;
608 // Find the receiver
609 QualType ReceiverType;
610 llvm::Value *Receiver = nullptr;
611 switch (E->getReceiverKind()) {
612 case ObjCMessageExpr::Instance:
613 ReceiverType = E->getInstanceReceiver()->getType();
614 isClassMessage = ReceiverType->isObjCClassType();
615 if (retainSelf) {
616 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
617 E->getInstanceReceiver());
618 Receiver = ter.getPointer();
619 if (ter.getInt()) retainSelf = false;
620 } else
621 Receiver = EmitScalarExpr(E->getInstanceReceiver());
622 break;
623
624 case ObjCMessageExpr::Class: {
625 ReceiverType = E->getClassReceiver();
626 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
627 assert(OID && "Invalid Objective-C class message send");
628 Receiver = Runtime.GetClass(*this, OID);
629 isClassMessage = true;
630 break;
631 }
632
633 case ObjCMessageExpr::SuperInstance:
634 ReceiverType = E->getSuperType();
635 Receiver = LoadObjCSelf();
636 isSuperMessage = true;
637 break;
638
639 case ObjCMessageExpr::SuperClass:
640 ReceiverType = E->getSuperType();
641 Receiver = LoadObjCSelf();
642 isSuperMessage = true;
643 isClassMessage = true;
644 break;
645 }
646
647 if (retainSelf)
648 Receiver = EmitARCRetainNonBlock(Receiver);
649
650 // In ARC, we sometimes want to "extend the lifetime"
651 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
652 // messages.
653 if (getLangOpts().ObjCAutoRefCount && method &&
654 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
655 shouldExtendReceiverForInnerPointerMessage(E))
656 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
657
658 QualType ResultType = method ? method->getReturnType() : E->getType();
659
660 CallArgList Args;
661 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
662
663 // For delegate init calls in ARC, do an unsafe store of null into
664 // self. This represents the call taking direct ownership of that
665 // value. We have to do this after emitting the other call
666 // arguments because they might also reference self, but we don't
667 // have to worry about any of them modifying self because that would
668 // be an undefined read and write of an object in unordered
669 // expressions.
670 if (isDelegateInit) {
671 assert(getLangOpts().ObjCAutoRefCount &&
672 "delegate init calls should only be marked in ARC");
673
674 // Do an unsafe store of null into self.
675 Address selfAddr =
676 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
677 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
678 }
679
680 RValue result;
681 if (isSuperMessage) {
682 // super is only valid in an Objective-C method
683 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
684 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
685 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
686 E->getSelector(),
687 OMD->getClassInterface(),
688 isCategoryImpl,
689 Receiver,
690 isClassMessage,
691 Args,
692 method);
693 } else {
694 // Call runtime methods directly if we can.
695 result = Runtime.GeneratePossiblySpecializedMessageSend(
696 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
697 method, isClassMessage);
698 }
699
700 // For delegate init calls in ARC, implicitly store the result of
701 // the call back into self. This takes ownership of the value.
702 if (isDelegateInit) {
703 Address selfAddr =
704 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
705 llvm::Value *newSelf = result.getScalarVal();
706
707 // The delegate return type isn't necessarily a matching type; in
708 // fact, it's quite likely to be 'id'.
709 llvm::Type *selfTy = selfAddr.getElementType();
710 newSelf = Builder.CreateBitCast(newSelf, selfTy);
711
712 Builder.CreateStore(newSelf, selfAddr);
713 }
714
715 return AdjustObjCObjectType(*this, E->getType(), result);
716 }
717
718 namespace {
719 struct FinishARCDealloc final : EHScopeStack::Cleanup {
Emit__anona13c6eb60111::FinishARCDealloc720 void Emit(CodeGenFunction &CGF, Flags flags) override {
721 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
722
723 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
724 const ObjCInterfaceDecl *iface = impl->getClassInterface();
725 if (!iface->getSuperClass()) return;
726
727 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
728
729 // Call [super dealloc] if we have a superclass.
730 llvm::Value *self = CGF.LoadObjCSelf();
731
732 CallArgList args;
733 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
734 CGF.getContext().VoidTy,
735 method->getSelector(),
736 iface,
737 isCategory,
738 self,
739 /*is class msg*/ false,
740 args,
741 method);
742 }
743 };
744 }
745
746 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
747 /// the LLVM function and sets the other context used by
748 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)749 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
750 const ObjCContainerDecl *CD) {
751 SourceLocation StartLoc = OMD->getBeginLoc();
752 FunctionArgList args;
753 // Check if we should generate debug info for this method.
754 if (OMD->hasAttr<NoDebugAttr>())
755 DebugInfo = nullptr; // disable debug info indefinitely for this function
756
757 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
758
759 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
760 if (OMD->isDirectMethod()) {
761 Fn->setVisibility(llvm::Function::HiddenVisibility);
762 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
763 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
764 } else {
765 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
766 }
767
768 args.push_back(OMD->getSelfDecl());
769 args.push_back(OMD->getCmdDecl());
770
771 args.append(OMD->param_begin(), OMD->param_end());
772
773 CurGD = OMD;
774 CurEHLocation = OMD->getEndLoc();
775
776 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
777 OMD->getLocation(), StartLoc);
778
779 if (OMD->isDirectMethod()) {
780 // This function is a direct call, it has to implement a nil check
781 // on entry.
782 //
783 // TODO: possibly have several entry points to elide the check
784 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
785 }
786
787 // In ARC, certain methods get an extra cleanup.
788 if (CGM.getLangOpts().ObjCAutoRefCount &&
789 OMD->isInstanceMethod() &&
790 OMD->getSelector().isUnarySelector()) {
791 const IdentifierInfo *ident =
792 OMD->getSelector().getIdentifierInfoForSlot(0);
793 if (ident->isStr("dealloc"))
794 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
795 }
796 }
797
798 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
799 LValue lvalue, QualType type);
800
801 /// Generate an Objective-C method. An Objective-C method is a C function with
802 /// its pointer, name, and types registered in the class structure.
GenerateObjCMethod(const ObjCMethodDecl * OMD)803 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
804 StartObjCMethod(OMD, OMD->getClassInterface());
805 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
806 assert(isa<CompoundStmt>(OMD->getBody()));
807 incrementProfileCounter(OMD->getBody());
808 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
809 FinishFunction(OMD->getBodyRBrace());
810 }
811
812 /// emitStructGetterCall - Call the runtime function to load a property
813 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)814 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
815 bool isAtomic, bool hasStrong) {
816 ASTContext &Context = CGF.getContext();
817
818 Address src =
819 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
820 .getAddress(CGF);
821
822 // objc_copyStruct (ReturnValue, &structIvar,
823 // sizeof (Type of Ivar), isAtomic, false);
824 CallArgList args;
825
826 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
827 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
828
829 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
830 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
831
832 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
833 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
834 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
835 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
836
837 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
838 CGCallee callee = CGCallee::forDirect(fn);
839 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
840 callee, ReturnValueSlot(), args);
841 }
842
843 /// Determine whether the given architecture supports unaligned atomic
844 /// accesses. They don't have to be fast, just faster than a function
845 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)846 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
847 // FIXME: Allow unaligned atomic load/store on x86. (It is not
848 // currently supported by the backend.)
849 return 0;
850 }
851
852 /// Return the maximum size that permits atomic accesses for the given
853 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)854 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
855 llvm::Triple::ArchType arch) {
856 // ARM has 8-byte atomic accesses, but it's not clear whether we
857 // want to rely on them here.
858
859 // In the default case, just assume that any size up to a pointer is
860 // fine given adequate alignment.
861 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
862 }
863
864 namespace {
865 class PropertyImplStrategy {
866 public:
867 enum StrategyKind {
868 /// The 'native' strategy is to use the architecture's provided
869 /// reads and writes.
870 Native,
871
872 /// Use objc_setProperty and objc_getProperty.
873 GetSetProperty,
874
875 /// Use objc_setProperty for the setter, but use expression
876 /// evaluation for the getter.
877 SetPropertyAndExpressionGet,
878
879 /// Use objc_copyStruct.
880 CopyStruct,
881
882 /// The 'expression' strategy is to emit normal assignment or
883 /// lvalue-to-rvalue expressions.
884 Expression
885 };
886
getKind() const887 StrategyKind getKind() const { return StrategyKind(Kind); }
888
hasStrongMember() const889 bool hasStrongMember() const { return HasStrong; }
isAtomic() const890 bool isAtomic() const { return IsAtomic; }
isCopy() const891 bool isCopy() const { return IsCopy; }
892
getIvarSize() const893 CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const894 CharUnits getIvarAlignment() const { return IvarAlignment; }
895
896 PropertyImplStrategy(CodeGenModule &CGM,
897 const ObjCPropertyImplDecl *propImpl);
898
899 private:
900 unsigned Kind : 8;
901 unsigned IsAtomic : 1;
902 unsigned IsCopy : 1;
903 unsigned HasStrong : 1;
904
905 CharUnits IvarSize;
906 CharUnits IvarAlignment;
907 };
908 }
909
910 /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)911 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
912 const ObjCPropertyImplDecl *propImpl) {
913 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
914 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
915
916 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
917 IsAtomic = prop->isAtomic();
918 HasStrong = false; // doesn't matter here.
919
920 // Evaluate the ivar's size and alignment.
921 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
922 QualType ivarType = ivar->getType();
923 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
924 IvarSize = TInfo.Width;
925 IvarAlignment = TInfo.Align;
926
927 // If we have a copy property, we always have to use getProperty/setProperty.
928 // TODO: we could actually use setProperty and an expression for non-atomics.
929 if (IsCopy) {
930 Kind = GetSetProperty;
931 return;
932 }
933
934 // Handle retain.
935 if (setterKind == ObjCPropertyDecl::Retain) {
936 // In GC-only, there's nothing special that needs to be done.
937 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
938 // fallthrough
939
940 // In ARC, if the property is non-atomic, use expression emission,
941 // which translates to objc_storeStrong. This isn't required, but
942 // it's slightly nicer.
943 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
944 // Using standard expression emission for the setter is only
945 // acceptable if the ivar is __strong, which won't be true if
946 // the property is annotated with __attribute__((NSObject)).
947 // TODO: falling all the way back to objc_setProperty here is
948 // just laziness, though; we could still use objc_storeStrong
949 // if we hacked it right.
950 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
951 Kind = Expression;
952 else
953 Kind = SetPropertyAndExpressionGet;
954 return;
955
956 // Otherwise, we need to at least use setProperty. However, if
957 // the property isn't atomic, we can use normal expression
958 // emission for the getter.
959 } else if (!IsAtomic) {
960 Kind = SetPropertyAndExpressionGet;
961 return;
962
963 // Otherwise, we have to use both setProperty and getProperty.
964 } else {
965 Kind = GetSetProperty;
966 return;
967 }
968 }
969
970 // If we're not atomic, just use expression accesses.
971 if (!IsAtomic) {
972 Kind = Expression;
973 return;
974 }
975
976 // Properties on bitfield ivars need to be emitted using expression
977 // accesses even if they're nominally atomic.
978 if (ivar->isBitField()) {
979 Kind = Expression;
980 return;
981 }
982
983 // GC-qualified or ARC-qualified ivars need to be emitted as
984 // expressions. This actually works out to being atomic anyway,
985 // except for ARC __strong, but that should trigger the above code.
986 if (ivarType.hasNonTrivialObjCLifetime() ||
987 (CGM.getLangOpts().getGC() &&
988 CGM.getContext().getObjCGCAttrKind(ivarType))) {
989 Kind = Expression;
990 return;
991 }
992
993 // Compute whether the ivar has strong members.
994 if (CGM.getLangOpts().getGC())
995 if (const RecordType *recordType = ivarType->getAs<RecordType>())
996 HasStrong = recordType->getDecl()->hasObjectMember();
997
998 // We can never access structs with object members with a native
999 // access, because we need to use write barriers. This is what
1000 // objc_copyStruct is for.
1001 if (HasStrong) {
1002 Kind = CopyStruct;
1003 return;
1004 }
1005
1006 // Otherwise, this is target-dependent and based on the size and
1007 // alignment of the ivar.
1008
1009 // If the size of the ivar is not a power of two, give up. We don't
1010 // want to get into the business of doing compare-and-swaps.
1011 if (!IvarSize.isPowerOfTwo()) {
1012 Kind = CopyStruct;
1013 return;
1014 }
1015
1016 llvm::Triple::ArchType arch =
1017 CGM.getTarget().getTriple().getArch();
1018
1019 // Most architectures require memory to fit within a single cache
1020 // line, so the alignment has to be at least the size of the access.
1021 // Otherwise we have to grab a lock.
1022 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1023 Kind = CopyStruct;
1024 return;
1025 }
1026
1027 // If the ivar's size exceeds the architecture's maximum atomic
1028 // access size, we have to use CopyStruct.
1029 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1030 Kind = CopyStruct;
1031 return;
1032 }
1033
1034 // Otherwise, we can use native loads and stores.
1035 Kind = Native;
1036 }
1037
1038 /// Generate an Objective-C property getter function.
1039 ///
1040 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1041 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1042 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1043 const ObjCPropertyImplDecl *PID) {
1044 llvm::Constant *AtomicHelperFn =
1045 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1046 ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1047 assert(OMD && "Invalid call to generate getter (empty method)");
1048 StartObjCMethod(OMD, IMP->getClassInterface());
1049
1050 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1051
1052 FinishFunction(OMD->getEndLoc());
1053 }
1054
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)1055 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1056 const Expr *getter = propImpl->getGetterCXXConstructor();
1057 if (!getter) return true;
1058
1059 // Sema only makes only of these when the ivar has a C++ class type,
1060 // so the form is pretty constrained.
1061
1062 // If the property has a reference type, we might just be binding a
1063 // reference, in which case the result will be a gl-value. We should
1064 // treat this as a non-trivial operation.
1065 if (getter->isGLValue())
1066 return false;
1067
1068 // If we selected a trivial copy-constructor, we're okay.
1069 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1070 return (construct->getConstructor()->isTrivial());
1071
1072 // The constructor might require cleanups (in which case it's never
1073 // trivial).
1074 assert(isa<ExprWithCleanups>(getter));
1075 return false;
1076 }
1077
1078 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1079 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1080 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1081 llvm::Value *returnAddr,
1082 ObjCIvarDecl *ivar,
1083 llvm::Constant *AtomicHelperFn) {
1084 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1085 // AtomicHelperFn);
1086 CallArgList args;
1087
1088 // The 1st argument is the return Slot.
1089 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1090
1091 // The 2nd argument is the address of the ivar.
1092 llvm::Value *ivarAddr =
1093 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1094 .getPointer(CGF);
1095 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1096 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1097
1098 // Third argument is the helper function.
1099 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1100
1101 llvm::FunctionCallee copyCppAtomicObjectFn =
1102 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1103 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1104 CGF.EmitCall(
1105 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1106 callee, ReturnValueSlot(), args);
1107 }
1108
1109 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)1110 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1111 const ObjCPropertyImplDecl *propImpl,
1112 const ObjCMethodDecl *GetterMethodDecl,
1113 llvm::Constant *AtomicHelperFn) {
1114 // If there's a non-trivial 'get' expression, we just have to emit that.
1115 if (!hasTrivialGetExpr(propImpl)) {
1116 if (!AtomicHelperFn) {
1117 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1118 propImpl->getGetterCXXConstructor(),
1119 /* NRVOCandidate=*/nullptr);
1120 EmitReturnStmt(*ret);
1121 }
1122 else {
1123 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1124 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1125 ivar, AtomicHelperFn);
1126 }
1127 return;
1128 }
1129
1130 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1131 QualType propType = prop->getType();
1132 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1133
1134 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1135
1136 // Pick an implementation strategy.
1137 PropertyImplStrategy strategy(CGM, propImpl);
1138 switch (strategy.getKind()) {
1139 case PropertyImplStrategy::Native: {
1140 // We don't need to do anything for a zero-size struct.
1141 if (strategy.getIvarSize().isZero())
1142 return;
1143
1144 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1145
1146 // Currently, all atomic accesses have to be through integer
1147 // types, so there's no point in trying to pick a prettier type.
1148 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1149 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1150 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1151
1152 // Perform an atomic load. This does not impose ordering constraints.
1153 Address ivarAddr = LV.getAddress(*this);
1154 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1155 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1156 load->setAtomic(llvm::AtomicOrdering::Unordered);
1157
1158 // Store that value into the return address. Doing this with a
1159 // bitcast is likely to produce some pretty ugly IR, but it's not
1160 // the *most* terrible thing in the world.
1161 llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1162 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1163 llvm::Value *ivarVal = load;
1164 if (ivarSize > retTySize) {
1165 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1166 ivarVal = Builder.CreateTrunc(load, newTy);
1167 bitcastType = newTy->getPointerTo();
1168 }
1169 Builder.CreateStore(ivarVal,
1170 Builder.CreateBitCast(ReturnValue, bitcastType));
1171
1172 // Make sure we don't do an autorelease.
1173 AutoreleaseResult = false;
1174 return;
1175 }
1176
1177 case PropertyImplStrategy::GetSetProperty: {
1178 llvm::FunctionCallee getPropertyFn =
1179 CGM.getObjCRuntime().GetPropertyGetFunction();
1180 if (!getPropertyFn) {
1181 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1182 return;
1183 }
1184 CGCallee callee = CGCallee::forDirect(getPropertyFn);
1185
1186 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1187 // FIXME: Can't this be simpler? This might even be worse than the
1188 // corresponding gcc code.
1189 llvm::Value *cmd =
1190 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1191 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1192 llvm::Value *ivarOffset =
1193 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1194
1195 CallArgList args;
1196 args.add(RValue::get(self), getContext().getObjCIdType());
1197 args.add(RValue::get(cmd), getContext().getObjCSelType());
1198 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1199 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1200 getContext().BoolTy);
1201
1202 // FIXME: We shouldn't need to get the function info here, the
1203 // runtime already should have computed it to build the function.
1204 llvm::CallBase *CallInstruction;
1205 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1206 getContext().getObjCIdType(), args),
1207 callee, ReturnValueSlot(), args, &CallInstruction);
1208 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1209 call->setTailCall();
1210
1211 // We need to fix the type here. Ivars with copy & retain are
1212 // always objects so we don't need to worry about complex or
1213 // aggregates.
1214 RV = RValue::get(Builder.CreateBitCast(
1215 RV.getScalarVal(),
1216 getTypes().ConvertType(getterMethod->getReturnType())));
1217
1218 EmitReturnOfRValue(RV, propType);
1219
1220 // objc_getProperty does an autorelease, so we should suppress ours.
1221 AutoreleaseResult = false;
1222
1223 return;
1224 }
1225
1226 case PropertyImplStrategy::CopyStruct:
1227 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1228 strategy.hasStrongMember());
1229 return;
1230
1231 case PropertyImplStrategy::Expression:
1232 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1233 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1234
1235 QualType ivarType = ivar->getType();
1236 switch (getEvaluationKind(ivarType)) {
1237 case TEK_Complex: {
1238 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1239 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1240 /*init*/ true);
1241 return;
1242 }
1243 case TEK_Aggregate: {
1244 // The return value slot is guaranteed to not be aliased, but
1245 // that's not necessarily the same as "on the stack", so
1246 // we still potentially need objc_memmove_collectable.
1247 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1248 /* Src= */ LV, ivarType, getOverlapForReturnValue());
1249 return;
1250 }
1251 case TEK_Scalar: {
1252 llvm::Value *value;
1253 if (propType->isReferenceType()) {
1254 value = LV.getAddress(*this).getPointer();
1255 } else {
1256 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1257 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1258 if (getLangOpts().ObjCAutoRefCount) {
1259 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1260 } else {
1261 value = EmitARCLoadWeak(LV.getAddress(*this));
1262 }
1263
1264 // Otherwise we want to do a simple load, suppressing the
1265 // final autorelease.
1266 } else {
1267 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1268 AutoreleaseResult = false;
1269 }
1270
1271 value = Builder.CreateBitCast(
1272 value, ConvertType(GetterMethodDecl->getReturnType()));
1273 }
1274
1275 EmitReturnOfRValue(RValue::get(value), propType);
1276 return;
1277 }
1278 }
1279 llvm_unreachable("bad evaluation kind");
1280 }
1281
1282 }
1283 llvm_unreachable("bad @property implementation strategy!");
1284 }
1285
1286 /// emitStructSetterCall - Call the runtime function to store the value
1287 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)1288 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1289 ObjCIvarDecl *ivar) {
1290 // objc_copyStruct (&structIvar, &Arg,
1291 // sizeof (struct something), true, false);
1292 CallArgList args;
1293
1294 // The first argument is the address of the ivar.
1295 llvm::Value *ivarAddr =
1296 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1297 .getPointer(CGF);
1298 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1299 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1300
1301 // The second argument is the address of the parameter variable.
1302 ParmVarDecl *argVar = *OMD->param_begin();
1303 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1304 argVar->getType().getNonReferenceType(), VK_LValue,
1305 SourceLocation());
1306 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1307 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1308 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1309
1310 // The third argument is the sizeof the type.
1311 llvm::Value *size =
1312 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1313 args.add(RValue::get(size), CGF.getContext().getSizeType());
1314
1315 // The fourth argument is the 'isAtomic' flag.
1316 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1317
1318 // The fifth argument is the 'hasStrong' flag.
1319 // FIXME: should this really always be false?
1320 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1321
1322 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1323 CGCallee callee = CGCallee::forDirect(fn);
1324 CGF.EmitCall(
1325 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1326 callee, ReturnValueSlot(), args);
1327 }
1328
1329 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1330 /// the value from the first formal parameter into the given ivar, using
1331 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1332 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1333 ObjCMethodDecl *OMD,
1334 ObjCIvarDecl *ivar,
1335 llvm::Constant *AtomicHelperFn) {
1336 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1337 // AtomicHelperFn);
1338 CallArgList args;
1339
1340 // The first argument is the address of the ivar.
1341 llvm::Value *ivarAddr =
1342 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1343 .getPointer(CGF);
1344 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1345 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1346
1347 // The second argument is the address of the parameter variable.
1348 ParmVarDecl *argVar = *OMD->param_begin();
1349 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1350 argVar->getType().getNonReferenceType(), VK_LValue,
1351 SourceLocation());
1352 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1353 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1354 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1355
1356 // Third argument is the helper function.
1357 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1358
1359 llvm::FunctionCallee fn =
1360 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1361 CGCallee callee = CGCallee::forDirect(fn);
1362 CGF.EmitCall(
1363 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1364 callee, ReturnValueSlot(), args);
1365 }
1366
1367
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1368 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1369 Expr *setter = PID->getSetterCXXAssignment();
1370 if (!setter) return true;
1371
1372 // Sema only makes only of these when the ivar has a C++ class type,
1373 // so the form is pretty constrained.
1374
1375 // An operator call is trivial if the function it calls is trivial.
1376 // This also implies that there's nothing non-trivial going on with
1377 // the arguments, because operator= can only be trivial if it's a
1378 // synthesized assignment operator and therefore both parameters are
1379 // references.
1380 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1381 if (const FunctionDecl *callee
1382 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1383 if (callee->isTrivial())
1384 return true;
1385 return false;
1386 }
1387
1388 assert(isa<ExprWithCleanups>(setter));
1389 return false;
1390 }
1391
UseOptimizedSetter(CodeGenModule & CGM)1392 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1393 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1394 return false;
1395 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1396 }
1397
1398 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1399 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1400 const ObjCPropertyImplDecl *propImpl,
1401 llvm::Constant *AtomicHelperFn) {
1402 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1403 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1404
1405 // Just use the setter expression if Sema gave us one and it's
1406 // non-trivial.
1407 if (!hasTrivialSetExpr(propImpl)) {
1408 if (!AtomicHelperFn)
1409 // If non-atomic, assignment is called directly.
1410 EmitStmt(propImpl->getSetterCXXAssignment());
1411 else
1412 // If atomic, assignment is called via a locking api.
1413 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1414 AtomicHelperFn);
1415 return;
1416 }
1417
1418 PropertyImplStrategy strategy(CGM, propImpl);
1419 switch (strategy.getKind()) {
1420 case PropertyImplStrategy::Native: {
1421 // We don't need to do anything for a zero-size struct.
1422 if (strategy.getIvarSize().isZero())
1423 return;
1424
1425 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1426
1427 LValue ivarLValue =
1428 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1429 Address ivarAddr = ivarLValue.getAddress(*this);
1430
1431 // Currently, all atomic accesses have to be through integer
1432 // types, so there's no point in trying to pick a prettier type.
1433 llvm::Type *bitcastType =
1434 llvm::Type::getIntNTy(getLLVMContext(),
1435 getContext().toBits(strategy.getIvarSize()));
1436
1437 // Cast both arguments to the chosen operation type.
1438 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1439 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1440
1441 // This bitcast load is likely to cause some nasty IR.
1442 llvm::Value *load = Builder.CreateLoad(argAddr);
1443
1444 // Perform an atomic store. There are no memory ordering requirements.
1445 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1446 store->setAtomic(llvm::AtomicOrdering::Unordered);
1447 return;
1448 }
1449
1450 case PropertyImplStrategy::GetSetProperty:
1451 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1452
1453 llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1454 llvm::FunctionCallee setPropertyFn = nullptr;
1455 if (UseOptimizedSetter(CGM)) {
1456 // 10.8 and iOS 6.0 code and GC is off
1457 setOptimizedPropertyFn =
1458 CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1459 strategy.isAtomic(), strategy.isCopy());
1460 if (!setOptimizedPropertyFn) {
1461 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1462 return;
1463 }
1464 }
1465 else {
1466 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1467 if (!setPropertyFn) {
1468 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1469 return;
1470 }
1471 }
1472
1473 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1474 // <is-atomic>, <is-copy>).
1475 llvm::Value *cmd =
1476 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1477 llvm::Value *self =
1478 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1479 llvm::Value *ivarOffset =
1480 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1481 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1482 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1483 arg = Builder.CreateBitCast(arg, VoidPtrTy);
1484
1485 CallArgList args;
1486 args.add(RValue::get(self), getContext().getObjCIdType());
1487 args.add(RValue::get(cmd), getContext().getObjCSelType());
1488 if (setOptimizedPropertyFn) {
1489 args.add(RValue::get(arg), getContext().getObjCIdType());
1490 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1491 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1492 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1493 callee, ReturnValueSlot(), args);
1494 } else {
1495 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1496 args.add(RValue::get(arg), getContext().getObjCIdType());
1497 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1498 getContext().BoolTy);
1499 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1500 getContext().BoolTy);
1501 // FIXME: We shouldn't need to get the function info here, the runtime
1502 // already should have computed it to build the function.
1503 CGCallee callee = CGCallee::forDirect(setPropertyFn);
1504 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1505 callee, ReturnValueSlot(), args);
1506 }
1507
1508 return;
1509 }
1510
1511 case PropertyImplStrategy::CopyStruct:
1512 emitStructSetterCall(*this, setterMethod, ivar);
1513 return;
1514
1515 case PropertyImplStrategy::Expression:
1516 break;
1517 }
1518
1519 // Otherwise, fake up some ASTs and emit a normal assignment.
1520 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1521 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1522 VK_LValue, SourceLocation());
1523 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1524 CK_LValueToRValue, &self, VK_RValue,
1525 FPOptionsOverride());
1526 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1527 SourceLocation(), SourceLocation(),
1528 &selfLoad, true, true);
1529
1530 ParmVarDecl *argDecl = *setterMethod->param_begin();
1531 QualType argType = argDecl->getType().getNonReferenceType();
1532 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1533 SourceLocation());
1534 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1535 argType.getUnqualifiedType(), CK_LValueToRValue,
1536 &arg, VK_RValue, FPOptionsOverride());
1537
1538 // The property type can differ from the ivar type in some situations with
1539 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1540 // The following absurdity is just to ensure well-formed IR.
1541 CastKind argCK = CK_NoOp;
1542 if (ivarRef.getType()->isObjCObjectPointerType()) {
1543 if (argLoad.getType()->isObjCObjectPointerType())
1544 argCK = CK_BitCast;
1545 else if (argLoad.getType()->isBlockPointerType())
1546 argCK = CK_BlockPointerToObjCPointerCast;
1547 else
1548 argCK = CK_CPointerToObjCPointerCast;
1549 } else if (ivarRef.getType()->isBlockPointerType()) {
1550 if (argLoad.getType()->isBlockPointerType())
1551 argCK = CK_BitCast;
1552 else
1553 argCK = CK_AnyPointerToBlockPointerCast;
1554 } else if (ivarRef.getType()->isPointerType()) {
1555 argCK = CK_BitCast;
1556 }
1557 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1558 &argLoad, VK_RValue, FPOptionsOverride());
1559 Expr *finalArg = &argLoad;
1560 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1561 argLoad.getType()))
1562 finalArg = &argCast;
1563
1564 BinaryOperator *assign = BinaryOperator::Create(
1565 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue,
1566 OK_Ordinary, SourceLocation(), FPOptionsOverride());
1567 EmitStmt(assign);
1568 }
1569
1570 /// Generate an Objective-C property setter function.
1571 ///
1572 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1573 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1574 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1575 const ObjCPropertyImplDecl *PID) {
1576 llvm::Constant *AtomicHelperFn =
1577 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1578 ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1579 assert(OMD && "Invalid call to generate setter (empty method)");
1580 StartObjCMethod(OMD, IMP->getClassInterface());
1581
1582 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1583
1584 FinishFunction(OMD->getEndLoc());
1585 }
1586
1587 namespace {
1588 struct DestroyIvar final : EHScopeStack::Cleanup {
1589 private:
1590 llvm::Value *addr;
1591 const ObjCIvarDecl *ivar;
1592 CodeGenFunction::Destroyer *destroyer;
1593 bool useEHCleanupForArray;
1594 public:
DestroyIvar__anona13c6eb60311::DestroyIvar1595 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1596 CodeGenFunction::Destroyer *destroyer,
1597 bool useEHCleanupForArray)
1598 : addr(addr), ivar(ivar), destroyer(destroyer),
1599 useEHCleanupForArray(useEHCleanupForArray) {}
1600
Emit__anona13c6eb60311::DestroyIvar1601 void Emit(CodeGenFunction &CGF, Flags flags) override {
1602 LValue lvalue
1603 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1604 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1605 flags.isForNormalCleanup() && useEHCleanupForArray);
1606 }
1607 };
1608 }
1609
1610 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,Address addr,QualType type)1611 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1612 Address addr,
1613 QualType type) {
1614 llvm::Value *null = getNullForVariable(addr);
1615 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1616 }
1617
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1618 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1619 ObjCImplementationDecl *impl) {
1620 CodeGenFunction::RunCleanupsScope scope(CGF);
1621
1622 llvm::Value *self = CGF.LoadObjCSelf();
1623
1624 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1625 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1626 ivar; ivar = ivar->getNextIvar()) {
1627 QualType type = ivar->getType();
1628
1629 // Check whether the ivar is a destructible type.
1630 QualType::DestructionKind dtorKind = type.isDestructedType();
1631 if (!dtorKind) continue;
1632
1633 CodeGenFunction::Destroyer *destroyer = nullptr;
1634
1635 // Use a call to objc_storeStrong to destroy strong ivars, for the
1636 // general benefit of the tools.
1637 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1638 destroyer = destroyARCStrongWithStore;
1639
1640 // Otherwise use the default for the destruction kind.
1641 } else {
1642 destroyer = CGF.getDestroyer(dtorKind);
1643 }
1644
1645 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1646
1647 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1648 cleanupKind & EHCleanup);
1649 }
1650
1651 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1652 }
1653
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1654 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1655 ObjCMethodDecl *MD,
1656 bool ctor) {
1657 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1658 StartObjCMethod(MD, IMP->getClassInterface());
1659
1660 // Emit .cxx_construct.
1661 if (ctor) {
1662 // Suppress the final autorelease in ARC.
1663 AutoreleaseResult = false;
1664
1665 for (const auto *IvarInit : IMP->inits()) {
1666 FieldDecl *Field = IvarInit->getAnyMember();
1667 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1668 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1669 LoadObjCSelf(), Ivar, 0);
1670 EmitAggExpr(IvarInit->getInit(),
1671 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1672 AggValueSlot::DoesNotNeedGCBarriers,
1673 AggValueSlot::IsNotAliased,
1674 AggValueSlot::DoesNotOverlap));
1675 }
1676 // constructor returns 'self'.
1677 CodeGenTypes &Types = CGM.getTypes();
1678 QualType IdTy(CGM.getContext().getObjCIdType());
1679 llvm::Value *SelfAsId =
1680 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1681 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1682
1683 // Emit .cxx_destruct.
1684 } else {
1685 emitCXXDestructMethod(*this, IMP);
1686 }
1687 FinishFunction();
1688 }
1689
LoadObjCSelf()1690 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1691 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1692 DeclRefExpr DRE(getContext(), Self,
1693 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1694 Self->getType(), VK_LValue, SourceLocation());
1695 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1696 }
1697
TypeOfSelfObject()1698 QualType CodeGenFunction::TypeOfSelfObject() {
1699 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1700 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1701 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1702 getContext().getCanonicalType(selfDecl->getType()));
1703 return PTy->getPointeeType();
1704 }
1705
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1706 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1707 llvm::FunctionCallee EnumerationMutationFnPtr =
1708 CGM.getObjCRuntime().EnumerationMutationFunction();
1709 if (!EnumerationMutationFnPtr) {
1710 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1711 return;
1712 }
1713 CGCallee EnumerationMutationFn =
1714 CGCallee::forDirect(EnumerationMutationFnPtr);
1715
1716 CGDebugInfo *DI = getDebugInfo();
1717 if (DI)
1718 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1719
1720 RunCleanupsScope ForScope(*this);
1721
1722 // The local variable comes into scope immediately.
1723 AutoVarEmission variable = AutoVarEmission::invalid();
1724 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1725 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1726
1727 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1728
1729 // Fast enumeration state.
1730 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1731 Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1732 EmitNullInitialization(StatePtr, StateTy);
1733
1734 // Number of elements in the items array.
1735 static const unsigned NumItems = 16;
1736
1737 // Fetch the countByEnumeratingWithState:objects:count: selector.
1738 IdentifierInfo *II[] = {
1739 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1740 &CGM.getContext().Idents.get("objects"),
1741 &CGM.getContext().Idents.get("count")
1742 };
1743 Selector FastEnumSel =
1744 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1745
1746 QualType ItemsTy =
1747 getContext().getConstantArrayType(getContext().getObjCIdType(),
1748 llvm::APInt(32, NumItems), nullptr,
1749 ArrayType::Normal, 0);
1750 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1751
1752 // Emit the collection pointer. In ARC, we do a retain.
1753 llvm::Value *Collection;
1754 if (getLangOpts().ObjCAutoRefCount) {
1755 Collection = EmitARCRetainScalarExpr(S.getCollection());
1756
1757 // Enter a cleanup to do the release.
1758 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1759 } else {
1760 Collection = EmitScalarExpr(S.getCollection());
1761 }
1762
1763 // The 'continue' label needs to appear within the cleanup for the
1764 // collection object.
1765 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1766
1767 // Send it our message:
1768 CallArgList Args;
1769
1770 // The first argument is a temporary of the enumeration-state type.
1771 Args.add(RValue::get(StatePtr.getPointer()),
1772 getContext().getPointerType(StateTy));
1773
1774 // The second argument is a temporary array with space for NumItems
1775 // pointers. We'll actually be loading elements from the array
1776 // pointer written into the control state; this buffer is so that
1777 // collections that *aren't* backed by arrays can still queue up
1778 // batches of elements.
1779 Args.add(RValue::get(ItemsPtr.getPointer()),
1780 getContext().getPointerType(ItemsTy));
1781
1782 // The third argument is the capacity of that temporary array.
1783 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1784 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1785 Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1786
1787 // Start the enumeration.
1788 RValue CountRV =
1789 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1790 getContext().getNSUIntegerType(),
1791 FastEnumSel, Collection, Args);
1792
1793 // The initial number of objects that were returned in the buffer.
1794 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1795
1796 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1797 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1798
1799 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1800
1801 // If the limit pointer was zero to begin with, the collection is
1802 // empty; skip all this. Set the branch weight assuming this has the same
1803 // probability of exiting the loop as any other loop exit.
1804 uint64_t EntryCount = getCurrentProfileCount();
1805 Builder.CreateCondBr(
1806 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1807 LoopInitBB,
1808 createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1809
1810 // Otherwise, initialize the loop.
1811 EmitBlock(LoopInitBB);
1812
1813 // Save the initial mutations value. This is the value at an
1814 // address that was written into the state object by
1815 // countByEnumeratingWithState:objects:count:.
1816 Address StateMutationsPtrPtr =
1817 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1818 llvm::Value *StateMutationsPtr
1819 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1820
1821 llvm::Value *initialMutations =
1822 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1823 "forcoll.initial-mutations");
1824
1825 // Start looping. This is the point we return to whenever we have a
1826 // fresh, non-empty batch of objects.
1827 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1828 EmitBlock(LoopBodyBB);
1829
1830 // The current index into the buffer.
1831 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1832 index->addIncoming(zero, LoopInitBB);
1833
1834 // The current buffer size.
1835 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1836 count->addIncoming(initialBufferLimit, LoopInitBB);
1837
1838 incrementProfileCounter(&S);
1839
1840 // Check whether the mutations value has changed from where it was
1841 // at start. StateMutationsPtr should actually be invariant between
1842 // refreshes.
1843 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1844 llvm::Value *currentMutations
1845 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1846 "statemutations");
1847
1848 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1849 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1850
1851 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1852 WasNotMutatedBB, WasMutatedBB);
1853
1854 // If so, call the enumeration-mutation function.
1855 EmitBlock(WasMutatedBB);
1856 llvm::Value *V =
1857 Builder.CreateBitCast(Collection,
1858 ConvertType(getContext().getObjCIdType()));
1859 CallArgList Args2;
1860 Args2.add(RValue::get(V), getContext().getObjCIdType());
1861 // FIXME: We shouldn't need to get the function info here, the runtime already
1862 // should have computed it to build the function.
1863 EmitCall(
1864 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1865 EnumerationMutationFn, ReturnValueSlot(), Args2);
1866
1867 // Otherwise, or if the mutation function returns, just continue.
1868 EmitBlock(WasNotMutatedBB);
1869
1870 // Initialize the element variable.
1871 RunCleanupsScope elementVariableScope(*this);
1872 bool elementIsVariable;
1873 LValue elementLValue;
1874 QualType elementType;
1875 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1876 // Initialize the variable, in case it's a __block variable or something.
1877 EmitAutoVarInit(variable);
1878
1879 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1880 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1881 D->getType(), VK_LValue, SourceLocation());
1882 elementLValue = EmitLValue(&tempDRE);
1883 elementType = D->getType();
1884 elementIsVariable = true;
1885
1886 if (D->isARCPseudoStrong())
1887 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1888 } else {
1889 elementLValue = LValue(); // suppress warning
1890 elementType = cast<Expr>(S.getElement())->getType();
1891 elementIsVariable = false;
1892 }
1893 llvm::Type *convertedElementType = ConvertType(elementType);
1894
1895 // Fetch the buffer out of the enumeration state.
1896 // TODO: this pointer should actually be invariant between
1897 // refreshes, which would help us do certain loop optimizations.
1898 Address StateItemsPtr =
1899 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1900 llvm::Value *EnumStateItems =
1901 Builder.CreateLoad(StateItemsPtr, "stateitems");
1902
1903 // Fetch the value at the current index from the buffer.
1904 llvm::Value *CurrentItemPtr =
1905 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1906 llvm::Value *CurrentItem =
1907 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1908
1909 if (SanOpts.has(SanitizerKind::ObjCCast)) {
1910 // Before using an item from the collection, check that the implicit cast
1911 // from id to the element type is valid. This is done with instrumentation
1912 // roughly corresponding to:
1913 //
1914 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1915 const ObjCObjectPointerType *ObjPtrTy =
1916 elementType->getAsObjCInterfacePointerType();
1917 const ObjCInterfaceType *InterfaceTy =
1918 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1919 if (InterfaceTy) {
1920 SanitizerScope SanScope(this);
1921 auto &C = CGM.getContext();
1922 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1923 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1924 CallArgList IsKindOfClassArgs;
1925 llvm::Value *Cls =
1926 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1927 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1928 llvm::Value *IsClass =
1929 CGM.getObjCRuntime()
1930 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1931 IsKindOfClassSel, CurrentItem,
1932 IsKindOfClassArgs)
1933 .getScalarVal();
1934 llvm::Constant *StaticData[] = {
1935 EmitCheckSourceLocation(S.getBeginLoc()),
1936 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1937 EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1938 SanitizerHandler::InvalidObjCCast,
1939 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1940 }
1941 }
1942
1943 // Cast that value to the right type.
1944 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1945 "currentitem");
1946
1947 // Make sure we have an l-value. Yes, this gets evaluated every
1948 // time through the loop.
1949 if (!elementIsVariable) {
1950 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1951 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1952 } else {
1953 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1954 /*isInit*/ true);
1955 }
1956
1957 // If we do have an element variable, this assignment is the end of
1958 // its initialization.
1959 if (elementIsVariable)
1960 EmitAutoVarCleanups(variable);
1961
1962 // Perform the loop body, setting up break and continue labels.
1963 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1964 {
1965 RunCleanupsScope Scope(*this);
1966 EmitStmt(S.getBody());
1967 }
1968 BreakContinueStack.pop_back();
1969
1970 // Destroy the element variable now.
1971 elementVariableScope.ForceCleanup();
1972
1973 // Check whether there are more elements.
1974 EmitBlock(AfterBody.getBlock());
1975
1976 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1977
1978 // First we check in the local buffer.
1979 llvm::Value *indexPlusOne =
1980 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1981
1982 // If we haven't overrun the buffer yet, we can continue.
1983 // Set the branch weights based on the simplifying assumption that this is
1984 // like a while-loop, i.e., ignoring that the false branch fetches more
1985 // elements and then returns to the loop.
1986 Builder.CreateCondBr(
1987 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1988 createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1989
1990 index->addIncoming(indexPlusOne, AfterBody.getBlock());
1991 count->addIncoming(count, AfterBody.getBlock());
1992
1993 // Otherwise, we have to fetch more elements.
1994 EmitBlock(FetchMoreBB);
1995
1996 CountRV =
1997 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1998 getContext().getNSUIntegerType(),
1999 FastEnumSel, Collection, Args);
2000
2001 // If we got a zero count, we're done.
2002 llvm::Value *refetchCount = CountRV.getScalarVal();
2003
2004 // (note that the message send might split FetchMoreBB)
2005 index->addIncoming(zero, Builder.GetInsertBlock());
2006 count->addIncoming(refetchCount, Builder.GetInsertBlock());
2007
2008 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2009 EmptyBB, LoopBodyBB);
2010
2011 // No more elements.
2012 EmitBlock(EmptyBB);
2013
2014 if (!elementIsVariable) {
2015 // If the element was not a declaration, set it to be null.
2016
2017 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2018 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2019 EmitStoreThroughLValue(RValue::get(null), elementLValue);
2020 }
2021
2022 if (DI)
2023 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2024
2025 ForScope.ForceCleanup();
2026 EmitBlock(LoopEnd.getBlock());
2027 }
2028
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)2029 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2030 CGM.getObjCRuntime().EmitTryStmt(*this, S);
2031 }
2032
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)2033 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2034 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2035 }
2036
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)2037 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2038 const ObjCAtSynchronizedStmt &S) {
2039 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2040 }
2041
2042 namespace {
2043 struct CallObjCRelease final : EHScopeStack::Cleanup {
CallObjCRelease__anona13c6eb60411::CallObjCRelease2044 CallObjCRelease(llvm::Value *object) : object(object) {}
2045 llvm::Value *object;
2046
Emit__anona13c6eb60411::CallObjCRelease2047 void Emit(CodeGenFunction &CGF, Flags flags) override {
2048 // Releases at the end of the full-expression are imprecise.
2049 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2050 }
2051 };
2052 }
2053
2054 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
2055 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)2056 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2057 llvm::Value *object) {
2058 // If we're in a conditional branch, we need to make the cleanup
2059 // conditional.
2060 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2061 return object;
2062 }
2063
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)2064 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2065 llvm::Value *value) {
2066 return EmitARCRetainAutorelease(type, value);
2067 }
2068
2069 /// Given a number of pointers, inform the optimizer that they're
2070 /// being intrinsically used up until this point in the program.
EmitARCIntrinsicUse(ArrayRef<llvm::Value * > values)2071 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2072 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2073 if (!fn)
2074 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2075
2076 // This isn't really a "runtime" function, but as an intrinsic it
2077 // doesn't really matter as long as we align things up.
2078 EmitNounwindRuntimeCall(fn, values);
2079 }
2080
setARCRuntimeFunctionLinkage(CodeGenModule & CGM,llvm::Value * RTF)2081 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2082 if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2083 // If the target runtime doesn't naturally support ARC, emit weak
2084 // references to the runtime support library. We don't really
2085 // permit this to fail, but we need a particular relocation style.
2086 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2087 !CGM.getTriple().isOSBinFormatCOFF()) {
2088 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2089 }
2090 }
2091 }
2092
setARCRuntimeFunctionLinkage(CodeGenModule & CGM,llvm::FunctionCallee RTF)2093 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2094 llvm::FunctionCallee RTF) {
2095 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2096 }
2097
2098 /// Perform an operation having the signature
2099 /// i8* (i8*)
2100 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Type * returnType,llvm::Function * & fn,llvm::Intrinsic::ID IntID,llvm::CallInst::TailCallKind tailKind=llvm::CallInst::TCK_None)2101 static llvm::Value *emitARCValueOperation(
2102 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2103 llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2104 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2105 if (isa<llvm::ConstantPointerNull>(value))
2106 return value;
2107
2108 if (!fn) {
2109 fn = CGF.CGM.getIntrinsic(IntID);
2110 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2111 }
2112
2113 // Cast the argument to 'id'.
2114 llvm::Type *origType = returnType ? returnType : value->getType();
2115 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2116
2117 // Call the function.
2118 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2119 call->setTailCallKind(tailKind);
2120
2121 // Cast the result back to the original type.
2122 return CGF.Builder.CreateBitCast(call, origType);
2123 }
2124
2125 /// Perform an operation having the following signature:
2126 /// i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,Address addr,llvm::Function * & fn,llvm::Intrinsic::ID IntID)2127 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2128 llvm::Function *&fn,
2129 llvm::Intrinsic::ID IntID) {
2130 if (!fn) {
2131 fn = CGF.CGM.getIntrinsic(IntID);
2132 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2133 }
2134
2135 // Cast the argument to 'id*'.
2136 llvm::Type *origType = addr.getElementType();
2137 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2138
2139 // Call the function.
2140 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2141
2142 // Cast the result back to a dereference of the original type.
2143 if (origType != CGF.Int8PtrTy)
2144 result = CGF.Builder.CreateBitCast(result, origType);
2145
2146 return result;
2147 }
2148
2149 /// Perform an operation having the following signature:
2150 /// i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,Address addr,llvm::Value * value,llvm::Function * & fn,llvm::Intrinsic::ID IntID,bool ignored)2151 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2152 llvm::Value *value,
2153 llvm::Function *&fn,
2154 llvm::Intrinsic::ID IntID,
2155 bool ignored) {
2156 assert(addr.getElementType() == value->getType());
2157
2158 if (!fn) {
2159 fn = CGF.CGM.getIntrinsic(IntID);
2160 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2161 }
2162
2163 llvm::Type *origType = value->getType();
2164
2165 llvm::Value *args[] = {
2166 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2167 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2168 };
2169 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2170
2171 if (ignored) return nullptr;
2172
2173 return CGF.Builder.CreateBitCast(result, origType);
2174 }
2175
2176 /// Perform an operation having the following signature:
2177 /// void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,Address dst,Address src,llvm::Function * & fn,llvm::Intrinsic::ID IntID)2178 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2179 llvm::Function *&fn,
2180 llvm::Intrinsic::ID IntID) {
2181 assert(dst.getType() == src.getType());
2182
2183 if (!fn) {
2184 fn = CGF.CGM.getIntrinsic(IntID);
2185 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2186 }
2187
2188 llvm::Value *args[] = {
2189 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2190 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2191 };
2192 CGF.EmitNounwindRuntimeCall(fn, args);
2193 }
2194
2195 /// Perform an operation having the signature
2196 /// i8* (i8*)
2197 /// where a null input causes a no-op and returns null.
emitObjCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Type * returnType,llvm::FunctionCallee & fn,StringRef fnName)2198 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2199 llvm::Value *value,
2200 llvm::Type *returnType,
2201 llvm::FunctionCallee &fn,
2202 StringRef fnName) {
2203 if (isa<llvm::ConstantPointerNull>(value))
2204 return value;
2205
2206 if (!fn) {
2207 llvm::FunctionType *fnType =
2208 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2209 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2210
2211 // We have Native ARC, so set nonlazybind attribute for performance
2212 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2213 if (fnName == "objc_retain")
2214 f->addFnAttr(llvm::Attribute::NonLazyBind);
2215 }
2216
2217 // Cast the argument to 'id'.
2218 llvm::Type *origType = returnType ? returnType : value->getType();
2219 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2220
2221 // Call the function.
2222 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2223
2224 // Mark calls to objc_autorelease as tail on the assumption that methods
2225 // overriding autorelease do not touch anything on the stack.
2226 if (fnName == "objc_autorelease")
2227 if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2228 Call->setTailCall();
2229
2230 // Cast the result back to the original type.
2231 return CGF.Builder.CreateBitCast(Inst, origType);
2232 }
2233
2234 /// Produce the code to do a retain. Based on the type, calls one of:
2235 /// call i8* \@objc_retain(i8* %value)
2236 /// call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)2237 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2238 if (type->isBlockPointerType())
2239 return EmitARCRetainBlock(value, /*mandatory*/ false);
2240 else
2241 return EmitARCRetainNonBlock(value);
2242 }
2243
2244 /// Retain the given object, with normal retain semantics.
2245 /// call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)2246 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2247 return emitARCValueOperation(*this, value, nullptr,
2248 CGM.getObjCEntrypoints().objc_retain,
2249 llvm::Intrinsic::objc_retain);
2250 }
2251
2252 /// Retain the given block, with _Block_copy semantics.
2253 /// call i8* \@objc_retainBlock(i8* %value)
2254 ///
2255 /// \param mandatory - If false, emit the call with metadata
2256 /// indicating that it's okay for the optimizer to eliminate this call
2257 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)2258 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2259 bool mandatory) {
2260 llvm::Value *result
2261 = emitARCValueOperation(*this, value, nullptr,
2262 CGM.getObjCEntrypoints().objc_retainBlock,
2263 llvm::Intrinsic::objc_retainBlock);
2264
2265 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2266 // tell the optimizer that it doesn't need to do this copy if the
2267 // block doesn't escape, where being passed as an argument doesn't
2268 // count as escaping.
2269 if (!mandatory && isa<llvm::Instruction>(result)) {
2270 llvm::CallInst *call
2271 = cast<llvm::CallInst>(result->stripPointerCasts());
2272 assert(call->getCalledOperand() ==
2273 CGM.getObjCEntrypoints().objc_retainBlock);
2274
2275 call->setMetadata("clang.arc.copy_on_escape",
2276 llvm::MDNode::get(Builder.getContext(), None));
2277 }
2278
2279 return result;
2280 }
2281
emitAutoreleasedReturnValueMarker(CodeGenFunction & CGF)2282 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2283 // Fetch the void(void) inline asm which marks that we're going to
2284 // do something with the autoreleased return value.
2285 llvm::InlineAsm *&marker
2286 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2287 if (!marker) {
2288 StringRef assembly
2289 = CGF.CGM.getTargetCodeGenInfo()
2290 .getARCRetainAutoreleasedReturnValueMarker();
2291
2292 // If we have an empty assembly string, there's nothing to do.
2293 if (assembly.empty()) {
2294
2295 // Otherwise, at -O0, build an inline asm that we're going to call
2296 // in a moment.
2297 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2298 llvm::FunctionType *type =
2299 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2300
2301 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2302
2303 // If we're at -O1 and above, we don't want to litter the code
2304 // with this marker yet, so leave a breadcrumb for the ARC
2305 // optimizer to pick up.
2306 } else {
2307 const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2308 if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2309 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2310 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2311 }
2312 }
2313 }
2314
2315 // Call the marker asm if we made one, which we do only at -O0.
2316 if (marker)
2317 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2318 }
2319
2320 /// Retain the given object which is the result of a function call.
2321 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2322 ///
2323 /// Yes, this function name is one character away from a different
2324 /// call with completely different semantics.
2325 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)2326 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2327 emitAutoreleasedReturnValueMarker(*this);
2328 llvm::CallInst::TailCallKind tailKind =
2329 CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail()
2330 ? llvm::CallInst::TCK_NoTail
2331 : llvm::CallInst::TCK_None;
2332 return emitARCValueOperation(
2333 *this, value, nullptr,
2334 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2335 llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2336 }
2337
2338 /// Claim a possibly-autoreleased return value at +0. This is only
2339 /// valid to do in contexts which do not rely on the retain to keep
2340 /// the object valid for all of its uses; for example, when
2341 /// the value is ignored, or when it is being assigned to an
2342 /// __unsafe_unretained variable.
2343 ///
2344 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2345 llvm::Value *
EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value * value)2346 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2347 emitAutoreleasedReturnValueMarker(*this);
2348 llvm::CallInst::TailCallKind tailKind =
2349 CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail()
2350 ? llvm::CallInst::TCK_NoTail
2351 : llvm::CallInst::TCK_None;
2352 return emitARCValueOperation(
2353 *this, value, nullptr,
2354 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2355 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue, tailKind);
2356 }
2357
2358 /// Release the given object.
2359 /// call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2360 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2361 ARCPreciseLifetime_t precise) {
2362 if (isa<llvm::ConstantPointerNull>(value)) return;
2363
2364 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2365 if (!fn) {
2366 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2367 setARCRuntimeFunctionLinkage(CGM, fn);
2368 }
2369
2370 // Cast the argument to 'id'.
2371 value = Builder.CreateBitCast(value, Int8PtrTy);
2372
2373 // Call objc_release.
2374 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2375
2376 if (precise == ARCImpreciseLifetime) {
2377 call->setMetadata("clang.imprecise_release",
2378 llvm::MDNode::get(Builder.getContext(), None));
2379 }
2380 }
2381
2382 /// Destroy a __strong variable.
2383 ///
2384 /// At -O0, emit a call to store 'null' into the address;
2385 /// instrumenting tools prefer this because the address is exposed,
2386 /// but it's relatively cumbersome to optimize.
2387 ///
2388 /// At -O1 and above, just load and call objc_release.
2389 ///
2390 /// call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(Address addr,ARCPreciseLifetime_t precise)2391 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2392 ARCPreciseLifetime_t precise) {
2393 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2394 llvm::Value *null = getNullForVariable(addr);
2395 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2396 return;
2397 }
2398
2399 llvm::Value *value = Builder.CreateLoad(addr);
2400 EmitARCRelease(value, precise);
2401 }
2402
2403 /// Store into a strong object. Always calls this:
2404 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(Address addr,llvm::Value * value,bool ignored)2405 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2406 llvm::Value *value,
2407 bool ignored) {
2408 assert(addr.getElementType() == value->getType());
2409
2410 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2411 if (!fn) {
2412 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2413 setARCRuntimeFunctionLinkage(CGM, fn);
2414 }
2415
2416 llvm::Value *args[] = {
2417 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2418 Builder.CreateBitCast(value, Int8PtrTy)
2419 };
2420 EmitNounwindRuntimeCall(fn, args);
2421
2422 if (ignored) return nullptr;
2423 return value;
2424 }
2425
2426 /// Store into a strong object. Sometimes calls this:
2427 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2428 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2429 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2430 llvm::Value *newValue,
2431 bool ignored) {
2432 QualType type = dst.getType();
2433 bool isBlock = type->isBlockPointerType();
2434
2435 // Use a store barrier at -O0 unless this is a block type or the
2436 // lvalue is inadequately aligned.
2437 if (shouldUseFusedARCCalls() &&
2438 !isBlock &&
2439 (dst.getAlignment().isZero() ||
2440 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2441 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2442 }
2443
2444 // Otherwise, split it out.
2445
2446 // Retain the new value.
2447 newValue = EmitARCRetain(type, newValue);
2448
2449 // Read the old value.
2450 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2451
2452 // Store. We do this before the release so that any deallocs won't
2453 // see the old value.
2454 EmitStoreOfScalar(newValue, dst);
2455
2456 // Finally, release the old value.
2457 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2458
2459 return newValue;
2460 }
2461
2462 /// Autorelease the given object.
2463 /// call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2464 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2465 return emitARCValueOperation(*this, value, nullptr,
2466 CGM.getObjCEntrypoints().objc_autorelease,
2467 llvm::Intrinsic::objc_autorelease);
2468 }
2469
2470 /// Autorelease the given object.
2471 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2472 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2473 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2474 return emitARCValueOperation(*this, value, nullptr,
2475 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2476 llvm::Intrinsic::objc_autoreleaseReturnValue,
2477 llvm::CallInst::TCK_Tail);
2478 }
2479
2480 /// Do a fused retain/autorelease of the given object.
2481 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2482 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2483 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2484 return emitARCValueOperation(*this, value, nullptr,
2485 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2486 llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2487 llvm::CallInst::TCK_Tail);
2488 }
2489
2490 /// Do a fused retain/autorelease of the given object.
2491 /// call i8* \@objc_retainAutorelease(i8* %value)
2492 /// or
2493 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2494 /// call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2495 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2496 llvm::Value *value) {
2497 if (!type->isBlockPointerType())
2498 return EmitARCRetainAutoreleaseNonBlock(value);
2499
2500 if (isa<llvm::ConstantPointerNull>(value)) return value;
2501
2502 llvm::Type *origType = value->getType();
2503 value = Builder.CreateBitCast(value, Int8PtrTy);
2504 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2505 value = EmitARCAutorelease(value);
2506 return Builder.CreateBitCast(value, origType);
2507 }
2508
2509 /// Do a fused retain/autorelease of the given object.
2510 /// call i8* \@objc_retainAutorelease(i8* %value)
2511 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2512 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2513 return emitARCValueOperation(*this, value, nullptr,
2514 CGM.getObjCEntrypoints().objc_retainAutorelease,
2515 llvm::Intrinsic::objc_retainAutorelease);
2516 }
2517
2518 /// i8* \@objc_loadWeak(i8** %addr)
2519 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(Address addr)2520 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2521 return emitARCLoadOperation(*this, addr,
2522 CGM.getObjCEntrypoints().objc_loadWeak,
2523 llvm::Intrinsic::objc_loadWeak);
2524 }
2525
2526 /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(Address addr)2527 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2528 return emitARCLoadOperation(*this, addr,
2529 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2530 llvm::Intrinsic::objc_loadWeakRetained);
2531 }
2532
2533 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2534 /// Returns %value.
EmitARCStoreWeak(Address addr,llvm::Value * value,bool ignored)2535 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2536 llvm::Value *value,
2537 bool ignored) {
2538 return emitARCStoreOperation(*this, addr, value,
2539 CGM.getObjCEntrypoints().objc_storeWeak,
2540 llvm::Intrinsic::objc_storeWeak, ignored);
2541 }
2542
2543 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2544 /// Returns %value. %addr is known to not have a current weak entry.
2545 /// Essentially equivalent to:
2546 /// *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(Address addr,llvm::Value * value)2547 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2548 // If we're initializing to null, just write null to memory; no need
2549 // to get the runtime involved. But don't do this if optimization
2550 // is enabled, because accounting for this would make the optimizer
2551 // much more complicated.
2552 if (isa<llvm::ConstantPointerNull>(value) &&
2553 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2554 Builder.CreateStore(value, addr);
2555 return;
2556 }
2557
2558 emitARCStoreOperation(*this, addr, value,
2559 CGM.getObjCEntrypoints().objc_initWeak,
2560 llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2561 }
2562
2563 /// void \@objc_destroyWeak(i8** %addr)
2564 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(Address addr)2565 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2566 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2567 if (!fn) {
2568 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2569 setARCRuntimeFunctionLinkage(CGM, fn);
2570 }
2571
2572 // Cast the argument to 'id*'.
2573 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2574
2575 EmitNounwindRuntimeCall(fn, addr.getPointer());
2576 }
2577
2578 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2579 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2580 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(Address dst,Address src)2581 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2582 emitARCCopyOperation(*this, dst, src,
2583 CGM.getObjCEntrypoints().objc_moveWeak,
2584 llvm::Intrinsic::objc_moveWeak);
2585 }
2586
2587 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2588 /// Disregards the current value in %dest. Essentially
2589 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(Address dst,Address src)2590 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2591 emitARCCopyOperation(*this, dst, src,
2592 CGM.getObjCEntrypoints().objc_copyWeak,
2593 llvm::Intrinsic::objc_copyWeak);
2594 }
2595
emitARCCopyAssignWeak(QualType Ty,Address DstAddr,Address SrcAddr)2596 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2597 Address SrcAddr) {
2598 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2599 Object = EmitObjCConsumeObject(Ty, Object);
2600 EmitARCStoreWeak(DstAddr, Object, false);
2601 }
2602
emitARCMoveAssignWeak(QualType Ty,Address DstAddr,Address SrcAddr)2603 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2604 Address SrcAddr) {
2605 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2606 Object = EmitObjCConsumeObject(Ty, Object);
2607 EmitARCStoreWeak(DstAddr, Object, false);
2608 EmitARCDestroyWeak(SrcAddr);
2609 }
2610
2611 /// Produce the code to do a objc_autoreleasepool_push.
2612 /// call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2613 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2614 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2615 if (!fn) {
2616 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2617 setARCRuntimeFunctionLinkage(CGM, fn);
2618 }
2619
2620 return EmitNounwindRuntimeCall(fn);
2621 }
2622
2623 /// Produce the code to do a primitive release.
2624 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2625 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2626 assert(value->getType() == Int8PtrTy);
2627
2628 if (getInvokeDest()) {
2629 // Call the runtime method not the intrinsic if we are handling exceptions
2630 llvm::FunctionCallee &fn =
2631 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2632 if (!fn) {
2633 llvm::FunctionType *fnType =
2634 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2635 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2636 setARCRuntimeFunctionLinkage(CGM, fn);
2637 }
2638
2639 // objc_autoreleasePoolPop can throw.
2640 EmitRuntimeCallOrInvoke(fn, value);
2641 } else {
2642 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2643 if (!fn) {
2644 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2645 setARCRuntimeFunctionLinkage(CGM, fn);
2646 }
2647
2648 EmitRuntimeCall(fn, value);
2649 }
2650 }
2651
2652 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2653 /// Which is: [[NSAutoreleasePool alloc] init];
2654 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2655 /// init is declared as: - (id) init; in its NSObject super class.
2656 ///
EmitObjCMRRAutoreleasePoolPush()2657 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2658 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2659 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2660 // [NSAutoreleasePool alloc]
2661 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2662 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2663 CallArgList Args;
2664 RValue AllocRV =
2665 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2666 getContext().getObjCIdType(),
2667 AllocSel, Receiver, Args);
2668
2669 // [Receiver init]
2670 Receiver = AllocRV.getScalarVal();
2671 II = &CGM.getContext().Idents.get("init");
2672 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2673 RValue InitRV =
2674 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2675 getContext().getObjCIdType(),
2676 InitSel, Receiver, Args);
2677 return InitRV.getScalarVal();
2678 }
2679
2680 /// Allocate the given objc object.
2681 /// call i8* \@objc_alloc(i8* %value)
EmitObjCAlloc(llvm::Value * value,llvm::Type * resultType)2682 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2683 llvm::Type *resultType) {
2684 return emitObjCValueOperation(*this, value, resultType,
2685 CGM.getObjCEntrypoints().objc_alloc,
2686 "objc_alloc");
2687 }
2688
2689 /// Allocate the given objc object.
2690 /// call i8* \@objc_allocWithZone(i8* %value)
EmitObjCAllocWithZone(llvm::Value * value,llvm::Type * resultType)2691 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2692 llvm::Type *resultType) {
2693 return emitObjCValueOperation(*this, value, resultType,
2694 CGM.getObjCEntrypoints().objc_allocWithZone,
2695 "objc_allocWithZone");
2696 }
2697
EmitObjCAllocInit(llvm::Value * value,llvm::Type * resultType)2698 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2699 llvm::Type *resultType) {
2700 return emitObjCValueOperation(*this, value, resultType,
2701 CGM.getObjCEntrypoints().objc_alloc_init,
2702 "objc_alloc_init");
2703 }
2704
2705 /// Produce the code to do a primitive release.
2706 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2707 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2708 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2709 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2710 CallArgList Args;
2711 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2712 getContext().VoidTy, DrainSel, Arg, Args);
2713 }
2714
destroyARCStrongPrecise(CodeGenFunction & CGF,Address addr,QualType type)2715 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2716 Address addr,
2717 QualType type) {
2718 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2719 }
2720
destroyARCStrongImprecise(CodeGenFunction & CGF,Address addr,QualType type)2721 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2722 Address addr,
2723 QualType type) {
2724 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2725 }
2726
destroyARCWeak(CodeGenFunction & CGF,Address addr,QualType type)2727 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2728 Address addr,
2729 QualType type) {
2730 CGF.EmitARCDestroyWeak(addr);
2731 }
2732
emitARCIntrinsicUse(CodeGenFunction & CGF,Address addr,QualType type)2733 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2734 QualType type) {
2735 llvm::Value *value = CGF.Builder.CreateLoad(addr);
2736 CGF.EmitARCIntrinsicUse(value);
2737 }
2738
2739 /// Autorelease the given object.
2740 /// call i8* \@objc_autorelease(i8* %value)
EmitObjCAutorelease(llvm::Value * value,llvm::Type * returnType)2741 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2742 llvm::Type *returnType) {
2743 return emitObjCValueOperation(
2744 *this, value, returnType,
2745 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2746 "objc_autorelease");
2747 }
2748
2749 /// Retain the given object, with normal retain semantics.
2750 /// call i8* \@objc_retain(i8* %value)
EmitObjCRetainNonBlock(llvm::Value * value,llvm::Type * returnType)2751 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2752 llvm::Type *returnType) {
2753 return emitObjCValueOperation(
2754 *this, value, returnType,
2755 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2756 }
2757
2758 /// Release the given object.
2759 /// call void \@objc_release(i8* %value)
EmitObjCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2760 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2761 ARCPreciseLifetime_t precise) {
2762 if (isa<llvm::ConstantPointerNull>(value)) return;
2763
2764 llvm::FunctionCallee &fn =
2765 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2766 if (!fn) {
2767 llvm::FunctionType *fnType =
2768 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2769 fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2770 setARCRuntimeFunctionLinkage(CGM, fn);
2771 // We have Native ARC, so set nonlazybind attribute for performance
2772 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2773 f->addFnAttr(llvm::Attribute::NonLazyBind);
2774 }
2775
2776 // Cast the argument to 'id'.
2777 value = Builder.CreateBitCast(value, Int8PtrTy);
2778
2779 // Call objc_release.
2780 llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2781
2782 if (precise == ARCImpreciseLifetime) {
2783 call->setMetadata("clang.imprecise_release",
2784 llvm::MDNode::get(Builder.getContext(), None));
2785 }
2786 }
2787
2788 namespace {
2789 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2790 llvm::Value *Token;
2791
CallObjCAutoreleasePoolObject__anona13c6eb60511::CallObjCAutoreleasePoolObject2792 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2793
Emit__anona13c6eb60511::CallObjCAutoreleasePoolObject2794 void Emit(CodeGenFunction &CGF, Flags flags) override {
2795 CGF.EmitObjCAutoreleasePoolPop(Token);
2796 }
2797 };
2798 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2799 llvm::Value *Token;
2800
CallObjCMRRAutoreleasePoolObject__anona13c6eb60511::CallObjCMRRAutoreleasePoolObject2801 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2802
Emit__anona13c6eb60511::CallObjCMRRAutoreleasePoolObject2803 void Emit(CodeGenFunction &CGF, Flags flags) override {
2804 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2805 }
2806 };
2807 }
2808
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2809 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2810 if (CGM.getLangOpts().ObjCAutoRefCount)
2811 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2812 else
2813 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2814 }
2815
shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime)2816 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2817 switch (lifetime) {
2818 case Qualifiers::OCL_None:
2819 case Qualifiers::OCL_ExplicitNone:
2820 case Qualifiers::OCL_Strong:
2821 case Qualifiers::OCL_Autoreleasing:
2822 return true;
2823
2824 case Qualifiers::OCL_Weak:
2825 return false;
2826 }
2827
2828 llvm_unreachable("impossible lifetime!");
2829 }
2830
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2831 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2832 LValue lvalue,
2833 QualType type) {
2834 llvm::Value *result;
2835 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2836 if (shouldRetain) {
2837 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2838 } else {
2839 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2840 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2841 }
2842 return TryEmitResult(result, !shouldRetain);
2843 }
2844
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2845 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2846 const Expr *e) {
2847 e = e->IgnoreParens();
2848 QualType type = e->getType();
2849
2850 // If we're loading retained from a __strong xvalue, we can avoid
2851 // an extra retain/release pair by zeroing out the source of this
2852 // "move" operation.
2853 if (e->isXValue() &&
2854 !type.isConstQualified() &&
2855 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2856 // Emit the lvalue.
2857 LValue lv = CGF.EmitLValue(e);
2858
2859 // Load the object pointer.
2860 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2861 SourceLocation()).getScalarVal();
2862
2863 // Set the source pointer to NULL.
2864 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2865
2866 return TryEmitResult(result, true);
2867 }
2868
2869 // As a very special optimization, in ARC++, if the l-value is the
2870 // result of a non-volatile assignment, do a simple retain of the
2871 // result of the call to objc_storeWeak instead of reloading.
2872 if (CGF.getLangOpts().CPlusPlus &&
2873 !type.isVolatileQualified() &&
2874 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2875 isa<BinaryOperator>(e) &&
2876 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2877 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2878
2879 // Try to emit code for scalar constant instead of emitting LValue and
2880 // loading it because we are not guaranteed to have an l-value. One of such
2881 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2882 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2883 auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2884 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2885 return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2886 !shouldRetainObjCLifetime(type.getObjCLifetime()));
2887 }
2888
2889 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2890 }
2891
2892 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2893 llvm::Value *value)>
2894 ValueTransform;
2895
2896 /// Insert code immediately after a call.
emitARCOperationAfterCall(CodeGenFunction & CGF,llvm::Value * value,ValueTransform doAfterCall,ValueTransform doFallback)2897 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2898 llvm::Value *value,
2899 ValueTransform doAfterCall,
2900 ValueTransform doFallback) {
2901 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2902 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2903
2904 // Place the retain immediately following the call.
2905 CGF.Builder.SetInsertPoint(call->getParent(),
2906 ++llvm::BasicBlock::iterator(call));
2907 value = doAfterCall(CGF, value);
2908
2909 CGF.Builder.restoreIP(ip);
2910 return value;
2911 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2912 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2913
2914 // Place the retain at the beginning of the normal destination block.
2915 llvm::BasicBlock *BB = invoke->getNormalDest();
2916 CGF.Builder.SetInsertPoint(BB, BB->begin());
2917 value = doAfterCall(CGF, value);
2918
2919 CGF.Builder.restoreIP(ip);
2920 return value;
2921
2922 // Bitcasts can arise because of related-result returns. Rewrite
2923 // the operand.
2924 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2925 llvm::Value *operand = bitcast->getOperand(0);
2926 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2927 bitcast->setOperand(0, operand);
2928 return bitcast;
2929
2930 // Generic fall-back case.
2931 } else {
2932 // Retain using the non-block variant: we never need to do a copy
2933 // of a block that's been returned to us.
2934 return doFallback(CGF, value);
2935 }
2936 }
2937
2938 /// Given that the given expression is some sort of call (which does
2939 /// not return retained), emit a retain following it.
emitARCRetainCallResult(CodeGenFunction & CGF,const Expr * e)2940 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2941 const Expr *e) {
2942 llvm::Value *value = CGF.EmitScalarExpr(e);
2943 return emitARCOperationAfterCall(CGF, value,
2944 [](CodeGenFunction &CGF, llvm::Value *value) {
2945 return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2946 },
2947 [](CodeGenFunction &CGF, llvm::Value *value) {
2948 return CGF.EmitARCRetainNonBlock(value);
2949 });
2950 }
2951
2952 /// Given that the given expression is some sort of call (which does
2953 /// not return retained), perform an unsafeClaim following it.
emitARCUnsafeClaimCallResult(CodeGenFunction & CGF,const Expr * e)2954 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2955 const Expr *e) {
2956 llvm::Value *value = CGF.EmitScalarExpr(e);
2957 return emitARCOperationAfterCall(CGF, value,
2958 [](CodeGenFunction &CGF, llvm::Value *value) {
2959 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2960 },
2961 [](CodeGenFunction &CGF, llvm::Value *value) {
2962 return value;
2963 });
2964 }
2965
EmitARCReclaimReturnedObject(const Expr * E,bool allowUnsafeClaim)2966 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2967 bool allowUnsafeClaim) {
2968 if (allowUnsafeClaim &&
2969 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2970 return emitARCUnsafeClaimCallResult(*this, E);
2971 } else {
2972 llvm::Value *value = emitARCRetainCallResult(*this, E);
2973 return EmitObjCConsumeObject(E->getType(), value);
2974 }
2975 }
2976
2977 /// Determine whether it might be important to emit a separate
2978 /// objc_retain_block on the result of the given expression, or
2979 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)2980 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2981 assert(e->getType()->isBlockPointerType());
2982 e = e->IgnoreParens();
2983
2984 // For future goodness, emit block expressions directly in +1
2985 // contexts if we can.
2986 if (isa<BlockExpr>(e))
2987 return false;
2988
2989 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2990 switch (cast->getCastKind()) {
2991 // Emitting these operations in +1 contexts is goodness.
2992 case CK_LValueToRValue:
2993 case CK_ARCReclaimReturnedObject:
2994 case CK_ARCConsumeObject:
2995 case CK_ARCProduceObject:
2996 return false;
2997
2998 // These operations preserve a block type.
2999 case CK_NoOp:
3000 case CK_BitCast:
3001 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3002
3003 // These operations are known to be bad (or haven't been considered).
3004 case CK_AnyPointerToBlockPointerCast:
3005 default:
3006 return true;
3007 }
3008 }
3009
3010 return true;
3011 }
3012
3013 namespace {
3014 /// A CRTP base class for emitting expressions of retainable object
3015 /// pointer type in ARC.
3016 template <typename Impl, typename Result> class ARCExprEmitter {
3017 protected:
3018 CodeGenFunction &CGF;
asImpl()3019 Impl &asImpl() { return *static_cast<Impl*>(this); }
3020
ARCExprEmitter(CodeGenFunction & CGF)3021 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3022
3023 public:
3024 Result visit(const Expr *e);
3025 Result visitCastExpr(const CastExpr *e);
3026 Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3027 Result visitBlockExpr(const BlockExpr *e);
3028 Result visitBinaryOperator(const BinaryOperator *e);
3029 Result visitBinAssign(const BinaryOperator *e);
3030 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3031 Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3032 Result visitBinAssignWeak(const BinaryOperator *e);
3033 Result visitBinAssignStrong(const BinaryOperator *e);
3034
3035 // Minimal implementation:
3036 // Result visitLValueToRValue(const Expr *e)
3037 // Result visitConsumeObject(const Expr *e)
3038 // Result visitExtendBlockObject(const Expr *e)
3039 // Result visitReclaimReturnedObject(const Expr *e)
3040 // Result visitCall(const Expr *e)
3041 // Result visitExpr(const Expr *e)
3042 //
3043 // Result emitBitCast(Result result, llvm::Type *resultType)
3044 // llvm::Value *getValueOfResult(Result result)
3045 };
3046 }
3047
3048 /// Try to emit a PseudoObjectExpr under special ARC rules.
3049 ///
3050 /// This massively duplicates emitPseudoObjectRValue.
3051 template <typename Impl, typename Result>
3052 Result
visitPseudoObjectExpr(const PseudoObjectExpr * E)3053 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3054 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3055
3056 // Find the result expression.
3057 const Expr *resultExpr = E->getResultExpr();
3058 assert(resultExpr);
3059 Result result;
3060
3061 for (PseudoObjectExpr::const_semantics_iterator
3062 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3063 const Expr *semantic = *i;
3064
3065 // If this semantic expression is an opaque value, bind it
3066 // to the result of its source expression.
3067 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3068 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3069 OVMA opaqueData;
3070
3071 // If this semantic is the result of the pseudo-object
3072 // expression, try to evaluate the source as +1.
3073 if (ov == resultExpr) {
3074 assert(!OVMA::shouldBindAsLValue(ov));
3075 result = asImpl().visit(ov->getSourceExpr());
3076 opaqueData = OVMA::bind(CGF, ov,
3077 RValue::get(asImpl().getValueOfResult(result)));
3078
3079 // Otherwise, just bind it.
3080 } else {
3081 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3082 }
3083 opaques.push_back(opaqueData);
3084
3085 // Otherwise, if the expression is the result, evaluate it
3086 // and remember the result.
3087 } else if (semantic == resultExpr) {
3088 result = asImpl().visit(semantic);
3089
3090 // Otherwise, evaluate the expression in an ignored context.
3091 } else {
3092 CGF.EmitIgnoredExpr(semantic);
3093 }
3094 }
3095
3096 // Unbind all the opaques now.
3097 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3098 opaques[i].unbind(CGF);
3099
3100 return result;
3101 }
3102
3103 template <typename Impl, typename Result>
visitBlockExpr(const BlockExpr * e)3104 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3105 // The default implementation just forwards the expression to visitExpr.
3106 return asImpl().visitExpr(e);
3107 }
3108
3109 template <typename Impl, typename Result>
visitCastExpr(const CastExpr * e)3110 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3111 switch (e->getCastKind()) {
3112
3113 // No-op casts don't change the type, so we just ignore them.
3114 case CK_NoOp:
3115 return asImpl().visit(e->getSubExpr());
3116
3117 // These casts can change the type.
3118 case CK_CPointerToObjCPointerCast:
3119 case CK_BlockPointerToObjCPointerCast:
3120 case CK_AnyPointerToBlockPointerCast:
3121 case CK_BitCast: {
3122 llvm::Type *resultType = CGF.ConvertType(e->getType());
3123 assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3124 Result result = asImpl().visit(e->getSubExpr());
3125 return asImpl().emitBitCast(result, resultType);
3126 }
3127
3128 // Handle some casts specially.
3129 case CK_LValueToRValue:
3130 return asImpl().visitLValueToRValue(e->getSubExpr());
3131 case CK_ARCConsumeObject:
3132 return asImpl().visitConsumeObject(e->getSubExpr());
3133 case CK_ARCExtendBlockObject:
3134 return asImpl().visitExtendBlockObject(e->getSubExpr());
3135 case CK_ARCReclaimReturnedObject:
3136 return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3137
3138 // Otherwise, use the default logic.
3139 default:
3140 return asImpl().visitExpr(e);
3141 }
3142 }
3143
3144 template <typename Impl, typename Result>
3145 Result
visitBinaryOperator(const BinaryOperator * e)3146 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3147 switch (e->getOpcode()) {
3148 case BO_Comma:
3149 CGF.EmitIgnoredExpr(e->getLHS());
3150 CGF.EnsureInsertPoint();
3151 return asImpl().visit(e->getRHS());
3152
3153 case BO_Assign:
3154 return asImpl().visitBinAssign(e);
3155
3156 default:
3157 return asImpl().visitExpr(e);
3158 }
3159 }
3160
3161 template <typename Impl, typename Result>
visitBinAssign(const BinaryOperator * e)3162 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3163 switch (e->getLHS()->getType().getObjCLifetime()) {
3164 case Qualifiers::OCL_ExplicitNone:
3165 return asImpl().visitBinAssignUnsafeUnretained(e);
3166
3167 case Qualifiers::OCL_Weak:
3168 return asImpl().visitBinAssignWeak(e);
3169
3170 case Qualifiers::OCL_Autoreleasing:
3171 return asImpl().visitBinAssignAutoreleasing(e);
3172
3173 case Qualifiers::OCL_Strong:
3174 return asImpl().visitBinAssignStrong(e);
3175
3176 case Qualifiers::OCL_None:
3177 return asImpl().visitExpr(e);
3178 }
3179 llvm_unreachable("bad ObjC ownership qualifier");
3180 }
3181
3182 /// The default rule for __unsafe_unretained emits the RHS recursively,
3183 /// stores into the unsafe variable, and propagates the result outward.
3184 template <typename Impl, typename Result>
3185 Result ARCExprEmitter<Impl,Result>::
visitBinAssignUnsafeUnretained(const BinaryOperator * e)3186 visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3187 // Recursively emit the RHS.
3188 // For __block safety, do this before emitting the LHS.
3189 Result result = asImpl().visit(e->getRHS());
3190
3191 // Perform the store.
3192 LValue lvalue =
3193 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3194 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3195 lvalue);
3196
3197 return result;
3198 }
3199
3200 template <typename Impl, typename Result>
3201 Result
visitBinAssignAutoreleasing(const BinaryOperator * e)3202 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3203 return asImpl().visitExpr(e);
3204 }
3205
3206 template <typename Impl, typename Result>
3207 Result
visitBinAssignWeak(const BinaryOperator * e)3208 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3209 return asImpl().visitExpr(e);
3210 }
3211
3212 template <typename Impl, typename Result>
3213 Result
visitBinAssignStrong(const BinaryOperator * e)3214 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3215 return asImpl().visitExpr(e);
3216 }
3217
3218 /// The general expression-emission logic.
3219 template <typename Impl, typename Result>
visit(const Expr * e)3220 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3221 // We should *never* see a nested full-expression here, because if
3222 // we fail to emit at +1, our caller must not retain after we close
3223 // out the full-expression. This isn't as important in the unsafe
3224 // emitter.
3225 assert(!isa<ExprWithCleanups>(e));
3226
3227 // Look through parens, __extension__, generic selection, etc.
3228 e = e->IgnoreParens();
3229
3230 // Handle certain kinds of casts.
3231 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3232 return asImpl().visitCastExpr(ce);
3233
3234 // Handle the comma operator.
3235 } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3236 return asImpl().visitBinaryOperator(op);
3237
3238 // TODO: handle conditional operators here
3239
3240 // For calls and message sends, use the retained-call logic.
3241 // Delegate inits are a special case in that they're the only
3242 // returns-retained expression that *isn't* surrounded by
3243 // a consume.
3244 } else if (isa<CallExpr>(e) ||
3245 (isa<ObjCMessageExpr>(e) &&
3246 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3247 return asImpl().visitCall(e);
3248
3249 // Look through pseudo-object expressions.
3250 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3251 return asImpl().visitPseudoObjectExpr(pseudo);
3252 } else if (auto *be = dyn_cast<BlockExpr>(e))
3253 return asImpl().visitBlockExpr(be);
3254
3255 return asImpl().visitExpr(e);
3256 }
3257
3258 namespace {
3259
3260 /// An emitter for +1 results.
3261 struct ARCRetainExprEmitter :
3262 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3263
ARCRetainExprEmitter__anona13c6eb60b11::ARCRetainExprEmitter3264 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3265
getValueOfResult__anona13c6eb60b11::ARCRetainExprEmitter3266 llvm::Value *getValueOfResult(TryEmitResult result) {
3267 return result.getPointer();
3268 }
3269
emitBitCast__anona13c6eb60b11::ARCRetainExprEmitter3270 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3271 llvm::Value *value = result.getPointer();
3272 value = CGF.Builder.CreateBitCast(value, resultType);
3273 result.setPointer(value);
3274 return result;
3275 }
3276
visitLValueToRValue__anona13c6eb60b11::ARCRetainExprEmitter3277 TryEmitResult visitLValueToRValue(const Expr *e) {
3278 return tryEmitARCRetainLoadOfScalar(CGF, e);
3279 }
3280
3281 /// For consumptions, just emit the subexpression and thus elide
3282 /// the retain/release pair.
visitConsumeObject__anona13c6eb60b11::ARCRetainExprEmitter3283 TryEmitResult visitConsumeObject(const Expr *e) {
3284 llvm::Value *result = CGF.EmitScalarExpr(e);
3285 return TryEmitResult(result, true);
3286 }
3287
visitBlockExpr__anona13c6eb60b11::ARCRetainExprEmitter3288 TryEmitResult visitBlockExpr(const BlockExpr *e) {
3289 TryEmitResult result = visitExpr(e);
3290 // Avoid the block-retain if this is a block literal that doesn't need to be
3291 // copied to the heap.
3292 if (e->getBlockDecl()->canAvoidCopyToHeap())
3293 result.setInt(true);
3294 return result;
3295 }
3296
3297 /// Block extends are net +0. Naively, we could just recurse on
3298 /// the subexpression, but actually we need to ensure that the
3299 /// value is copied as a block, so there's a little filter here.
visitExtendBlockObject__anona13c6eb60b11::ARCRetainExprEmitter3300 TryEmitResult visitExtendBlockObject(const Expr *e) {
3301 llvm::Value *result; // will be a +0 value
3302
3303 // If we can't safely assume the sub-expression will produce a
3304 // block-copied value, emit the sub-expression at +0.
3305 if (shouldEmitSeparateBlockRetain(e)) {
3306 result = CGF.EmitScalarExpr(e);
3307
3308 // Otherwise, try to emit the sub-expression at +1 recursively.
3309 } else {
3310 TryEmitResult subresult = asImpl().visit(e);
3311
3312 // If that produced a retained value, just use that.
3313 if (subresult.getInt()) {
3314 return subresult;
3315 }
3316
3317 // Otherwise it's +0.
3318 result = subresult.getPointer();
3319 }
3320
3321 // Retain the object as a block.
3322 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3323 return TryEmitResult(result, true);
3324 }
3325
3326 /// For reclaims, emit the subexpression as a retained call and
3327 /// skip the consumption.
visitReclaimReturnedObject__anona13c6eb60b11::ARCRetainExprEmitter3328 TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3329 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3330 return TryEmitResult(result, true);
3331 }
3332
3333 /// When we have an undecorated call, retroactively do a claim.
visitCall__anona13c6eb60b11::ARCRetainExprEmitter3334 TryEmitResult visitCall(const Expr *e) {
3335 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3336 return TryEmitResult(result, true);
3337 }
3338
3339 // TODO: maybe special-case visitBinAssignWeak?
3340
visitExpr__anona13c6eb60b11::ARCRetainExprEmitter3341 TryEmitResult visitExpr(const Expr *e) {
3342 // We didn't find an obvious production, so emit what we've got and
3343 // tell the caller that we didn't manage to retain.
3344 llvm::Value *result = CGF.EmitScalarExpr(e);
3345 return TryEmitResult(result, false);
3346 }
3347 };
3348 }
3349
3350 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)3351 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3352 return ARCRetainExprEmitter(CGF).visit(e);
3353 }
3354
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)3355 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3356 LValue lvalue,
3357 QualType type) {
3358 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3359 llvm::Value *value = result.getPointer();
3360 if (!result.getInt())
3361 value = CGF.EmitARCRetain(type, value);
3362 return value;
3363 }
3364
3365 /// EmitARCRetainScalarExpr - Semantically equivalent to
3366 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3367 /// best-effort attempt to peephole expressions that naturally produce
3368 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)3369 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3370 // The retain needs to happen within the full-expression.
3371 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3372 RunCleanupsScope scope(*this);
3373 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3374 }
3375
3376 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3377 llvm::Value *value = result.getPointer();
3378 if (!result.getInt())
3379 value = EmitARCRetain(e->getType(), value);
3380 return value;
3381 }
3382
3383 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)3384 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3385 // The retain needs to happen within the full-expression.
3386 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3387 RunCleanupsScope scope(*this);
3388 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3389 }
3390
3391 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3392 llvm::Value *value = result.getPointer();
3393 if (result.getInt())
3394 value = EmitARCAutorelease(value);
3395 else
3396 value = EmitARCRetainAutorelease(e->getType(), value);
3397 return value;
3398 }
3399
EmitARCExtendBlockObject(const Expr * e)3400 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3401 llvm::Value *result;
3402 bool doRetain;
3403
3404 if (shouldEmitSeparateBlockRetain(e)) {
3405 result = EmitScalarExpr(e);
3406 doRetain = true;
3407 } else {
3408 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3409 result = subresult.getPointer();
3410 doRetain = !subresult.getInt();
3411 }
3412
3413 if (doRetain)
3414 result = EmitARCRetainBlock(result, /*mandatory*/ true);
3415 return EmitObjCConsumeObject(e->getType(), result);
3416 }
3417
EmitObjCThrowOperand(const Expr * expr)3418 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3419 // In ARC, retain and autorelease the expression.
3420 if (getLangOpts().ObjCAutoRefCount) {
3421 // Do so before running any cleanups for the full-expression.
3422 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3423 return EmitARCRetainAutoreleaseScalarExpr(expr);
3424 }
3425
3426 // Otherwise, use the normal scalar-expression emission. The
3427 // exception machinery doesn't do anything special with the
3428 // exception like retaining it, so there's no safety associated with
3429 // only running cleanups after the throw has started, and when it
3430 // matters it tends to be substantially inferior code.
3431 return EmitScalarExpr(expr);
3432 }
3433
3434 namespace {
3435
3436 /// An emitter for assigning into an __unsafe_unretained context.
3437 struct ARCUnsafeUnretainedExprEmitter :
3438 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3439
ARCUnsafeUnretainedExprEmitter__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3440 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3441
getValueOfResult__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3442 llvm::Value *getValueOfResult(llvm::Value *value) {
3443 return value;
3444 }
3445
emitBitCast__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3446 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3447 return CGF.Builder.CreateBitCast(value, resultType);
3448 }
3449
visitLValueToRValue__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3450 llvm::Value *visitLValueToRValue(const Expr *e) {
3451 return CGF.EmitScalarExpr(e);
3452 }
3453
3454 /// For consumptions, just emit the subexpression and perform the
3455 /// consumption like normal.
visitConsumeObject__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3456 llvm::Value *visitConsumeObject(const Expr *e) {
3457 llvm::Value *value = CGF.EmitScalarExpr(e);
3458 return CGF.EmitObjCConsumeObject(e->getType(), value);
3459 }
3460
3461 /// No special logic for block extensions. (This probably can't
3462 /// actually happen in this emitter, though.)
visitExtendBlockObject__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3463 llvm::Value *visitExtendBlockObject(const Expr *e) {
3464 return CGF.EmitARCExtendBlockObject(e);
3465 }
3466
3467 /// For reclaims, perform an unsafeClaim if that's enabled.
visitReclaimReturnedObject__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3468 llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3469 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3470 }
3471
3472 /// When we have an undecorated call, just emit it without adding
3473 /// the unsafeClaim.
visitCall__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3474 llvm::Value *visitCall(const Expr *e) {
3475 return CGF.EmitScalarExpr(e);
3476 }
3477
3478 /// Just do normal scalar emission in the default case.
visitExpr__anona13c6eb60c11::ARCUnsafeUnretainedExprEmitter3479 llvm::Value *visitExpr(const Expr *e) {
3480 return CGF.EmitScalarExpr(e);
3481 }
3482 };
3483 }
3484
emitARCUnsafeUnretainedScalarExpr(CodeGenFunction & CGF,const Expr * e)3485 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3486 const Expr *e) {
3487 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3488 }
3489
3490 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3491 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3492 /// avoiding any spurious retains, including by performing reclaims
3493 /// with objc_unsafeClaimAutoreleasedReturnValue.
EmitARCUnsafeUnretainedScalarExpr(const Expr * e)3494 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3495 // Look through full-expressions.
3496 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3497 RunCleanupsScope scope(*this);
3498 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3499 }
3500
3501 return emitARCUnsafeUnretainedScalarExpr(*this, e);
3502 }
3503
3504 std::pair<LValue,llvm::Value*>
EmitARCStoreUnsafeUnretained(const BinaryOperator * e,bool ignored)3505 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3506 bool ignored) {
3507 // Evaluate the RHS first. If we're ignoring the result, assume
3508 // that we can emit at an unsafe +0.
3509 llvm::Value *value;
3510 if (ignored) {
3511 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3512 } else {
3513 value = EmitScalarExpr(e->getRHS());
3514 }
3515
3516 // Emit the LHS and perform the store.
3517 LValue lvalue = EmitLValue(e->getLHS());
3518 EmitStoreOfScalar(value, lvalue);
3519
3520 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3521 }
3522
3523 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)3524 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3525 bool ignored) {
3526 // Evaluate the RHS first.
3527 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3528 llvm::Value *value = result.getPointer();
3529
3530 bool hasImmediateRetain = result.getInt();
3531
3532 // If we didn't emit a retained object, and the l-value is of block
3533 // type, then we need to emit the block-retain immediately in case
3534 // it invalidates the l-value.
3535 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3536 value = EmitARCRetainBlock(value, /*mandatory*/ false);
3537 hasImmediateRetain = true;
3538 }
3539
3540 LValue lvalue = EmitLValue(e->getLHS());
3541
3542 // If the RHS was emitted retained, expand this.
3543 if (hasImmediateRetain) {
3544 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3545 EmitStoreOfScalar(value, lvalue);
3546 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3547 } else {
3548 value = EmitARCStoreStrong(lvalue, value, ignored);
3549 }
3550
3551 return std::pair<LValue,llvm::Value*>(lvalue, value);
3552 }
3553
3554 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)3555 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3556 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3557 LValue lvalue = EmitLValue(e->getLHS());
3558
3559 EmitStoreOfScalar(value, lvalue);
3560
3561 return std::pair<LValue,llvm::Value*>(lvalue, value);
3562 }
3563
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)3564 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3565 const ObjCAutoreleasePoolStmt &ARPS) {
3566 const Stmt *subStmt = ARPS.getSubStmt();
3567 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3568
3569 CGDebugInfo *DI = getDebugInfo();
3570 if (DI)
3571 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3572
3573 // Keep track of the current cleanup stack depth.
3574 RunCleanupsScope Scope(*this);
3575 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3576 llvm::Value *token = EmitObjCAutoreleasePoolPush();
3577 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3578 } else {
3579 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3580 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3581 }
3582
3583 for (const auto *I : S.body())
3584 EmitStmt(I);
3585
3586 if (DI)
3587 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3588 }
3589
3590 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3591 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)3592 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3593 // We just use an inline assembly.
3594 llvm::FunctionType *extenderType
3595 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3596 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3597 /* assembly */ "",
3598 /* constraints */ "r",
3599 /* side effects */ true);
3600
3601 object = Builder.CreateBitCast(object, VoidPtrTy);
3602 EmitNounwindRuntimeCall(extender, object);
3603 }
3604
3605 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3606 /// non-trivial copy assignment function, produce following helper function.
3607 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3608 ///
3609 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3610 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3611 const ObjCPropertyImplDecl *PID) {
3612 if (!getLangOpts().CPlusPlus ||
3613 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3614 return nullptr;
3615 QualType Ty = PID->getPropertyIvarDecl()->getType();
3616 if (!Ty->isRecordType())
3617 return nullptr;
3618 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3619 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3620 return nullptr;
3621 llvm::Constant *HelperFn = nullptr;
3622 if (hasTrivialSetExpr(PID))
3623 return nullptr;
3624 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3625 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3626 return HelperFn;
3627
3628 ASTContext &C = getContext();
3629 IdentifierInfo *II
3630 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3631
3632 QualType ReturnTy = C.VoidTy;
3633 QualType DestTy = C.getPointerType(Ty);
3634 QualType SrcTy = Ty;
3635 SrcTy.addConst();
3636 SrcTy = C.getPointerType(SrcTy);
3637
3638 SmallVector<QualType, 2> ArgTys;
3639 ArgTys.push_back(DestTy);
3640 ArgTys.push_back(SrcTy);
3641 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3642
3643 FunctionDecl *FD = FunctionDecl::Create(
3644 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3645 FunctionTy, nullptr, SC_Static, false, false);
3646
3647 FunctionArgList args;
3648 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3649 ImplicitParamDecl::Other);
3650 args.push_back(&DstDecl);
3651 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3652 ImplicitParamDecl::Other);
3653 args.push_back(&SrcDecl);
3654
3655 const CGFunctionInfo &FI =
3656 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3657
3658 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3659
3660 llvm::Function *Fn =
3661 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3662 "__assign_helper_atomic_property_",
3663 &CGM.getModule());
3664
3665 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3666
3667 StartFunction(FD, ReturnTy, Fn, FI, args);
3668
3669 DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation());
3670 UnaryOperator *DST = UnaryOperator::Create(
3671 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3672 SourceLocation(), false, FPOptionsOverride());
3673
3674 DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation());
3675 UnaryOperator *SRC = UnaryOperator::Create(
3676 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3677 SourceLocation(), false, FPOptionsOverride());
3678
3679 Expr *Args[2] = {DST, SRC};
3680 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3681 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3682 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3683 VK_LValue, SourceLocation(), FPOptionsOverride());
3684
3685 EmitStmt(TheCall);
3686
3687 FinishFunction();
3688 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3689 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3690 return HelperFn;
3691 }
3692
3693 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3694 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3695 const ObjCPropertyImplDecl *PID) {
3696 if (!getLangOpts().CPlusPlus ||
3697 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3698 return nullptr;
3699 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3700 QualType Ty = PD->getType();
3701 if (!Ty->isRecordType())
3702 return nullptr;
3703 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3704 return nullptr;
3705 llvm::Constant *HelperFn = nullptr;
3706 if (hasTrivialGetExpr(PID))
3707 return nullptr;
3708 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3709 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3710 return HelperFn;
3711
3712 ASTContext &C = getContext();
3713 IdentifierInfo *II =
3714 &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3715
3716 QualType ReturnTy = C.VoidTy;
3717 QualType DestTy = C.getPointerType(Ty);
3718 QualType SrcTy = Ty;
3719 SrcTy.addConst();
3720 SrcTy = C.getPointerType(SrcTy);
3721
3722 SmallVector<QualType, 2> ArgTys;
3723 ArgTys.push_back(DestTy);
3724 ArgTys.push_back(SrcTy);
3725 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3726
3727 FunctionDecl *FD = FunctionDecl::Create(
3728 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3729 FunctionTy, nullptr, SC_Static, false, false);
3730
3731 FunctionArgList args;
3732 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3733 ImplicitParamDecl::Other);
3734 args.push_back(&DstDecl);
3735 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3736 ImplicitParamDecl::Other);
3737 args.push_back(&SrcDecl);
3738
3739 const CGFunctionInfo &FI =
3740 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3741
3742 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3743
3744 llvm::Function *Fn = llvm::Function::Create(
3745 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3746 &CGM.getModule());
3747
3748 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3749
3750 StartFunction(FD, ReturnTy, Fn, FI, args);
3751
3752 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3753 SourceLocation());
3754
3755 UnaryOperator *SRC = UnaryOperator::Create(
3756 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3757 SourceLocation(), false, FPOptionsOverride());
3758
3759 CXXConstructExpr *CXXConstExpr =
3760 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3761
3762 SmallVector<Expr*, 4> ConstructorArgs;
3763 ConstructorArgs.push_back(SRC);
3764 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3765 CXXConstExpr->arg_end());
3766
3767 CXXConstructExpr *TheCXXConstructExpr =
3768 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3769 CXXConstExpr->getConstructor(),
3770 CXXConstExpr->isElidable(),
3771 ConstructorArgs,
3772 CXXConstExpr->hadMultipleCandidates(),
3773 CXXConstExpr->isListInitialization(),
3774 CXXConstExpr->isStdInitListInitialization(),
3775 CXXConstExpr->requiresZeroInitialization(),
3776 CXXConstExpr->getConstructionKind(),
3777 SourceRange());
3778
3779 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3780 SourceLocation());
3781
3782 RValue DV = EmitAnyExpr(&DstExpr);
3783 CharUnits Alignment
3784 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3785 EmitAggExpr(TheCXXConstructExpr,
3786 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3787 Qualifiers(),
3788 AggValueSlot::IsDestructed,
3789 AggValueSlot::DoesNotNeedGCBarriers,
3790 AggValueSlot::IsNotAliased,
3791 AggValueSlot::DoesNotOverlap));
3792
3793 FinishFunction();
3794 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3795 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3796 return HelperFn;
3797 }
3798
3799 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)3800 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3801 // Get selectors for retain/autorelease.
3802 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3803 Selector CopySelector =
3804 getContext().Selectors.getNullarySelector(CopyID);
3805 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3806 Selector AutoreleaseSelector =
3807 getContext().Selectors.getNullarySelector(AutoreleaseID);
3808
3809 // Emit calls to retain/autorelease.
3810 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3811 llvm::Value *Val = Block;
3812 RValue Result;
3813 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3814 Ty, CopySelector,
3815 Val, CallArgList(), nullptr, nullptr);
3816 Val = Result.getScalarVal();
3817 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3818 Ty, AutoreleaseSelector,
3819 Val, CallArgList(), nullptr, nullptr);
3820 Val = Result.getScalarVal();
3821 return Val;
3822 }
3823
getBaseMachOPlatformID(const llvm::Triple & TT)3824 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3825 switch (TT.getOS()) {
3826 case llvm::Triple::Darwin:
3827 case llvm::Triple::MacOSX:
3828 return llvm::MachO::PLATFORM_MACOS;
3829 case llvm::Triple::IOS:
3830 return llvm::MachO::PLATFORM_IOS;
3831 case llvm::Triple::TvOS:
3832 return llvm::MachO::PLATFORM_TVOS;
3833 case llvm::Triple::WatchOS:
3834 return llvm::MachO::PLATFORM_WATCHOS;
3835 default:
3836 return /*Unknown platform*/ 0;
3837 }
3838 }
3839
emitIsPlatformVersionAtLeast(CodeGenFunction & CGF,const VersionTuple & Version)3840 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3841 const VersionTuple &Version) {
3842 CodeGenModule &CGM = CGF.CGM;
3843 // Note: we intend to support multi-platform version checks, so reserve
3844 // the room for a dual platform checking invocation that will be
3845 // implemented in the future.
3846 llvm::SmallVector<llvm::Value *, 8> Args;
3847
3848 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3849 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3850 Args.push_back(
3851 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3852 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3853 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0));
3854 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0));
3855 };
3856
3857 assert(!Version.empty() && "unexpected empty version");
3858 EmitArgs(Version, CGM.getTarget().getTriple());
3859
3860 if (!CGM.IsPlatformVersionAtLeastFn) {
3861 llvm::FunctionType *FTy = llvm::FunctionType::get(
3862 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3863 false);
3864 CGM.IsPlatformVersionAtLeastFn =
3865 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3866 }
3867
3868 llvm::Value *Check =
3869 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3870 return CGF.Builder.CreateICmpNE(Check,
3871 llvm::Constant::getNullValue(CGM.Int32Ty));
3872 }
3873
3874 llvm::Value *
EmitBuiltinAvailable(const VersionTuple & Version)3875 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3876 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3877 if (CGM.getTarget().getTriple().isOSDarwin())
3878 return emitIsPlatformVersionAtLeast(*this, Version);
3879
3880 if (!CGM.IsOSVersionAtLeastFn) {
3881 llvm::FunctionType *FTy =
3882 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3883 CGM.IsOSVersionAtLeastFn =
3884 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3885 }
3886
3887 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3888 llvm::Value *Args[] = {
3889 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
3890 llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0),
3891 llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0),
3892 };
3893
3894 llvm::Value *CallRes =
3895 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3896
3897 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3898 }
3899
isFoundationNeededForDarwinAvailabilityCheck(const llvm::Triple & TT,const VersionTuple & TargetVersion)3900 static bool isFoundationNeededForDarwinAvailabilityCheck(
3901 const llvm::Triple &TT, const VersionTuple &TargetVersion) {
3902 VersionTuple FoundationDroppedInVersion;
3903 switch (TT.getOS()) {
3904 case llvm::Triple::IOS:
3905 case llvm::Triple::TvOS:
3906 FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
3907 break;
3908 case llvm::Triple::WatchOS:
3909 FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
3910 break;
3911 case llvm::Triple::Darwin:
3912 case llvm::Triple::MacOSX:
3913 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
3914 break;
3915 default:
3916 llvm_unreachable("Unexpected OS");
3917 }
3918 return TargetVersion < FoundationDroppedInVersion;
3919 }
3920
emitAtAvailableLinkGuard()3921 void CodeGenModule::emitAtAvailableLinkGuard() {
3922 if (!IsPlatformVersionAtLeastFn)
3923 return;
3924 // @available requires CoreFoundation only on Darwin.
3925 if (!Target.getTriple().isOSDarwin())
3926 return;
3927 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
3928 // watchOS 6+.
3929 if (!isFoundationNeededForDarwinAvailabilityCheck(
3930 Target.getTriple(), Target.getPlatformMinVersion()))
3931 return;
3932 // Add -framework CoreFoundation to the linker commands. We still want to
3933 // emit the core foundation reference down below because otherwise if
3934 // CoreFoundation is not used in the code, the linker won't link the
3935 // framework.
3936 auto &Context = getLLVMContext();
3937 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3938 llvm::MDString::get(Context, "CoreFoundation")};
3939 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3940 // Emit a reference to a symbol from CoreFoundation to ensure that
3941 // CoreFoundation is linked into the final binary.
3942 llvm::FunctionType *FTy =
3943 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3944 llvm::FunctionCallee CFFunc =
3945 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3946
3947 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3948 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3949 CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3950 llvm::AttributeList(), /*Local=*/true);
3951 llvm::Function *CFLinkCheckFunc =
3952 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3953 if (CFLinkCheckFunc->empty()) {
3954 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3955 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3956 CodeGenFunction CGF(*this);
3957 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3958 CGF.EmitNounwindRuntimeCall(CFFunc,
3959 llvm::Constant::getNullValue(VoidPtrTy));
3960 CGF.Builder.CreateUnreachable();
3961 addCompilerUsedGlobal(CFLinkCheckFunc);
3962 }
3963 }
3964
~CGObjCRuntime()3965 CGObjCRuntime::~CGObjCRuntime() {}
3966