1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
createCXXABI(CodeGenModule & CGM)77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
CodeGenModule(ASTContext & C,const HeaderSearchOptions & HSO,const PreprocessorOptions & PPO,const CodeGenOptions & CGO,llvm::Module & M,DiagnosticsEngine & diags,CoverageSourceInfo * CoverageInfo)97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
~CodeGenModule()183 CodeGenModule::~CodeGenModule() {}
184 
createObjCRuntime()185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
createOpenCLRuntime()205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
createOpenMPRuntime()209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
createCUDARuntime()233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
addReplacement(StringRef Name,llvm::Constant * C)237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
applyReplacements()241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
addGlobalValReplacement(llvm::GlobalValue * GV,llvm::Constant * C)272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
applyGlobalValReplacements()276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
getAliasedGlobal(const llvm::GlobalIndirectSymbol & GIS)288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
checkAliases()306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
clear()381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
reportDiagnostics(DiagnosticsEngine & Diags,StringRef MainFile)387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
setVisibilityFromDLLStorageClass(const clang::LangOptions & LO,llvm::Module & M)404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
405                                              llvm::Module &M) {
406   if (!LO.VisibilityFromDLLStorageClass)
407     return;
408 
409   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
410       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
411   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
412       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
413   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
414       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
415   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
416       CodeGenModule::GetLLVMVisibility(
417           LO.getExternDeclNoDLLStorageClassVisibility());
418 
419   for (llvm::GlobalValue &GV : M.global_values()) {
420     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
421       continue;
422 
423     // Reset DSO locality before setting the visibility. This removes
424     // any effects that visibility options and annotations may have
425     // had on the DSO locality. Setting the visibility will implicitly set
426     // appropriate globals to DSO Local; however, this will be pessimistic
427     // w.r.t. to the normal compiler IRGen.
428     GV.setDSOLocal(false);
429 
430     if (GV.isDeclarationForLinker()) {
431       GV.setVisibility(GV.getDLLStorageClass() ==
432                                llvm::GlobalValue::DLLImportStorageClass
433                            ? ExternDeclDLLImportVisibility
434                            : ExternDeclNoDLLStorageClassVisibility);
435     } else {
436       GV.setVisibility(GV.getDLLStorageClass() ==
437                                llvm::GlobalValue::DLLExportStorageClass
438                            ? DLLExportVisibility
439                            : NoDLLStorageClassVisibility);
440     }
441 
442     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
443   }
444 }
445 
Release()446 void CodeGenModule::Release() {
447   EmitDeferred();
448   EmitVTablesOpportunistically();
449   applyGlobalValReplacements();
450   applyReplacements();
451   checkAliases();
452   emitMultiVersionFunctions();
453   EmitCXXGlobalInitFunc();
454   EmitCXXGlobalCleanUpFunc();
455   registerGlobalDtorsWithAtExit();
456   EmitCXXThreadLocalInitFunc();
457   if (ObjCRuntime)
458     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
459       AddGlobalCtor(ObjCInitFunction);
460   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
461       CUDARuntime) {
462     if (llvm::Function *CudaCtorFunction =
463             CUDARuntime->makeModuleCtorFunction())
464       AddGlobalCtor(CudaCtorFunction);
465   }
466   if (OpenMPRuntime) {
467     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
468             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
469       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
470     }
471     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
472     OpenMPRuntime->clear();
473   }
474   if (PGOReader) {
475     getModule().setProfileSummary(
476         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
477         llvm::ProfileSummary::PSK_Instr);
478     if (PGOStats.hasDiagnostics())
479       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
480   }
481   EmitCtorList(GlobalCtors, "llvm.global_ctors");
482   EmitCtorList(GlobalDtors, "llvm.global_dtors");
483   EmitGlobalAnnotations();
484   EmitStaticExternCAliases();
485   EmitDeferredUnusedCoverageMappings();
486   if (CoverageMapping)
487     CoverageMapping->emit();
488   if (CodeGenOpts.SanitizeCfiCrossDso) {
489     CodeGenFunction(*this).EmitCfiCheckFail();
490     CodeGenFunction(*this).EmitCfiCheckStub();
491   }
492   emitAtAvailableLinkGuard();
493   if (Context.getTargetInfo().getTriple().isWasm() &&
494       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
495     EmitMainVoidAlias();
496   }
497   emitLLVMUsed();
498   if (SanStats)
499     SanStats->finish();
500 
501   if (CodeGenOpts.Autolink &&
502       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
503     EmitModuleLinkOptions();
504   }
505 
506   // On ELF we pass the dependent library specifiers directly to the linker
507   // without manipulating them. This is in contrast to other platforms where
508   // they are mapped to a specific linker option by the compiler. This
509   // difference is a result of the greater variety of ELF linkers and the fact
510   // that ELF linkers tend to handle libraries in a more complicated fashion
511   // than on other platforms. This forces us to defer handling the dependent
512   // libs to the linker.
513   //
514   // CUDA/HIP device and host libraries are different. Currently there is no
515   // way to differentiate dependent libraries for host or device. Existing
516   // usage of #pragma comment(lib, *) is intended for host libraries on
517   // Windows. Therefore emit llvm.dependent-libraries only for host.
518   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
519     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
520     for (auto *MD : ELFDependentLibraries)
521       NMD->addOperand(MD);
522   }
523 
524   // Record mregparm value now so it is visible through rest of codegen.
525   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
526     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
527                               CodeGenOpts.NumRegisterParameters);
528 
529   if (CodeGenOpts.DwarfVersion) {
530     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
531                               CodeGenOpts.DwarfVersion);
532   }
533 
534   if (Context.getLangOpts().SemanticInterposition)
535     // Require various optimization to respect semantic interposition.
536     getModule().setSemanticInterposition(1);
537   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
538     // Allow dso_local on applicable targets.
539     getModule().setSemanticInterposition(0);
540 
541   if (CodeGenOpts.EmitCodeView) {
542     // Indicate that we want CodeView in the metadata.
543     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
544   }
545   if (CodeGenOpts.CodeViewGHash) {
546     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
547   }
548   if (CodeGenOpts.ControlFlowGuard) {
549     // Function ID tables and checks for Control Flow Guard (cfguard=2).
550     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
551   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
552     // Function ID tables for Control Flow Guard (cfguard=1).
553     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
554   }
555   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
556     // We don't support LTO with 2 with different StrictVTablePointers
557     // FIXME: we could support it by stripping all the information introduced
558     // by StrictVTablePointers.
559 
560     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
561 
562     llvm::Metadata *Ops[2] = {
563               llvm::MDString::get(VMContext, "StrictVTablePointers"),
564               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
565                   llvm::Type::getInt32Ty(VMContext), 1))};
566 
567     getModule().addModuleFlag(llvm::Module::Require,
568                               "StrictVTablePointersRequirement",
569                               llvm::MDNode::get(VMContext, Ops));
570   }
571   if (getModuleDebugInfo())
572     // We support a single version in the linked module. The LLVM
573     // parser will drop debug info with a different version number
574     // (and warn about it, too).
575     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
576                               llvm::DEBUG_METADATA_VERSION);
577 
578   // We need to record the widths of enums and wchar_t, so that we can generate
579   // the correct build attributes in the ARM backend. wchar_size is also used by
580   // TargetLibraryInfo.
581   uint64_t WCharWidth =
582       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
583   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
584 
585   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
586   if (   Arch == llvm::Triple::arm
587       || Arch == llvm::Triple::armeb
588       || Arch == llvm::Triple::thumb
589       || Arch == llvm::Triple::thumbeb) {
590     // The minimum width of an enum in bytes
591     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
592     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
593   }
594 
595   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
596     StringRef ABIStr = Target.getABI();
597     llvm::LLVMContext &Ctx = TheModule.getContext();
598     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
599                               llvm::MDString::get(Ctx, ABIStr));
600   }
601 
602   if (CodeGenOpts.SanitizeCfiCrossDso) {
603     // Indicate that we want cross-DSO control flow integrity checks.
604     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
605   }
606 
607   if (CodeGenOpts.WholeProgramVTables) {
608     // Indicate whether VFE was enabled for this module, so that the
609     // vcall_visibility metadata added under whole program vtables is handled
610     // appropriately in the optimizer.
611     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
612                               CodeGenOpts.VirtualFunctionElimination);
613   }
614 
615   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
616     getModule().addModuleFlag(llvm::Module::Override,
617                               "CFI Canonical Jump Tables",
618                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
619   }
620 
621   if (CodeGenOpts.CFProtectionReturn &&
622       Target.checkCFProtectionReturnSupported(getDiags())) {
623     // Indicate that we want to instrument return control flow protection.
624     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
625                               1);
626   }
627 
628   if (CodeGenOpts.CFProtectionBranch &&
629       Target.checkCFProtectionBranchSupported(getDiags())) {
630     // Indicate that we want to instrument branch control flow protection.
631     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
632                               1);
633   }
634 
635   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
636       Arch == llvm::Triple::aarch64_be) {
637     getModule().addModuleFlag(llvm::Module::Error,
638                               "branch-target-enforcement",
639                               LangOpts.BranchTargetEnforcement);
640 
641     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
642                               LangOpts.hasSignReturnAddress());
643 
644     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
645                               LangOpts.isSignReturnAddressScopeAll());
646 
647     getModule().addModuleFlag(llvm::Module::Error,
648                               "sign-return-address-with-bkey",
649                               !LangOpts.isSignReturnAddressWithAKey());
650   }
651 
652   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
653     llvm::LLVMContext &Ctx = TheModule.getContext();
654     getModule().addModuleFlag(
655         llvm::Module::Error, "MemProfProfileFilename",
656         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
657   }
658 
659   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
660     // Indicate whether __nvvm_reflect should be configured to flush denormal
661     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
662     // property.)
663     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
664                               CodeGenOpts.FP32DenormalMode.Output !=
665                                   llvm::DenormalMode::IEEE);
666   }
667 
668   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
669   if (LangOpts.OpenCL) {
670     EmitOpenCLMetadata();
671     // Emit SPIR version.
672     if (getTriple().isSPIR()) {
673       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
674       // opencl.spir.version named metadata.
675       // C++ is backwards compatible with OpenCL v2.0.
676       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
677       llvm::Metadata *SPIRVerElts[] = {
678           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679               Int32Ty, Version / 100)),
680           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
681               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
682       llvm::NamedMDNode *SPIRVerMD =
683           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
684       llvm::LLVMContext &Ctx = TheModule.getContext();
685       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
686     }
687   }
688 
689   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
690     assert(PLevel < 3 && "Invalid PIC Level");
691     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
692     if (Context.getLangOpts().PIE)
693       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
694   }
695 
696   if (getCodeGenOpts().CodeModel.size() > 0) {
697     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
698                   .Case("tiny", llvm::CodeModel::Tiny)
699                   .Case("small", llvm::CodeModel::Small)
700                   .Case("kernel", llvm::CodeModel::Kernel)
701                   .Case("medium", llvm::CodeModel::Medium)
702                   .Case("large", llvm::CodeModel::Large)
703                   .Default(~0u);
704     if (CM != ~0u) {
705       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
706       getModule().setCodeModel(codeModel);
707     }
708   }
709 
710   if (CodeGenOpts.NoPLT)
711     getModule().setRtLibUseGOT();
712 
713   SimplifyPersonality();
714 
715   if (getCodeGenOpts().EmitDeclMetadata)
716     EmitDeclMetadata();
717 
718   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
719     EmitCoverageFile();
720 
721   if (CGDebugInfo *DI = getModuleDebugInfo())
722     DI->finalize();
723 
724   if (getCodeGenOpts().EmitVersionIdentMetadata)
725     EmitVersionIdentMetadata();
726 
727   if (!getCodeGenOpts().RecordCommandLine.empty())
728     EmitCommandLineMetadata();
729 
730   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
731 
732   EmitBackendOptionsMetadata(getCodeGenOpts());
733 
734   // Set visibility from DLL storage class
735   // We do this at the end of LLVM IR generation; after any operation
736   // that might affect the DLL storage class or the visibility, and
737   // before anything that might act on these.
738   setVisibilityFromDLLStorageClass(LangOpts, getModule());
739 }
740 
EmitOpenCLMetadata()741 void CodeGenModule::EmitOpenCLMetadata() {
742   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
743   // opencl.ocl.version named metadata node.
744   // C++ is backwards compatible with OpenCL v2.0.
745   // FIXME: We might need to add CXX version at some point too?
746   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
747   llvm::Metadata *OCLVerElts[] = {
748       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
749           Int32Ty, Version / 100)),
750       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
751           Int32Ty, (Version % 100) / 10))};
752   llvm::NamedMDNode *OCLVerMD =
753       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
754   llvm::LLVMContext &Ctx = TheModule.getContext();
755   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
756 }
757 
EmitBackendOptionsMetadata(const CodeGenOptions CodeGenOpts)758 void CodeGenModule::EmitBackendOptionsMetadata(
759     const CodeGenOptions CodeGenOpts) {
760   switch (getTriple().getArch()) {
761   default:
762     break;
763   case llvm::Triple::riscv32:
764   case llvm::Triple::riscv64:
765     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
766                               CodeGenOpts.SmallDataLimit);
767     break;
768   }
769 }
770 
UpdateCompletedType(const TagDecl * TD)771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
772   // Make sure that this type is translated.
773   Types.UpdateCompletedType(TD);
774 }
775 
RefreshTypeCacheForClass(const CXXRecordDecl * RD)776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
777   // Make sure that this type is translated.
778   Types.RefreshTypeCacheForClass(RD);
779 }
780 
getTBAATypeInfo(QualType QTy)781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
782   if (!TBAA)
783     return nullptr;
784   return TBAA->getTypeInfo(QTy);
785 }
786 
getTBAAAccessInfo(QualType AccessType)787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
788   if (!TBAA)
789     return TBAAAccessInfo();
790   if (getLangOpts().CUDAIsDevice) {
791     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
792     // access info.
793     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
794       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
795           nullptr)
796         return TBAAAccessInfo();
797     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
798       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
799           nullptr)
800         return TBAAAccessInfo();
801     }
802   }
803   return TBAA->getAccessInfo(AccessType);
804 }
805 
806 TBAAAccessInfo
getTBAAVTablePtrAccessInfo(llvm::Type * VTablePtrType)807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
808   if (!TBAA)
809     return TBAAAccessInfo();
810   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
811 }
812 
getTBAAStructInfo(QualType QTy)813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
814   if (!TBAA)
815     return nullptr;
816   return TBAA->getTBAAStructInfo(QTy);
817 }
818 
getTBAABaseTypeInfo(QualType QTy)819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
820   if (!TBAA)
821     return nullptr;
822   return TBAA->getBaseTypeInfo(QTy);
823 }
824 
getTBAAAccessTagInfo(TBAAAccessInfo Info)825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
826   if (!TBAA)
827     return nullptr;
828   return TBAA->getAccessTagInfo(Info);
829 }
830 
mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,TBAAAccessInfo TargetInfo)831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
832                                                    TBAAAccessInfo TargetInfo) {
833   if (!TBAA)
834     return TBAAAccessInfo();
835   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
836 }
837 
838 TBAAAccessInfo
mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,TBAAAccessInfo InfoB)839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
840                                                    TBAAAccessInfo InfoB) {
841   if (!TBAA)
842     return TBAAAccessInfo();
843   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
844 }
845 
846 TBAAAccessInfo
mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,TBAAAccessInfo SrcInfo)847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
848                                               TBAAAccessInfo SrcInfo) {
849   if (!TBAA)
850     return TBAAAccessInfo();
851   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
852 }
853 
DecorateInstructionWithTBAA(llvm::Instruction * Inst,TBAAAccessInfo TBAAInfo)854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
855                                                 TBAAAccessInfo TBAAInfo) {
856   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
857     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
858 }
859 
DecorateInstructionWithInvariantGroup(llvm::Instruction * I,const CXXRecordDecl * RD)860 void CodeGenModule::DecorateInstructionWithInvariantGroup(
861     llvm::Instruction *I, const CXXRecordDecl *RD) {
862   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
863                  llvm::MDNode::get(getLLVMContext(), {}));
864 }
865 
Error(SourceLocation loc,StringRef message)866 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
867   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
868   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
869 }
870 
871 /// ErrorUnsupported - Print out an error that codegen doesn't support the
872 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
874   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
875                                                "cannot compile this %0 yet");
876   std::string Msg = Type;
877   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
878       << Msg << S->getSourceRange();
879 }
880 
881 /// ErrorUnsupported - Print out an error that codegen doesn't support the
882 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type)883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
884   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
885                                                "cannot compile this %0 yet");
886   std::string Msg = Type;
887   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
888 }
889 
getSize(CharUnits size)890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
891   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
892 }
893 
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
895                                         const NamedDecl *D) const {
896   if (GV->hasDLLImportStorageClass())
897     return;
898   // Internal definitions always have default visibility.
899   if (GV->hasLocalLinkage()) {
900     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
901     return;
902   }
903   if (!D)
904     return;
905   // Set visibility for definitions, and for declarations if requested globally
906   // or set explicitly.
907   LinkageInfo LV = D->getLinkageAndVisibility();
908   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
909       !GV->isDeclarationForLinker())
910     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
911 }
912 
shouldAssumeDSOLocal(const CodeGenModule & CGM,llvm::GlobalValue * GV)913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
914                                  llvm::GlobalValue *GV) {
915   if (GV->hasLocalLinkage())
916     return true;
917 
918   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
919     return true;
920 
921   // DLLImport explicitly marks the GV as external.
922   if (GV->hasDLLImportStorageClass())
923     return false;
924 
925   const llvm::Triple &TT = CGM.getTriple();
926   if (TT.isWindowsGNUEnvironment()) {
927     // In MinGW, variables without DLLImport can still be automatically
928     // imported from a DLL by the linker; don't mark variables that
929     // potentially could come from another DLL as DSO local.
930     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
931         !GV->isThreadLocal())
932       return false;
933   }
934 
935   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
936   // remain unresolved in the link, they can be resolved to zero, which is
937   // outside the current DSO.
938   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
939     return false;
940 
941   // Every other GV is local on COFF.
942   // Make an exception for windows OS in the triple: Some firmware builds use
943   // *-win32-macho triples. This (accidentally?) produced windows relocations
944   // without GOT tables in older clang versions; Keep this behaviour.
945   // FIXME: even thread local variables?
946   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
947     return true;
948 
949   // Only handle COFF and ELF for now.
950   if (!TT.isOSBinFormatELF())
951     return false;
952 
953   // If this is not an executable, don't assume anything is local.
954   const auto &CGOpts = CGM.getCodeGenOpts();
955   llvm::Reloc::Model RM = CGOpts.RelocationModel;
956   const auto &LOpts = CGM.getLangOpts();
957   if (RM != llvm::Reloc::Static && !LOpts.PIE)
958     return false;
959 
960   // A definition cannot be preempted from an executable.
961   if (!GV->isDeclarationForLinker())
962     return true;
963 
964   // Most PIC code sequences that assume that a symbol is local cannot produce a
965   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
966   // depended, it seems worth it to handle it here.
967   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
968     return false;
969 
970   // PowerPC64 prefers TOC indirection to avoid copy relocations.
971   if (TT.isPPC64())
972     return false;
973 
974   // If we can use copy relocations we can assume it is local.
975   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
976     if (!Var->isThreadLocal() &&
977         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
978       return true;
979 
980   // If we can use a plt entry as the symbol address we can assume it
981   // is local.
982   // FIXME: This should work for PIE, but the gold linker doesn't support it.
983   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
984     return true;
985 
986   // Otherwise don't assume it is local.
987   return false;
988 }
989 
setDSOLocal(llvm::GlobalValue * GV) const990 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
991   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
992 }
993 
setDLLImportDLLExport(llvm::GlobalValue * GV,GlobalDecl GD) const994 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
995                                           GlobalDecl GD) const {
996   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
997   // C++ destructors have a few C++ ABI specific special cases.
998   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
999     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1000     return;
1001   }
1002   setDLLImportDLLExport(GV, D);
1003 }
1004 
setDLLImportDLLExport(llvm::GlobalValue * GV,const NamedDecl * D) const1005 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1006                                           const NamedDecl *D) const {
1007   if (D && D->isExternallyVisible()) {
1008     if (D->hasAttr<DLLImportAttr>())
1009       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1010     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1011       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1012   }
1013 }
1014 
setGVProperties(llvm::GlobalValue * GV,GlobalDecl GD) const1015 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1016                                     GlobalDecl GD) const {
1017   setDLLImportDLLExport(GV, GD);
1018   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1019 }
1020 
setGVProperties(llvm::GlobalValue * GV,const NamedDecl * D) const1021 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1022                                     const NamedDecl *D) const {
1023   setDLLImportDLLExport(GV, D);
1024   setGVPropertiesAux(GV, D);
1025 }
1026 
setGVPropertiesAux(llvm::GlobalValue * GV,const NamedDecl * D) const1027 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1028                                        const NamedDecl *D) const {
1029   setGlobalVisibility(GV, D);
1030   setDSOLocal(GV);
1031   GV->setPartition(CodeGenOpts.SymbolPartition);
1032 }
1033 
GetLLVMTLSModel(StringRef S)1034 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1035   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1036       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1037       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1038       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1039       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1040 }
1041 
1042 llvm::GlobalVariable::ThreadLocalMode
GetDefaultLLVMTLSModel() const1043 CodeGenModule::GetDefaultLLVMTLSModel() const {
1044   switch (CodeGenOpts.getDefaultTLSModel()) {
1045   case CodeGenOptions::GeneralDynamicTLSModel:
1046     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1047   case CodeGenOptions::LocalDynamicTLSModel:
1048     return llvm::GlobalVariable::LocalDynamicTLSModel;
1049   case CodeGenOptions::InitialExecTLSModel:
1050     return llvm::GlobalVariable::InitialExecTLSModel;
1051   case CodeGenOptions::LocalExecTLSModel:
1052     return llvm::GlobalVariable::LocalExecTLSModel;
1053   }
1054   llvm_unreachable("Invalid TLS model!");
1055 }
1056 
setTLSMode(llvm::GlobalValue * GV,const VarDecl & D) const1057 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1058   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1059 
1060   llvm::GlobalValue::ThreadLocalMode TLM;
1061   TLM = GetDefaultLLVMTLSModel();
1062 
1063   // Override the TLS model if it is explicitly specified.
1064   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1065     TLM = GetLLVMTLSModel(Attr->getModel());
1066   }
1067 
1068   GV->setThreadLocalMode(TLM);
1069 }
1070 
getCPUSpecificMangling(const CodeGenModule & CGM,StringRef Name)1071 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1072                                           StringRef Name) {
1073   const TargetInfo &Target = CGM.getTarget();
1074   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1075 }
1076 
AppendCPUSpecificCPUDispatchMangling(const CodeGenModule & CGM,const CPUSpecificAttr * Attr,unsigned CPUIndex,raw_ostream & Out)1077 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1078                                                  const CPUSpecificAttr *Attr,
1079                                                  unsigned CPUIndex,
1080                                                  raw_ostream &Out) {
1081   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1082   // supported.
1083   if (Attr)
1084     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1085   else if (CGM.getTarget().supportsIFunc())
1086     Out << ".resolver";
1087 }
1088 
AppendTargetMangling(const CodeGenModule & CGM,const TargetAttr * Attr,raw_ostream & Out)1089 static void AppendTargetMangling(const CodeGenModule &CGM,
1090                                  const TargetAttr *Attr, raw_ostream &Out) {
1091   if (Attr->isDefaultVersion())
1092     return;
1093 
1094   Out << '.';
1095   const TargetInfo &Target = CGM.getTarget();
1096   ParsedTargetAttr Info =
1097       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1098         // Multiversioning doesn't allow "no-${feature}", so we can
1099         // only have "+" prefixes here.
1100         assert(LHS.startswith("+") && RHS.startswith("+") &&
1101                "Features should always have a prefix.");
1102         return Target.multiVersionSortPriority(LHS.substr(1)) >
1103                Target.multiVersionSortPriority(RHS.substr(1));
1104       });
1105 
1106   bool IsFirst = true;
1107 
1108   if (!Info.Architecture.empty()) {
1109     IsFirst = false;
1110     Out << "arch_" << Info.Architecture;
1111   }
1112 
1113   for (StringRef Feat : Info.Features) {
1114     if (!IsFirst)
1115       Out << '_';
1116     IsFirst = false;
1117     Out << Feat.substr(1);
1118   }
1119 }
1120 
getMangledNameImpl(const CodeGenModule & CGM,GlobalDecl GD,const NamedDecl * ND,bool OmitMultiVersionMangling=false)1121 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1122                                       const NamedDecl *ND,
1123                                       bool OmitMultiVersionMangling = false) {
1124   SmallString<256> Buffer;
1125   llvm::raw_svector_ostream Out(Buffer);
1126   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1127   if (MC.shouldMangleDeclName(ND))
1128     MC.mangleName(GD.getWithDecl(ND), Out);
1129   else {
1130     IdentifierInfo *II = ND->getIdentifier();
1131     assert(II && "Attempt to mangle unnamed decl.");
1132     const auto *FD = dyn_cast<FunctionDecl>(ND);
1133 
1134     if (FD &&
1135         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1136       Out << "__regcall3__" << II->getName();
1137     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1138                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1139       Out << "__device_stub__" << II->getName();
1140     } else {
1141       Out << II->getName();
1142     }
1143   }
1144 
1145   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1146     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1147       switch (FD->getMultiVersionKind()) {
1148       case MultiVersionKind::CPUDispatch:
1149       case MultiVersionKind::CPUSpecific:
1150         AppendCPUSpecificCPUDispatchMangling(CGM,
1151                                              FD->getAttr<CPUSpecificAttr>(),
1152                                              GD.getMultiVersionIndex(), Out);
1153         break;
1154       case MultiVersionKind::Target:
1155         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1156         break;
1157       case MultiVersionKind::None:
1158         llvm_unreachable("None multiversion type isn't valid here");
1159       }
1160     }
1161 
1162   return std::string(Out.str());
1163 }
1164 
UpdateMultiVersionNames(GlobalDecl GD,const FunctionDecl * FD)1165 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1166                                             const FunctionDecl *FD) {
1167   if (!FD->isMultiVersion())
1168     return;
1169 
1170   // Get the name of what this would be without the 'target' attribute.  This
1171   // allows us to lookup the version that was emitted when this wasn't a
1172   // multiversion function.
1173   std::string NonTargetName =
1174       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1175   GlobalDecl OtherGD;
1176   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1177     assert(OtherGD.getCanonicalDecl()
1178                .getDecl()
1179                ->getAsFunction()
1180                ->isMultiVersion() &&
1181            "Other GD should now be a multiversioned function");
1182     // OtherFD is the version of this function that was mangled BEFORE
1183     // becoming a MultiVersion function.  It potentially needs to be updated.
1184     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1185                                       .getDecl()
1186                                       ->getAsFunction()
1187                                       ->getMostRecentDecl();
1188     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1189     // This is so that if the initial version was already the 'default'
1190     // version, we don't try to update it.
1191     if (OtherName != NonTargetName) {
1192       // Remove instead of erase, since others may have stored the StringRef
1193       // to this.
1194       const auto ExistingRecord = Manglings.find(NonTargetName);
1195       if (ExistingRecord != std::end(Manglings))
1196         Manglings.remove(&(*ExistingRecord));
1197       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1198       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1199       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1200         Entry->setName(OtherName);
1201     }
1202   }
1203 }
1204 
getMangledName(GlobalDecl GD)1205 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1206   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1207 
1208   // Some ABIs don't have constructor variants.  Make sure that base and
1209   // complete constructors get mangled the same.
1210   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1211     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1212       CXXCtorType OrigCtorType = GD.getCtorType();
1213       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1214       if (OrigCtorType == Ctor_Base)
1215         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1216     }
1217   }
1218 
1219   auto FoundName = MangledDeclNames.find(CanonicalGD);
1220   if (FoundName != MangledDeclNames.end())
1221     return FoundName->second;
1222 
1223   // Keep the first result in the case of a mangling collision.
1224   const auto *ND = cast<NamedDecl>(GD.getDecl());
1225   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1226 
1227   // Ensure either we have different ABIs between host and device compilations,
1228   // says host compilation following MSVC ABI but device compilation follows
1229   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1230   // mangling should be the same after name stubbing. The later checking is
1231   // very important as the device kernel name being mangled in host-compilation
1232   // is used to resolve the device binaries to be executed. Inconsistent naming
1233   // result in undefined behavior. Even though we cannot check that naming
1234   // directly between host- and device-compilations, the host- and
1235   // device-mangling in host compilation could help catching certain ones.
1236   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1237          getLangOpts().CUDAIsDevice ||
1238          (getContext().getAuxTargetInfo() &&
1239           (getContext().getAuxTargetInfo()->getCXXABI() !=
1240            getContext().getTargetInfo().getCXXABI())) ||
1241          getCUDARuntime().getDeviceSideName(ND) ==
1242              getMangledNameImpl(
1243                  *this,
1244                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1245                  ND));
1246 
1247   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1248   return MangledDeclNames[CanonicalGD] = Result.first->first();
1249 }
1250 
getBlockMangledName(GlobalDecl GD,const BlockDecl * BD)1251 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1252                                              const BlockDecl *BD) {
1253   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1254   const Decl *D = GD.getDecl();
1255 
1256   SmallString<256> Buffer;
1257   llvm::raw_svector_ostream Out(Buffer);
1258   if (!D)
1259     MangleCtx.mangleGlobalBlock(BD,
1260       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1261   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1262     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1263   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1264     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1265   else
1266     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1267 
1268   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1269   return Result.first->first();
1270 }
1271 
GetGlobalValue(StringRef Name)1272 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1273   return getModule().getNamedValue(Name);
1274 }
1275 
1276 /// AddGlobalCtor - Add a function to the list that will be called before
1277 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority,llvm::Constant * AssociatedData)1278 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1279                                   llvm::Constant *AssociatedData) {
1280   // FIXME: Type coercion of void()* types.
1281   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1282 }
1283 
1284 /// AddGlobalDtor - Add a function to the list that will be called
1285 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority,bool IsDtorAttrFunc)1286 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1287                                   bool IsDtorAttrFunc) {
1288   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1289       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1290     DtorsUsingAtExit[Priority].push_back(Dtor);
1291     return;
1292   }
1293 
1294   // FIXME: Type coercion of void()* types.
1295   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1296 }
1297 
EmitCtorList(CtorList & Fns,const char * GlobalName)1298 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1299   if (Fns.empty()) return;
1300 
1301   // Ctor function type is void()*.
1302   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1303   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1304       TheModule.getDataLayout().getProgramAddressSpace());
1305 
1306   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1307   llvm::StructType *CtorStructTy = llvm::StructType::get(
1308       Int32Ty, CtorPFTy, VoidPtrTy);
1309 
1310   // Construct the constructor and destructor arrays.
1311   ConstantInitBuilder builder(*this);
1312   auto ctors = builder.beginArray(CtorStructTy);
1313   for (const auto &I : Fns) {
1314     auto ctor = ctors.beginStruct(CtorStructTy);
1315     ctor.addInt(Int32Ty, I.Priority);
1316     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1317     if (I.AssociatedData)
1318       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1319     else
1320       ctor.addNullPointer(VoidPtrTy);
1321     ctor.finishAndAddTo(ctors);
1322   }
1323 
1324   auto list =
1325     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1326                                 /*constant*/ false,
1327                                 llvm::GlobalValue::AppendingLinkage);
1328 
1329   // The LTO linker doesn't seem to like it when we set an alignment
1330   // on appending variables.  Take it off as a workaround.
1331   list->setAlignment(llvm::None);
1332 
1333   Fns.clear();
1334 }
1335 
1336 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(GlobalDecl GD)1337 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1338   const auto *D = cast<FunctionDecl>(GD.getDecl());
1339 
1340   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1341 
1342   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1343     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1344 
1345   if (isa<CXXConstructorDecl>(D) &&
1346       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1347       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1348     // Our approach to inheriting constructors is fundamentally different from
1349     // that used by the MS ABI, so keep our inheriting constructor thunks
1350     // internal rather than trying to pick an unambiguous mangling for them.
1351     return llvm::GlobalValue::InternalLinkage;
1352   }
1353 
1354   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1355 }
1356 
CreateCrossDsoCfiTypeId(llvm::Metadata * MD)1357 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1358   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1359   if (!MDS) return nullptr;
1360 
1361   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1362 }
1363 
SetLLVMFunctionAttributes(GlobalDecl GD,const CGFunctionInfo & Info,llvm::Function * F)1364 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1365                                               const CGFunctionInfo &Info,
1366                                               llvm::Function *F) {
1367   unsigned CallingConv;
1368   llvm::AttributeList PAL;
1369   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1370   F->setAttributes(PAL);
1371   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1372 }
1373 
removeImageAccessQualifier(std::string & TyName)1374 static void removeImageAccessQualifier(std::string& TyName) {
1375   std::string ReadOnlyQual("__read_only");
1376   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1377   if (ReadOnlyPos != std::string::npos)
1378     // "+ 1" for the space after access qualifier.
1379     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1380   else {
1381     std::string WriteOnlyQual("__write_only");
1382     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1383     if (WriteOnlyPos != std::string::npos)
1384       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1385     else {
1386       std::string ReadWriteQual("__read_write");
1387       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1388       if (ReadWritePos != std::string::npos)
1389         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1390     }
1391   }
1392 }
1393 
1394 // Returns the address space id that should be produced to the
1395 // kernel_arg_addr_space metadata. This is always fixed to the ids
1396 // as specified in the SPIR 2.0 specification in order to differentiate
1397 // for example in clGetKernelArgInfo() implementation between the address
1398 // spaces with targets without unique mapping to the OpenCL address spaces
1399 // (basically all single AS CPUs).
ArgInfoAddressSpace(LangAS AS)1400 static unsigned ArgInfoAddressSpace(LangAS AS) {
1401   switch (AS) {
1402   case LangAS::opencl_global:
1403     return 1;
1404   case LangAS::opencl_constant:
1405     return 2;
1406   case LangAS::opencl_local:
1407     return 3;
1408   case LangAS::opencl_generic:
1409     return 4; // Not in SPIR 2.0 specs.
1410   case LangAS::opencl_global_device:
1411     return 5;
1412   case LangAS::opencl_global_host:
1413     return 6;
1414   default:
1415     return 0; // Assume private.
1416   }
1417 }
1418 
GenOpenCLArgMetadata(llvm::Function * Fn,const FunctionDecl * FD,CodeGenFunction * CGF)1419 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1420                                          const FunctionDecl *FD,
1421                                          CodeGenFunction *CGF) {
1422   assert(((FD && CGF) || (!FD && !CGF)) &&
1423          "Incorrect use - FD and CGF should either be both null or not!");
1424   // Create MDNodes that represent the kernel arg metadata.
1425   // Each MDNode is a list in the form of "key", N number of values which is
1426   // the same number of values as their are kernel arguments.
1427 
1428   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1429 
1430   // MDNode for the kernel argument address space qualifiers.
1431   SmallVector<llvm::Metadata *, 8> addressQuals;
1432 
1433   // MDNode for the kernel argument access qualifiers (images only).
1434   SmallVector<llvm::Metadata *, 8> accessQuals;
1435 
1436   // MDNode for the kernel argument type names.
1437   SmallVector<llvm::Metadata *, 8> argTypeNames;
1438 
1439   // MDNode for the kernel argument base type names.
1440   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1441 
1442   // MDNode for the kernel argument type qualifiers.
1443   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1444 
1445   // MDNode for the kernel argument names.
1446   SmallVector<llvm::Metadata *, 8> argNames;
1447 
1448   if (FD && CGF)
1449     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1450       const ParmVarDecl *parm = FD->getParamDecl(i);
1451       QualType ty = parm->getType();
1452       std::string typeQuals;
1453 
1454       if (ty->isPointerType()) {
1455         QualType pointeeTy = ty->getPointeeType();
1456 
1457         // Get address qualifier.
1458         addressQuals.push_back(
1459             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1460                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1461 
1462         // Get argument type name.
1463         std::string typeName =
1464             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1465 
1466         // Turn "unsigned type" to "utype"
1467         std::string::size_type pos = typeName.find("unsigned");
1468         if (pointeeTy.isCanonical() && pos != std::string::npos)
1469           typeName.erase(pos + 1, 8);
1470 
1471         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1472 
1473         std::string baseTypeName =
1474             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1475                 Policy) +
1476             "*";
1477 
1478         // Turn "unsigned type" to "utype"
1479         pos = baseTypeName.find("unsigned");
1480         if (pos != std::string::npos)
1481           baseTypeName.erase(pos + 1, 8);
1482 
1483         argBaseTypeNames.push_back(
1484             llvm::MDString::get(VMContext, baseTypeName));
1485 
1486         // Get argument type qualifiers:
1487         if (ty.isRestrictQualified())
1488           typeQuals = "restrict";
1489         if (pointeeTy.isConstQualified() ||
1490             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1491           typeQuals += typeQuals.empty() ? "const" : " const";
1492         if (pointeeTy.isVolatileQualified())
1493           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1494       } else {
1495         uint32_t AddrSpc = 0;
1496         bool isPipe = ty->isPipeType();
1497         if (ty->isImageType() || isPipe)
1498           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1499 
1500         addressQuals.push_back(
1501             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1502 
1503         // Get argument type name.
1504         std::string typeName;
1505         if (isPipe)
1506           typeName = ty.getCanonicalType()
1507                          ->castAs<PipeType>()
1508                          ->getElementType()
1509                          .getAsString(Policy);
1510         else
1511           typeName = ty.getUnqualifiedType().getAsString(Policy);
1512 
1513         // Turn "unsigned type" to "utype"
1514         std::string::size_type pos = typeName.find("unsigned");
1515         if (ty.isCanonical() && pos != std::string::npos)
1516           typeName.erase(pos + 1, 8);
1517 
1518         std::string baseTypeName;
1519         if (isPipe)
1520           baseTypeName = ty.getCanonicalType()
1521                              ->castAs<PipeType>()
1522                              ->getElementType()
1523                              .getCanonicalType()
1524                              .getAsString(Policy);
1525         else
1526           baseTypeName =
1527               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1528 
1529         // Remove access qualifiers on images
1530         // (as they are inseparable from type in clang implementation,
1531         // but OpenCL spec provides a special query to get access qualifier
1532         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1533         if (ty->isImageType()) {
1534           removeImageAccessQualifier(typeName);
1535           removeImageAccessQualifier(baseTypeName);
1536         }
1537 
1538         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1539 
1540         // Turn "unsigned type" to "utype"
1541         pos = baseTypeName.find("unsigned");
1542         if (pos != std::string::npos)
1543           baseTypeName.erase(pos + 1, 8);
1544 
1545         argBaseTypeNames.push_back(
1546             llvm::MDString::get(VMContext, baseTypeName));
1547 
1548         if (isPipe)
1549           typeQuals = "pipe";
1550       }
1551 
1552       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1553 
1554       // Get image and pipe access qualifier:
1555       if (ty->isImageType() || ty->isPipeType()) {
1556         const Decl *PDecl = parm;
1557         if (auto *TD = dyn_cast<TypedefType>(ty))
1558           PDecl = TD->getDecl();
1559         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1560         if (A && A->isWriteOnly())
1561           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1562         else if (A && A->isReadWrite())
1563           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1564         else
1565           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1566       } else
1567         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1568 
1569       // Get argument name.
1570       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1571     }
1572 
1573   Fn->setMetadata("kernel_arg_addr_space",
1574                   llvm::MDNode::get(VMContext, addressQuals));
1575   Fn->setMetadata("kernel_arg_access_qual",
1576                   llvm::MDNode::get(VMContext, accessQuals));
1577   Fn->setMetadata("kernel_arg_type",
1578                   llvm::MDNode::get(VMContext, argTypeNames));
1579   Fn->setMetadata("kernel_arg_base_type",
1580                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1581   Fn->setMetadata("kernel_arg_type_qual",
1582                   llvm::MDNode::get(VMContext, argTypeQuals));
1583   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1584     Fn->setMetadata("kernel_arg_name",
1585                     llvm::MDNode::get(VMContext, argNames));
1586 }
1587 
1588 /// Determines whether the language options require us to model
1589 /// unwind exceptions.  We treat -fexceptions as mandating this
1590 /// except under the fragile ObjC ABI with only ObjC exceptions
1591 /// enabled.  This means, for example, that C with -fexceptions
1592 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)1593 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1594   // If exceptions are completely disabled, obviously this is false.
1595   if (!LangOpts.Exceptions) return false;
1596 
1597   // If C++ exceptions are enabled, this is true.
1598   if (LangOpts.CXXExceptions) return true;
1599 
1600   // If ObjC exceptions are enabled, this depends on the ABI.
1601   if (LangOpts.ObjCExceptions) {
1602     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1603   }
1604 
1605   return true;
1606 }
1607 
requiresMemberFunctionPointerTypeMetadata(CodeGenModule & CGM,const CXXMethodDecl * MD)1608 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1609                                                       const CXXMethodDecl *MD) {
1610   // Check that the type metadata can ever actually be used by a call.
1611   if (!CGM.getCodeGenOpts().LTOUnit ||
1612       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1613     return false;
1614 
1615   // Only functions whose address can be taken with a member function pointer
1616   // need this sort of type metadata.
1617   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1618          !isa<CXXDestructorDecl>(MD);
1619 }
1620 
1621 std::vector<const CXXRecordDecl *>
getMostBaseClasses(const CXXRecordDecl * RD)1622 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1623   llvm::SetVector<const CXXRecordDecl *> MostBases;
1624 
1625   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1626   CollectMostBases = [&](const CXXRecordDecl *RD) {
1627     if (RD->getNumBases() == 0)
1628       MostBases.insert(RD);
1629     for (const CXXBaseSpecifier &B : RD->bases())
1630       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1631   };
1632   CollectMostBases(RD);
1633   return MostBases.takeVector();
1634 }
1635 
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)1636 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1637                                                            llvm::Function *F) {
1638   llvm::AttrBuilder B;
1639 
1640   if (CodeGenOpts.UnwindTables)
1641     B.addAttribute(llvm::Attribute::UWTable);
1642 
1643   if (CodeGenOpts.StackClashProtector)
1644     B.addAttribute("probe-stack", "inline-asm");
1645 
1646   if (!hasUnwindExceptions(LangOpts))
1647     B.addAttribute(llvm::Attribute::NoUnwind);
1648 
1649   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1650     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1651       B.addAttribute(llvm::Attribute::StackProtect);
1652     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1653       B.addAttribute(llvm::Attribute::StackProtectStrong);
1654     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1655       B.addAttribute(llvm::Attribute::StackProtectReq);
1656   }
1657 
1658   if (!D) {
1659     // If we don't have a declaration to control inlining, the function isn't
1660     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1661     // disabled, mark the function as noinline.
1662     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1663         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1664       B.addAttribute(llvm::Attribute::NoInline);
1665 
1666     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1667     return;
1668   }
1669 
1670   // Track whether we need to add the optnone LLVM attribute,
1671   // starting with the default for this optimization level.
1672   bool ShouldAddOptNone =
1673       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1674   // We can't add optnone in the following cases, it won't pass the verifier.
1675   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1676   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1677 
1678   // Add optnone, but do so only if the function isn't always_inline.
1679   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1680       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1681     B.addAttribute(llvm::Attribute::OptimizeNone);
1682 
1683     // OptimizeNone implies noinline; we should not be inlining such functions.
1684     B.addAttribute(llvm::Attribute::NoInline);
1685 
1686     // We still need to handle naked functions even though optnone subsumes
1687     // much of their semantics.
1688     if (D->hasAttr<NakedAttr>())
1689       B.addAttribute(llvm::Attribute::Naked);
1690 
1691     // OptimizeNone wins over OptimizeForSize and MinSize.
1692     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1693     F->removeFnAttr(llvm::Attribute::MinSize);
1694   } else if (D->hasAttr<NakedAttr>()) {
1695     // Naked implies noinline: we should not be inlining such functions.
1696     B.addAttribute(llvm::Attribute::Naked);
1697     B.addAttribute(llvm::Attribute::NoInline);
1698   } else if (D->hasAttr<NoDuplicateAttr>()) {
1699     B.addAttribute(llvm::Attribute::NoDuplicate);
1700   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1701     // Add noinline if the function isn't always_inline.
1702     B.addAttribute(llvm::Attribute::NoInline);
1703   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1704              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1705     // (noinline wins over always_inline, and we can't specify both in IR)
1706     B.addAttribute(llvm::Attribute::AlwaysInline);
1707   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1708     // If we're not inlining, then force everything that isn't always_inline to
1709     // carry an explicit noinline attribute.
1710     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1711       B.addAttribute(llvm::Attribute::NoInline);
1712   } else {
1713     // Otherwise, propagate the inline hint attribute and potentially use its
1714     // absence to mark things as noinline.
1715     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1716       // Search function and template pattern redeclarations for inline.
1717       auto CheckForInline = [](const FunctionDecl *FD) {
1718         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1719           return Redecl->isInlineSpecified();
1720         };
1721         if (any_of(FD->redecls(), CheckRedeclForInline))
1722           return true;
1723         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1724         if (!Pattern)
1725           return false;
1726         return any_of(Pattern->redecls(), CheckRedeclForInline);
1727       };
1728       if (CheckForInline(FD)) {
1729         B.addAttribute(llvm::Attribute::InlineHint);
1730       } else if (CodeGenOpts.getInlining() ==
1731                      CodeGenOptions::OnlyHintInlining &&
1732                  !FD->isInlined() &&
1733                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1734         B.addAttribute(llvm::Attribute::NoInline);
1735       }
1736     }
1737   }
1738 
1739   // Add other optimization related attributes if we are optimizing this
1740   // function.
1741   if (!D->hasAttr<OptimizeNoneAttr>()) {
1742     if (D->hasAttr<ColdAttr>()) {
1743       if (!ShouldAddOptNone)
1744         B.addAttribute(llvm::Attribute::OptimizeForSize);
1745       B.addAttribute(llvm::Attribute::Cold);
1746     }
1747 
1748     if (D->hasAttr<MinSizeAttr>())
1749       B.addAttribute(llvm::Attribute::MinSize);
1750   }
1751 
1752   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1753 
1754   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1755   if (alignment)
1756     F->setAlignment(llvm::Align(alignment));
1757 
1758   if (!D->hasAttr<AlignedAttr>())
1759     if (LangOpts.FunctionAlignment)
1760       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1761 
1762   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1763   // reserve a bit for differentiating between virtual and non-virtual member
1764   // functions. If the current target's C++ ABI requires this and this is a
1765   // member function, set its alignment accordingly.
1766   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1767     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1768       F->setAlignment(llvm::Align(2));
1769   }
1770 
1771   // In the cross-dso CFI mode with canonical jump tables, we want !type
1772   // attributes on definitions only.
1773   if (CodeGenOpts.SanitizeCfiCrossDso &&
1774       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1775     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1776       // Skip available_externally functions. They won't be codegen'ed in the
1777       // current module anyway.
1778       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1779         CreateFunctionTypeMetadataForIcall(FD, F);
1780     }
1781   }
1782 
1783   // Emit type metadata on member functions for member function pointer checks.
1784   // These are only ever necessary on definitions; we're guaranteed that the
1785   // definition will be present in the LTO unit as a result of LTO visibility.
1786   auto *MD = dyn_cast<CXXMethodDecl>(D);
1787   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1788     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1789       llvm::Metadata *Id =
1790           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1791               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1792       F->addTypeMetadata(0, Id);
1793     }
1794   }
1795 }
1796 
setLLVMFunctionFEnvAttributes(const FunctionDecl * D,llvm::Function * F)1797 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1798                                                   llvm::Function *F) {
1799   if (D->hasAttr<StrictFPAttr>()) {
1800     llvm::AttrBuilder FuncAttrs;
1801     FuncAttrs.addAttribute("strictfp");
1802     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1803   }
1804 }
1805 
SetCommonAttributes(GlobalDecl GD,llvm::GlobalValue * GV)1806 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1807   const Decl *D = GD.getDecl();
1808   if (dyn_cast_or_null<NamedDecl>(D))
1809     setGVProperties(GV, GD);
1810   else
1811     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1812 
1813   if (D && D->hasAttr<UsedAttr>())
1814     addUsedGlobal(GV);
1815 
1816   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1817     const auto *VD = cast<VarDecl>(D);
1818     if (VD->getType().isConstQualified() &&
1819         VD->getStorageDuration() == SD_Static)
1820       addUsedGlobal(GV);
1821   }
1822 }
1823 
GetCPUAndFeaturesAttributes(GlobalDecl GD,llvm::AttrBuilder & Attrs)1824 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1825                                                 llvm::AttrBuilder &Attrs) {
1826   // Add target-cpu and target-features attributes to functions. If
1827   // we have a decl for the function and it has a target attribute then
1828   // parse that and add it to the feature set.
1829   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1830   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1831   std::vector<std::string> Features;
1832   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1833   FD = FD ? FD->getMostRecentDecl() : FD;
1834   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1835   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1836   bool AddedAttr = false;
1837   if (TD || SD) {
1838     llvm::StringMap<bool> FeatureMap;
1839     getContext().getFunctionFeatureMap(FeatureMap, GD);
1840 
1841     // Produce the canonical string for this set of features.
1842     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1843       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1844 
1845     // Now add the target-cpu and target-features to the function.
1846     // While we populated the feature map above, we still need to
1847     // get and parse the target attribute so we can get the cpu for
1848     // the function.
1849     if (TD) {
1850       ParsedTargetAttr ParsedAttr = TD->parse();
1851       if (!ParsedAttr.Architecture.empty() &&
1852           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1853         TargetCPU = ParsedAttr.Architecture;
1854         TuneCPU = ""; // Clear the tune CPU.
1855       }
1856       if (!ParsedAttr.Tune.empty() &&
1857           getTarget().isValidCPUName(ParsedAttr.Tune))
1858         TuneCPU = ParsedAttr.Tune;
1859     }
1860   } else {
1861     // Otherwise just add the existing target cpu and target features to the
1862     // function.
1863     Features = getTarget().getTargetOpts().Features;
1864   }
1865 
1866   if (!TargetCPU.empty()) {
1867     Attrs.addAttribute("target-cpu", TargetCPU);
1868     AddedAttr = true;
1869   }
1870   if (!TuneCPU.empty()) {
1871     Attrs.addAttribute("tune-cpu", TuneCPU);
1872     AddedAttr = true;
1873   }
1874   if (!Features.empty()) {
1875     llvm::sort(Features);
1876     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1877     AddedAttr = true;
1878   }
1879 
1880   return AddedAttr;
1881 }
1882 
setNonAliasAttributes(GlobalDecl GD,llvm::GlobalObject * GO)1883 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1884                                           llvm::GlobalObject *GO) {
1885   const Decl *D = GD.getDecl();
1886   SetCommonAttributes(GD, GO);
1887 
1888   if (D) {
1889     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1890       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1891         GV->addAttribute("bss-section", SA->getName());
1892       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1893         GV->addAttribute("data-section", SA->getName());
1894       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1895         GV->addAttribute("rodata-section", SA->getName());
1896       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1897         GV->addAttribute("relro-section", SA->getName());
1898     }
1899 
1900     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1901       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1902         if (!D->getAttr<SectionAttr>())
1903           F->addFnAttr("implicit-section-name", SA->getName());
1904 
1905       llvm::AttrBuilder Attrs;
1906       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1907         // We know that GetCPUAndFeaturesAttributes will always have the
1908         // newest set, since it has the newest possible FunctionDecl, so the
1909         // new ones should replace the old.
1910         llvm::AttrBuilder RemoveAttrs;
1911         RemoveAttrs.addAttribute("target-cpu");
1912         RemoveAttrs.addAttribute("target-features");
1913         RemoveAttrs.addAttribute("tune-cpu");
1914         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1915         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1916       }
1917     }
1918 
1919     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1920       GO->setSection(CSA->getName());
1921     else if (const auto *SA = D->getAttr<SectionAttr>())
1922       GO->setSection(SA->getName());
1923   }
1924 
1925   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1926 }
1927 
SetInternalFunctionAttributes(GlobalDecl GD,llvm::Function * F,const CGFunctionInfo & FI)1928 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1929                                                   llvm::Function *F,
1930                                                   const CGFunctionInfo &FI) {
1931   const Decl *D = GD.getDecl();
1932   SetLLVMFunctionAttributes(GD, FI, F);
1933   SetLLVMFunctionAttributesForDefinition(D, F);
1934 
1935   F->setLinkage(llvm::Function::InternalLinkage);
1936 
1937   setNonAliasAttributes(GD, F);
1938 }
1939 
setLinkageForGV(llvm::GlobalValue * GV,const NamedDecl * ND)1940 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1941   // Set linkage and visibility in case we never see a definition.
1942   LinkageInfo LV = ND->getLinkageAndVisibility();
1943   // Don't set internal linkage on declarations.
1944   // "extern_weak" is overloaded in LLVM; we probably should have
1945   // separate linkage types for this.
1946   if (isExternallyVisible(LV.getLinkage()) &&
1947       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1948     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1949 }
1950 
CreateFunctionTypeMetadataForIcall(const FunctionDecl * FD,llvm::Function * F)1951 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1952                                                        llvm::Function *F) {
1953   // Only if we are checking indirect calls.
1954   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1955     return;
1956 
1957   // Non-static class methods are handled via vtable or member function pointer
1958   // checks elsewhere.
1959   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1960     return;
1961 
1962   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1963   F->addTypeMetadata(0, MD);
1964   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1965 
1966   // Emit a hash-based bit set entry for cross-DSO calls.
1967   if (CodeGenOpts.SanitizeCfiCrossDso)
1968     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1969       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1970 }
1971 
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction,bool IsThunk)1972 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1973                                           bool IsIncompleteFunction,
1974                                           bool IsThunk) {
1975 
1976   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1977     // If this is an intrinsic function, set the function's attributes
1978     // to the intrinsic's attributes.
1979     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1980     return;
1981   }
1982 
1983   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1984 
1985   if (!IsIncompleteFunction)
1986     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1987 
1988   // Add the Returned attribute for "this", except for iOS 5 and earlier
1989   // where substantial code, including the libstdc++ dylib, was compiled with
1990   // GCC and does not actually return "this".
1991   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1992       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1993     assert(!F->arg_empty() &&
1994            F->arg_begin()->getType()
1995              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1996            "unexpected this return");
1997     F->addAttribute(1, llvm::Attribute::Returned);
1998   }
1999 
2000   // Only a few attributes are set on declarations; these may later be
2001   // overridden by a definition.
2002 
2003   setLinkageForGV(F, FD);
2004   setGVProperties(F, FD);
2005 
2006   // Setup target-specific attributes.
2007   if (!IsIncompleteFunction && F->isDeclaration())
2008     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2009 
2010   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2011     F->setSection(CSA->getName());
2012   else if (const auto *SA = FD->getAttr<SectionAttr>())
2013      F->setSection(SA->getName());
2014 
2015   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2016   if (FD->isInlineBuiltinDeclaration()) {
2017     const FunctionDecl *FDBody;
2018     bool HasBody = FD->hasBody(FDBody);
2019     (void)HasBody;
2020     assert(HasBody && "Inline builtin declarations should always have an "
2021                       "available body!");
2022     if (shouldEmitFunction(FDBody))
2023       F->addAttribute(llvm::AttributeList::FunctionIndex,
2024                       llvm::Attribute::NoBuiltin);
2025   }
2026 
2027   if (FD->isReplaceableGlobalAllocationFunction()) {
2028     // A replaceable global allocation function does not act like a builtin by
2029     // default, only if it is invoked by a new-expression or delete-expression.
2030     F->addAttribute(llvm::AttributeList::FunctionIndex,
2031                     llvm::Attribute::NoBuiltin);
2032   }
2033 
2034   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2035     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2036   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2037     if (MD->isVirtual())
2038       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2039 
2040   // Don't emit entries for function declarations in the cross-DSO mode. This
2041   // is handled with better precision by the receiving DSO. But if jump tables
2042   // are non-canonical then we need type metadata in order to produce the local
2043   // jump table.
2044   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2045       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2046     CreateFunctionTypeMetadataForIcall(FD, F);
2047 
2048   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2049     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2050 
2051   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2052     // Annotate the callback behavior as metadata:
2053     //  - The callback callee (as argument number).
2054     //  - The callback payloads (as argument numbers).
2055     llvm::LLVMContext &Ctx = F->getContext();
2056     llvm::MDBuilder MDB(Ctx);
2057 
2058     // The payload indices are all but the first one in the encoding. The first
2059     // identifies the callback callee.
2060     int CalleeIdx = *CB->encoding_begin();
2061     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2062     F->addMetadata(llvm::LLVMContext::MD_callback,
2063                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2064                                                CalleeIdx, PayloadIndices,
2065                                                /* VarArgsArePassed */ false)}));
2066   }
2067 }
2068 
addUsedGlobal(llvm::GlobalValue * GV)2069 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2070   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2071          "Only globals with definition can force usage.");
2072   LLVMUsed.emplace_back(GV);
2073 }
2074 
addCompilerUsedGlobal(llvm::GlobalValue * GV)2075 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2076   assert(!GV->isDeclaration() &&
2077          "Only globals with definition can force usage.");
2078   LLVMCompilerUsed.emplace_back(GV);
2079 }
2080 
emitUsed(CodeGenModule & CGM,StringRef Name,std::vector<llvm::WeakTrackingVH> & List)2081 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2082                      std::vector<llvm::WeakTrackingVH> &List) {
2083   // Don't create llvm.used if there is no need.
2084   if (List.empty())
2085     return;
2086 
2087   // Convert List to what ConstantArray needs.
2088   SmallVector<llvm::Constant*, 8> UsedArray;
2089   UsedArray.resize(List.size());
2090   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2091     UsedArray[i] =
2092         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2093             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2094   }
2095 
2096   if (UsedArray.empty())
2097     return;
2098   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2099 
2100   auto *GV = new llvm::GlobalVariable(
2101       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2102       llvm::ConstantArray::get(ATy, UsedArray), Name);
2103 
2104   GV->setSection("llvm.metadata");
2105 }
2106 
emitLLVMUsed()2107 void CodeGenModule::emitLLVMUsed() {
2108   emitUsed(*this, "llvm.used", LLVMUsed);
2109   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2110 }
2111 
AppendLinkerOptions(StringRef Opts)2112 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2113   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2114   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2115 }
2116 
AddDetectMismatch(StringRef Name,StringRef Value)2117 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2118   llvm::SmallString<32> Opt;
2119   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2120   if (Opt.empty())
2121     return;
2122   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2123   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2124 }
2125 
AddDependentLib(StringRef Lib)2126 void CodeGenModule::AddDependentLib(StringRef Lib) {
2127   auto &C = getLLVMContext();
2128   if (getTarget().getTriple().isOSBinFormatELF()) {
2129       ELFDependentLibraries.push_back(
2130         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2131     return;
2132   }
2133 
2134   llvm::SmallString<24> Opt;
2135   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2136   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2137   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2138 }
2139 
2140 /// Add link options implied by the given module, including modules
2141 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(CodeGenModule & CGM,Module * Mod,SmallVectorImpl<llvm::MDNode * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)2142 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2143                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2144                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2145   // Import this module's parent.
2146   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2147     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2148   }
2149 
2150   // Import this module's dependencies.
2151   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2152     if (Visited.insert(Mod->Imports[I - 1]).second)
2153       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2154   }
2155 
2156   // Add linker options to link against the libraries/frameworks
2157   // described by this module.
2158   llvm::LLVMContext &Context = CGM.getLLVMContext();
2159   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2160 
2161   // For modules that use export_as for linking, use that module
2162   // name instead.
2163   if (Mod->UseExportAsModuleLinkName)
2164     return;
2165 
2166   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2167     // Link against a framework.  Frameworks are currently Darwin only, so we
2168     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2169     if (Mod->LinkLibraries[I-1].IsFramework) {
2170       llvm::Metadata *Args[2] = {
2171           llvm::MDString::get(Context, "-framework"),
2172           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2173 
2174       Metadata.push_back(llvm::MDNode::get(Context, Args));
2175       continue;
2176     }
2177 
2178     // Link against a library.
2179     if (IsELF) {
2180       llvm::Metadata *Args[2] = {
2181           llvm::MDString::get(Context, "lib"),
2182           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2183       };
2184       Metadata.push_back(llvm::MDNode::get(Context, Args));
2185     } else {
2186       llvm::SmallString<24> Opt;
2187       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2188           Mod->LinkLibraries[I - 1].Library, Opt);
2189       auto *OptString = llvm::MDString::get(Context, Opt);
2190       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2191     }
2192   }
2193 }
2194 
EmitModuleLinkOptions()2195 void CodeGenModule::EmitModuleLinkOptions() {
2196   // Collect the set of all of the modules we want to visit to emit link
2197   // options, which is essentially the imported modules and all of their
2198   // non-explicit child modules.
2199   llvm::SetVector<clang::Module *> LinkModules;
2200   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2201   SmallVector<clang::Module *, 16> Stack;
2202 
2203   // Seed the stack with imported modules.
2204   for (Module *M : ImportedModules) {
2205     // Do not add any link flags when an implementation TU of a module imports
2206     // a header of that same module.
2207     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2208         !getLangOpts().isCompilingModule())
2209       continue;
2210     if (Visited.insert(M).second)
2211       Stack.push_back(M);
2212   }
2213 
2214   // Find all of the modules to import, making a little effort to prune
2215   // non-leaf modules.
2216   while (!Stack.empty()) {
2217     clang::Module *Mod = Stack.pop_back_val();
2218 
2219     bool AnyChildren = false;
2220 
2221     // Visit the submodules of this module.
2222     for (const auto &SM : Mod->submodules()) {
2223       // Skip explicit children; they need to be explicitly imported to be
2224       // linked against.
2225       if (SM->IsExplicit)
2226         continue;
2227 
2228       if (Visited.insert(SM).second) {
2229         Stack.push_back(SM);
2230         AnyChildren = true;
2231       }
2232     }
2233 
2234     // We didn't find any children, so add this module to the list of
2235     // modules to link against.
2236     if (!AnyChildren) {
2237       LinkModules.insert(Mod);
2238     }
2239   }
2240 
2241   // Add link options for all of the imported modules in reverse topological
2242   // order.  We don't do anything to try to order import link flags with respect
2243   // to linker options inserted by things like #pragma comment().
2244   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2245   Visited.clear();
2246   for (Module *M : LinkModules)
2247     if (Visited.insert(M).second)
2248       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2249   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2250   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2251 
2252   // Add the linker options metadata flag.
2253   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2254   for (auto *MD : LinkerOptionsMetadata)
2255     NMD->addOperand(MD);
2256 }
2257 
EmitDeferred()2258 void CodeGenModule::EmitDeferred() {
2259   // Emit deferred declare target declarations.
2260   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2261     getOpenMPRuntime().emitDeferredTargetDecls();
2262 
2263   // Emit code for any potentially referenced deferred decls.  Since a
2264   // previously unused static decl may become used during the generation of code
2265   // for a static function, iterate until no changes are made.
2266 
2267   if (!DeferredVTables.empty()) {
2268     EmitDeferredVTables();
2269 
2270     // Emitting a vtable doesn't directly cause more vtables to
2271     // become deferred, although it can cause functions to be
2272     // emitted that then need those vtables.
2273     assert(DeferredVTables.empty());
2274   }
2275 
2276   // Emit CUDA/HIP static device variables referenced by host code only.
2277   if (getLangOpts().CUDA)
2278     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2279       DeferredDeclsToEmit.push_back(V);
2280 
2281   // Stop if we're out of both deferred vtables and deferred declarations.
2282   if (DeferredDeclsToEmit.empty())
2283     return;
2284 
2285   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2286   // work, it will not interfere with this.
2287   std::vector<GlobalDecl> CurDeclsToEmit;
2288   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2289 
2290   for (GlobalDecl &D : CurDeclsToEmit) {
2291     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2292     // to get GlobalValue with exactly the type we need, not something that
2293     // might had been created for another decl with the same mangled name but
2294     // different type.
2295     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2296         GetAddrOfGlobal(D, ForDefinition));
2297 
2298     // In case of different address spaces, we may still get a cast, even with
2299     // IsForDefinition equal to true. Query mangled names table to get
2300     // GlobalValue.
2301     if (!GV)
2302       GV = GetGlobalValue(getMangledName(D));
2303 
2304     // Make sure GetGlobalValue returned non-null.
2305     assert(GV);
2306 
2307     // Check to see if we've already emitted this.  This is necessary
2308     // for a couple of reasons: first, decls can end up in the
2309     // deferred-decls queue multiple times, and second, decls can end
2310     // up with definitions in unusual ways (e.g. by an extern inline
2311     // function acquiring a strong function redefinition).  Just
2312     // ignore these cases.
2313     if (!GV->isDeclaration())
2314       continue;
2315 
2316     // If this is OpenMP, check if it is legal to emit this global normally.
2317     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2318       continue;
2319 
2320     // Otherwise, emit the definition and move on to the next one.
2321     EmitGlobalDefinition(D, GV);
2322 
2323     // If we found out that we need to emit more decls, do that recursively.
2324     // This has the advantage that the decls are emitted in a DFS and related
2325     // ones are close together, which is convenient for testing.
2326     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2327       EmitDeferred();
2328       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2329     }
2330   }
2331 }
2332 
EmitVTablesOpportunistically()2333 void CodeGenModule::EmitVTablesOpportunistically() {
2334   // Try to emit external vtables as available_externally if they have emitted
2335   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2336   // is not allowed to create new references to things that need to be emitted
2337   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2338 
2339   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2340          && "Only emit opportunistic vtables with optimizations");
2341 
2342   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2343     assert(getVTables().isVTableExternal(RD) &&
2344            "This queue should only contain external vtables");
2345     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2346       VTables.GenerateClassData(RD);
2347   }
2348   OpportunisticVTables.clear();
2349 }
2350 
EmitGlobalAnnotations()2351 void CodeGenModule::EmitGlobalAnnotations() {
2352   if (Annotations.empty())
2353     return;
2354 
2355   // Create a new global variable for the ConstantStruct in the Module.
2356   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2357     Annotations[0]->getType(), Annotations.size()), Annotations);
2358   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2359                                       llvm::GlobalValue::AppendingLinkage,
2360                                       Array, "llvm.global.annotations");
2361   gv->setSection(AnnotationSection);
2362 }
2363 
EmitAnnotationString(StringRef Str)2364 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2365   llvm::Constant *&AStr = AnnotationStrings[Str];
2366   if (AStr)
2367     return AStr;
2368 
2369   // Not found yet, create a new global.
2370   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2371   auto *gv =
2372       new llvm::GlobalVariable(getModule(), s->getType(), true,
2373                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2374   gv->setSection(AnnotationSection);
2375   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2376   AStr = gv;
2377   return gv;
2378 }
2379 
EmitAnnotationUnit(SourceLocation Loc)2380 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2381   SourceManager &SM = getContext().getSourceManager();
2382   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2383   if (PLoc.isValid())
2384     return EmitAnnotationString(PLoc.getFilename());
2385   return EmitAnnotationString(SM.getBufferName(Loc));
2386 }
2387 
EmitAnnotationLineNo(SourceLocation L)2388 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2389   SourceManager &SM = getContext().getSourceManager();
2390   PresumedLoc PLoc = SM.getPresumedLoc(L);
2391   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2392     SM.getExpansionLineNumber(L);
2393   return llvm::ConstantInt::get(Int32Ty, LineNo);
2394 }
2395 
EmitAnnotationArgs(const AnnotateAttr * Attr)2396 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2397   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2398   if (Exprs.empty())
2399     return llvm::ConstantPointerNull::get(Int8PtrTy);
2400 
2401   llvm::FoldingSetNodeID ID;
2402   for (Expr *E : Exprs) {
2403     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2404   }
2405   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2406   if (Lookup)
2407     return Lookup;
2408 
2409   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2410   LLVMArgs.reserve(Exprs.size());
2411   ConstantEmitter ConstEmiter(*this);
2412   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2413     const auto *CE = cast<clang::ConstantExpr>(E);
2414     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2415                                     CE->getType());
2416   });
2417   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2418   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2419                                       llvm::GlobalValue::PrivateLinkage, Struct,
2420                                       ".args");
2421   GV->setSection(AnnotationSection);
2422   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2423   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2424 
2425   Lookup = Bitcasted;
2426   return Bitcasted;
2427 }
2428 
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)2429 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2430                                                 const AnnotateAttr *AA,
2431                                                 SourceLocation L) {
2432   // Get the globals for file name, annotation, and the line number.
2433   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2434                  *UnitGV = EmitAnnotationUnit(L),
2435                  *LineNoCst = EmitAnnotationLineNo(L),
2436                  *Args = EmitAnnotationArgs(AA);
2437 
2438   llvm::Constant *ASZeroGV = GV;
2439   if (GV->getAddressSpace() != 0) {
2440     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2441                    GV, GV->getValueType()->getPointerTo(0));
2442   }
2443 
2444   // Create the ConstantStruct for the global annotation.
2445   llvm::Constant *Fields[] = {
2446       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2447       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2448       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2449       LineNoCst,
2450       Args,
2451   };
2452   return llvm::ConstantStruct::getAnon(Fields);
2453 }
2454 
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)2455 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2456                                          llvm::GlobalValue *GV) {
2457   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2458   // Get the struct elements for these annotations.
2459   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2460     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2461 }
2462 
isInSanitizerBlacklist(SanitizerMask Kind,llvm::Function * Fn,SourceLocation Loc) const2463 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2464                                            llvm::Function *Fn,
2465                                            SourceLocation Loc) const {
2466   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2467   // Blacklist by function name.
2468   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2469     return true;
2470   // Blacklist by location.
2471   if (Loc.isValid())
2472     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2473   // If location is unknown, this may be a compiler-generated function. Assume
2474   // it's located in the main file.
2475   auto &SM = Context.getSourceManager();
2476   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2477     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2478   }
2479   return false;
2480 }
2481 
isInSanitizerBlacklist(llvm::GlobalVariable * GV,SourceLocation Loc,QualType Ty,StringRef Category) const2482 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2483                                            SourceLocation Loc, QualType Ty,
2484                                            StringRef Category) const {
2485   // For now globals can be blacklisted only in ASan and KASan.
2486   const SanitizerMask EnabledAsanMask =
2487       LangOpts.Sanitize.Mask &
2488       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2489        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2490        SanitizerKind::MemTag);
2491   if (!EnabledAsanMask)
2492     return false;
2493   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2494   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2495     return true;
2496   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2497     return true;
2498   // Check global type.
2499   if (!Ty.isNull()) {
2500     // Drill down the array types: if global variable of a fixed type is
2501     // blacklisted, we also don't instrument arrays of them.
2502     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2503       Ty = AT->getElementType();
2504     Ty = Ty.getCanonicalType().getUnqualifiedType();
2505     // We allow to blacklist only record types (classes, structs etc.)
2506     if (Ty->isRecordType()) {
2507       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2508       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2509         return true;
2510     }
2511   }
2512   return false;
2513 }
2514 
imbueXRayAttrs(llvm::Function * Fn,SourceLocation Loc,StringRef Category) const2515 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2516                                    StringRef Category) const {
2517   const auto &XRayFilter = getContext().getXRayFilter();
2518   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2519   auto Attr = ImbueAttr::NONE;
2520   if (Loc.isValid())
2521     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2522   if (Attr == ImbueAttr::NONE)
2523     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2524   switch (Attr) {
2525   case ImbueAttr::NONE:
2526     return false;
2527   case ImbueAttr::ALWAYS:
2528     Fn->addFnAttr("function-instrument", "xray-always");
2529     break;
2530   case ImbueAttr::ALWAYS_ARG1:
2531     Fn->addFnAttr("function-instrument", "xray-always");
2532     Fn->addFnAttr("xray-log-args", "1");
2533     break;
2534   case ImbueAttr::NEVER:
2535     Fn->addFnAttr("function-instrument", "xray-never");
2536     break;
2537   }
2538   return true;
2539 }
2540 
MustBeEmitted(const ValueDecl * Global)2541 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2542   // Never defer when EmitAllDecls is specified.
2543   if (LangOpts.EmitAllDecls)
2544     return true;
2545 
2546   if (CodeGenOpts.KeepStaticConsts) {
2547     const auto *VD = dyn_cast<VarDecl>(Global);
2548     if (VD && VD->getType().isConstQualified() &&
2549         VD->getStorageDuration() == SD_Static)
2550       return true;
2551   }
2552 
2553   return getContext().DeclMustBeEmitted(Global);
2554 }
2555 
MayBeEmittedEagerly(const ValueDecl * Global)2556 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2557   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2558     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2559       // Implicit template instantiations may change linkage if they are later
2560       // explicitly instantiated, so they should not be emitted eagerly.
2561       return false;
2562     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2563     // not emit them eagerly unless we sure that the function must be emitted on
2564     // the host.
2565     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2566         !LangOpts.OpenMPIsDevice &&
2567         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2568         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2569       return false;
2570   }
2571   if (const auto *VD = dyn_cast<VarDecl>(Global))
2572     if (Context.getInlineVariableDefinitionKind(VD) ==
2573         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2574       // A definition of an inline constexpr static data member may change
2575       // linkage later if it's redeclared outside the class.
2576       return false;
2577   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2578   // codegen for global variables, because they may be marked as threadprivate.
2579   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2580       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2581       !isTypeConstant(Global->getType(), false) &&
2582       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2583     return false;
2584 
2585   return true;
2586 }
2587 
GetAddrOfMSGuidDecl(const MSGuidDecl * GD)2588 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2589   StringRef Name = getMangledName(GD);
2590 
2591   // The UUID descriptor should be pointer aligned.
2592   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2593 
2594   // Look for an existing global.
2595   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2596     return ConstantAddress(GV, Alignment);
2597 
2598   ConstantEmitter Emitter(*this);
2599   llvm::Constant *Init;
2600 
2601   APValue &V = GD->getAsAPValue();
2602   if (!V.isAbsent()) {
2603     // If possible, emit the APValue version of the initializer. In particular,
2604     // this gets the type of the constant right.
2605     Init = Emitter.emitForInitializer(
2606         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2607   } else {
2608     // As a fallback, directly construct the constant.
2609     // FIXME: This may get padding wrong under esoteric struct layout rules.
2610     // MSVC appears to create a complete type 'struct __s_GUID' that it
2611     // presumably uses to represent these constants.
2612     MSGuidDecl::Parts Parts = GD->getParts();
2613     llvm::Constant *Fields[4] = {
2614         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2615         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2616         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2617         llvm::ConstantDataArray::getRaw(
2618             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2619             Int8Ty)};
2620     Init = llvm::ConstantStruct::getAnon(Fields);
2621   }
2622 
2623   auto *GV = new llvm::GlobalVariable(
2624       getModule(), Init->getType(),
2625       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2626   if (supportsCOMDAT())
2627     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2628   setDSOLocal(GV);
2629 
2630   llvm::Constant *Addr = GV;
2631   if (!V.isAbsent()) {
2632     Emitter.finalize(GV);
2633   } else {
2634     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2635     Addr = llvm::ConstantExpr::getBitCast(
2636         GV, Ty->getPointerTo(GV->getAddressSpace()));
2637   }
2638   return ConstantAddress(Addr, Alignment);
2639 }
2640 
GetAddrOfTemplateParamObject(const TemplateParamObjectDecl * TPO)2641 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2642     const TemplateParamObjectDecl *TPO) {
2643   StringRef Name = getMangledName(TPO);
2644   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2645 
2646   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2647     return ConstantAddress(GV, Alignment);
2648 
2649   ConstantEmitter Emitter(*this);
2650   llvm::Constant *Init = Emitter.emitForInitializer(
2651         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2652 
2653   if (!Init) {
2654     ErrorUnsupported(TPO, "template parameter object");
2655     return ConstantAddress::invalid();
2656   }
2657 
2658   auto *GV = new llvm::GlobalVariable(
2659       getModule(), Init->getType(),
2660       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2661   if (supportsCOMDAT())
2662     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2663   Emitter.finalize(GV);
2664 
2665   return ConstantAddress(GV, Alignment);
2666 }
2667 
GetWeakRefReference(const ValueDecl * VD)2668 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2669   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2670   assert(AA && "No alias?");
2671 
2672   CharUnits Alignment = getContext().getDeclAlign(VD);
2673   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2674 
2675   // See if there is already something with the target's name in the module.
2676   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2677   if (Entry) {
2678     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2679     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2680     return ConstantAddress(Ptr, Alignment);
2681   }
2682 
2683   llvm::Constant *Aliasee;
2684   if (isa<llvm::FunctionType>(DeclTy))
2685     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2686                                       GlobalDecl(cast<FunctionDecl>(VD)),
2687                                       /*ForVTable=*/false);
2688   else
2689     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2690                                     llvm::PointerType::getUnqual(DeclTy),
2691                                     nullptr);
2692 
2693   auto *F = cast<llvm::GlobalValue>(Aliasee);
2694   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2695   WeakRefReferences.insert(F);
2696 
2697   return ConstantAddress(Aliasee, Alignment);
2698 }
2699 
EmitGlobal(GlobalDecl GD)2700 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2701   const auto *Global = cast<ValueDecl>(GD.getDecl());
2702 
2703   // Weak references don't produce any output by themselves.
2704   if (Global->hasAttr<WeakRefAttr>())
2705     return;
2706 
2707   // If this is an alias definition (which otherwise looks like a declaration)
2708   // emit it now.
2709   if (Global->hasAttr<AliasAttr>())
2710     return EmitAliasDefinition(GD);
2711 
2712   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2713   if (Global->hasAttr<IFuncAttr>())
2714     return emitIFuncDefinition(GD);
2715 
2716   // If this is a cpu_dispatch multiversion function, emit the resolver.
2717   if (Global->hasAttr<CPUDispatchAttr>())
2718     return emitCPUDispatchDefinition(GD);
2719 
2720   // If this is CUDA, be selective about which declarations we emit.
2721   if (LangOpts.CUDA) {
2722     if (LangOpts.CUDAIsDevice) {
2723       if (!Global->hasAttr<CUDADeviceAttr>() &&
2724           !Global->hasAttr<CUDAGlobalAttr>() &&
2725           !Global->hasAttr<CUDAConstantAttr>() &&
2726           !Global->hasAttr<CUDASharedAttr>() &&
2727           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2728           !Global->getType()->isCUDADeviceBuiltinTextureType())
2729         return;
2730     } else {
2731       // We need to emit host-side 'shadows' for all global
2732       // device-side variables because the CUDA runtime needs their
2733       // size and host-side address in order to provide access to
2734       // their device-side incarnations.
2735 
2736       // So device-only functions are the only things we skip.
2737       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2738           Global->hasAttr<CUDADeviceAttr>())
2739         return;
2740 
2741       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2742              "Expected Variable or Function");
2743     }
2744   }
2745 
2746   if (LangOpts.OpenMP) {
2747     // If this is OpenMP, check if it is legal to emit this global normally.
2748     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2749       return;
2750     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2751       if (MustBeEmitted(Global))
2752         EmitOMPDeclareReduction(DRD);
2753       return;
2754     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2755       if (MustBeEmitted(Global))
2756         EmitOMPDeclareMapper(DMD);
2757       return;
2758     }
2759   }
2760 
2761   // Ignore declarations, they will be emitted on their first use.
2762   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2763     // Forward declarations are emitted lazily on first use.
2764     if (!FD->doesThisDeclarationHaveABody()) {
2765       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2766         return;
2767 
2768       StringRef MangledName = getMangledName(GD);
2769 
2770       // Compute the function info and LLVM type.
2771       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2772       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2773 
2774       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2775                               /*DontDefer=*/false);
2776       return;
2777     }
2778   } else {
2779     const auto *VD = cast<VarDecl>(Global);
2780     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2781     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2782         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2783       if (LangOpts.OpenMP) {
2784         // Emit declaration of the must-be-emitted declare target variable.
2785         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2786                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2787           bool UnifiedMemoryEnabled =
2788               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2789           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2790               !UnifiedMemoryEnabled) {
2791             (void)GetAddrOfGlobalVar(VD);
2792           } else {
2793             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2794                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2795                      UnifiedMemoryEnabled)) &&
2796                    "Link clause or to clause with unified memory expected.");
2797             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2798           }
2799 
2800           return;
2801         }
2802       }
2803       // If this declaration may have caused an inline variable definition to
2804       // change linkage, make sure that it's emitted.
2805       if (Context.getInlineVariableDefinitionKind(VD) ==
2806           ASTContext::InlineVariableDefinitionKind::Strong)
2807         GetAddrOfGlobalVar(VD);
2808       return;
2809     }
2810   }
2811 
2812   // Defer code generation to first use when possible, e.g. if this is an inline
2813   // function. If the global must always be emitted, do it eagerly if possible
2814   // to benefit from cache locality.
2815   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2816     // Emit the definition if it can't be deferred.
2817     EmitGlobalDefinition(GD);
2818     return;
2819   }
2820 
2821   // If we're deferring emission of a C++ variable with an
2822   // initializer, remember the order in which it appeared in the file.
2823   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2824       cast<VarDecl>(Global)->hasInit()) {
2825     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2826     CXXGlobalInits.push_back(nullptr);
2827   }
2828 
2829   StringRef MangledName = getMangledName(GD);
2830   if (GetGlobalValue(MangledName) != nullptr) {
2831     // The value has already been used and should therefore be emitted.
2832     addDeferredDeclToEmit(GD);
2833   } else if (MustBeEmitted(Global)) {
2834     // The value must be emitted, but cannot be emitted eagerly.
2835     assert(!MayBeEmittedEagerly(Global));
2836     addDeferredDeclToEmit(GD);
2837   } else {
2838     // Otherwise, remember that we saw a deferred decl with this name.  The
2839     // first use of the mangled name will cause it to move into
2840     // DeferredDeclsToEmit.
2841     DeferredDecls[MangledName] = GD;
2842   }
2843 }
2844 
2845 // Check if T is a class type with a destructor that's not dllimport.
HasNonDllImportDtor(QualType T)2846 static bool HasNonDllImportDtor(QualType T) {
2847   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2848     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2849       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2850         return true;
2851 
2852   return false;
2853 }
2854 
2855 namespace {
2856   struct FunctionIsDirectlyRecursive
2857       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2858     const StringRef Name;
2859     const Builtin::Context &BI;
FunctionIsDirectlyRecursive__anonf37ca5690711::FunctionIsDirectlyRecursive2860     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2861         : Name(N), BI(C) {}
2862 
VisitCallExpr__anonf37ca5690711::FunctionIsDirectlyRecursive2863     bool VisitCallExpr(const CallExpr *E) {
2864       const FunctionDecl *FD = E->getDirectCallee();
2865       if (!FD)
2866         return false;
2867       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2868       if (Attr && Name == Attr->getLabel())
2869         return true;
2870       unsigned BuiltinID = FD->getBuiltinID();
2871       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2872         return false;
2873       StringRef BuiltinName = BI.getName(BuiltinID);
2874       if (BuiltinName.startswith("__builtin_") &&
2875           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2876         return true;
2877       }
2878       return false;
2879     }
2880 
VisitStmt__anonf37ca5690711::FunctionIsDirectlyRecursive2881     bool VisitStmt(const Stmt *S) {
2882       for (const Stmt *Child : S->children())
2883         if (Child && this->Visit(Child))
2884           return true;
2885       return false;
2886     }
2887   };
2888 
2889   // Make sure we're not referencing non-imported vars or functions.
2890   struct DLLImportFunctionVisitor
2891       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2892     bool SafeToInline = true;
2893 
shouldVisitImplicitCode__anonf37ca5690711::DLLImportFunctionVisitor2894     bool shouldVisitImplicitCode() const { return true; }
2895 
VisitVarDecl__anonf37ca5690711::DLLImportFunctionVisitor2896     bool VisitVarDecl(VarDecl *VD) {
2897       if (VD->getTLSKind()) {
2898         // A thread-local variable cannot be imported.
2899         SafeToInline = false;
2900         return SafeToInline;
2901       }
2902 
2903       // A variable definition might imply a destructor call.
2904       if (VD->isThisDeclarationADefinition())
2905         SafeToInline = !HasNonDllImportDtor(VD->getType());
2906 
2907       return SafeToInline;
2908     }
2909 
VisitCXXBindTemporaryExpr__anonf37ca5690711::DLLImportFunctionVisitor2910     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2911       if (const auto *D = E->getTemporary()->getDestructor())
2912         SafeToInline = D->hasAttr<DLLImportAttr>();
2913       return SafeToInline;
2914     }
2915 
VisitDeclRefExpr__anonf37ca5690711::DLLImportFunctionVisitor2916     bool VisitDeclRefExpr(DeclRefExpr *E) {
2917       ValueDecl *VD = E->getDecl();
2918       if (isa<FunctionDecl>(VD))
2919         SafeToInline = VD->hasAttr<DLLImportAttr>();
2920       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2921         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2922       return SafeToInline;
2923     }
2924 
VisitCXXConstructExpr__anonf37ca5690711::DLLImportFunctionVisitor2925     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2926       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2927       return SafeToInline;
2928     }
2929 
VisitCXXMemberCallExpr__anonf37ca5690711::DLLImportFunctionVisitor2930     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2931       CXXMethodDecl *M = E->getMethodDecl();
2932       if (!M) {
2933         // Call through a pointer to member function. This is safe to inline.
2934         SafeToInline = true;
2935       } else {
2936         SafeToInline = M->hasAttr<DLLImportAttr>();
2937       }
2938       return SafeToInline;
2939     }
2940 
VisitCXXDeleteExpr__anonf37ca5690711::DLLImportFunctionVisitor2941     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2942       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2943       return SafeToInline;
2944     }
2945 
VisitCXXNewExpr__anonf37ca5690711::DLLImportFunctionVisitor2946     bool VisitCXXNewExpr(CXXNewExpr *E) {
2947       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2948       return SafeToInline;
2949     }
2950   };
2951 }
2952 
2953 // isTriviallyRecursive - Check if this function calls another
2954 // decl that, because of the asm attribute or the other decl being a builtin,
2955 // ends up pointing to itself.
2956 bool
isTriviallyRecursive(const FunctionDecl * FD)2957 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2958   StringRef Name;
2959   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2960     // asm labels are a special kind of mangling we have to support.
2961     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2962     if (!Attr)
2963       return false;
2964     Name = Attr->getLabel();
2965   } else {
2966     Name = FD->getName();
2967   }
2968 
2969   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2970   const Stmt *Body = FD->getBody();
2971   return Body ? Walker.Visit(Body) : false;
2972 }
2973 
shouldEmitFunction(GlobalDecl GD)2974 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2975   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2976     return true;
2977   const auto *F = cast<FunctionDecl>(GD.getDecl());
2978   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2979     return false;
2980 
2981   if (F->hasAttr<DLLImportAttr>()) {
2982     // Check whether it would be safe to inline this dllimport function.
2983     DLLImportFunctionVisitor Visitor;
2984     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2985     if (!Visitor.SafeToInline)
2986       return false;
2987 
2988     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2989       // Implicit destructor invocations aren't captured in the AST, so the
2990       // check above can't see them. Check for them manually here.
2991       for (const Decl *Member : Dtor->getParent()->decls())
2992         if (isa<FieldDecl>(Member))
2993           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2994             return false;
2995       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2996         if (HasNonDllImportDtor(B.getType()))
2997           return false;
2998     }
2999   }
3000 
3001   // PR9614. Avoid cases where the source code is lying to us. An available
3002   // externally function should have an equivalent function somewhere else,
3003   // but a function that calls itself through asm label/`__builtin_` trickery is
3004   // clearly not equivalent to the real implementation.
3005   // This happens in glibc's btowc and in some configure checks.
3006   return !isTriviallyRecursive(F);
3007 }
3008 
shouldOpportunisticallyEmitVTables()3009 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3010   return CodeGenOpts.OptimizationLevel > 0;
3011 }
3012 
EmitMultiVersionFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)3013 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3014                                                        llvm::GlobalValue *GV) {
3015   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3016 
3017   if (FD->isCPUSpecificMultiVersion()) {
3018     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3019     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3020       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3021     // Requires multiple emits.
3022   } else
3023     EmitGlobalFunctionDefinition(GD, GV);
3024 }
3025 
EmitGlobalDefinition(GlobalDecl GD,llvm::GlobalValue * GV)3026 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3027   const auto *D = cast<ValueDecl>(GD.getDecl());
3028 
3029   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3030                                  Context.getSourceManager(),
3031                                  "Generating code for declaration");
3032 
3033   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3034     // At -O0, don't generate IR for functions with available_externally
3035     // linkage.
3036     if (!shouldEmitFunction(GD))
3037       return;
3038 
3039     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3040       std::string Name;
3041       llvm::raw_string_ostream OS(Name);
3042       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3043                                /*Qualified=*/true);
3044       return Name;
3045     });
3046 
3047     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3048       // Make sure to emit the definition(s) before we emit the thunks.
3049       // This is necessary for the generation of certain thunks.
3050       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3051         ABI->emitCXXStructor(GD);
3052       else if (FD->isMultiVersion())
3053         EmitMultiVersionFunctionDefinition(GD, GV);
3054       else
3055         EmitGlobalFunctionDefinition(GD, GV);
3056 
3057       if (Method->isVirtual())
3058         getVTables().EmitThunks(GD);
3059 
3060       return;
3061     }
3062 
3063     if (FD->isMultiVersion())
3064       return EmitMultiVersionFunctionDefinition(GD, GV);
3065     return EmitGlobalFunctionDefinition(GD, GV);
3066   }
3067 
3068   if (const auto *VD = dyn_cast<VarDecl>(D))
3069     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3070 
3071   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3072 }
3073 
3074 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3075                                                       llvm::Function *NewFn);
3076 
3077 static unsigned
TargetMVPriority(const TargetInfo & TI,const CodeGenFunction::MultiVersionResolverOption & RO)3078 TargetMVPriority(const TargetInfo &TI,
3079                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3080   unsigned Priority = 0;
3081   for (StringRef Feat : RO.Conditions.Features)
3082     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3083 
3084   if (!RO.Conditions.Architecture.empty())
3085     Priority = std::max(
3086         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3087   return Priority;
3088 }
3089 
emitMultiVersionFunctions()3090 void CodeGenModule::emitMultiVersionFunctions() {
3091   for (GlobalDecl GD : MultiVersionFuncs) {
3092     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3093     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3094     getContext().forEachMultiversionedFunctionVersion(
3095         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3096           GlobalDecl CurGD{
3097               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3098           StringRef MangledName = getMangledName(CurGD);
3099           llvm::Constant *Func = GetGlobalValue(MangledName);
3100           if (!Func) {
3101             if (CurFD->isDefined()) {
3102               EmitGlobalFunctionDefinition(CurGD, nullptr);
3103               Func = GetGlobalValue(MangledName);
3104             } else {
3105               const CGFunctionInfo &FI =
3106                   getTypes().arrangeGlobalDeclaration(GD);
3107               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3108               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3109                                        /*DontDefer=*/false, ForDefinition);
3110             }
3111             assert(Func && "This should have just been created");
3112           }
3113 
3114           const auto *TA = CurFD->getAttr<TargetAttr>();
3115           llvm::SmallVector<StringRef, 8> Feats;
3116           TA->getAddedFeatures(Feats);
3117 
3118           Options.emplace_back(cast<llvm::Function>(Func),
3119                                TA->getArchitecture(), Feats);
3120         });
3121 
3122     llvm::Function *ResolverFunc;
3123     const TargetInfo &TI = getTarget();
3124 
3125     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3126       ResolverFunc = cast<llvm::Function>(
3127           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3128       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3129     } else {
3130       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3131     }
3132 
3133     if (supportsCOMDAT())
3134       ResolverFunc->setComdat(
3135           getModule().getOrInsertComdat(ResolverFunc->getName()));
3136 
3137     llvm::stable_sort(
3138         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3139                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3140           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3141         });
3142     CodeGenFunction CGF(*this);
3143     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3144   }
3145 }
3146 
emitCPUDispatchDefinition(GlobalDecl GD)3147 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3148   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3149   assert(FD && "Not a FunctionDecl?");
3150   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3151   assert(DD && "Not a cpu_dispatch Function?");
3152   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3153 
3154   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3155     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3156     DeclTy = getTypes().GetFunctionType(FInfo);
3157   }
3158 
3159   StringRef ResolverName = getMangledName(GD);
3160 
3161   llvm::Type *ResolverType;
3162   GlobalDecl ResolverGD;
3163   if (getTarget().supportsIFunc())
3164     ResolverType = llvm::FunctionType::get(
3165         llvm::PointerType::get(DeclTy,
3166                                Context.getTargetAddressSpace(FD->getType())),
3167         false);
3168   else {
3169     ResolverType = DeclTy;
3170     ResolverGD = GD;
3171   }
3172 
3173   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3174       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3175   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3176   if (supportsCOMDAT())
3177     ResolverFunc->setComdat(
3178         getModule().getOrInsertComdat(ResolverFunc->getName()));
3179 
3180   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3181   const TargetInfo &Target = getTarget();
3182   unsigned Index = 0;
3183   for (const IdentifierInfo *II : DD->cpus()) {
3184     // Get the name of the target function so we can look it up/create it.
3185     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3186                               getCPUSpecificMangling(*this, II->getName());
3187 
3188     llvm::Constant *Func = GetGlobalValue(MangledName);
3189 
3190     if (!Func) {
3191       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3192       if (ExistingDecl.getDecl() &&
3193           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3194         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3195         Func = GetGlobalValue(MangledName);
3196       } else {
3197         if (!ExistingDecl.getDecl())
3198           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3199 
3200       Func = GetOrCreateLLVMFunction(
3201           MangledName, DeclTy, ExistingDecl,
3202           /*ForVTable=*/false, /*DontDefer=*/true,
3203           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3204       }
3205     }
3206 
3207     llvm::SmallVector<StringRef, 32> Features;
3208     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3209     llvm::transform(Features, Features.begin(),
3210                     [](StringRef Str) { return Str.substr(1); });
3211     Features.erase(std::remove_if(
3212         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3213           return !Target.validateCpuSupports(Feat);
3214         }), Features.end());
3215     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3216     ++Index;
3217   }
3218 
3219   llvm::sort(
3220       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3221                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3222         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3223                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3224       });
3225 
3226   // If the list contains multiple 'default' versions, such as when it contains
3227   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3228   // always run on at least a 'pentium'). We do this by deleting the 'least
3229   // advanced' (read, lowest mangling letter).
3230   while (Options.size() > 1 &&
3231          CodeGenFunction::GetX86CpuSupportsMask(
3232              (Options.end() - 2)->Conditions.Features) == 0) {
3233     StringRef LHSName = (Options.end() - 2)->Function->getName();
3234     StringRef RHSName = (Options.end() - 1)->Function->getName();
3235     if (LHSName.compare(RHSName) < 0)
3236       Options.erase(Options.end() - 2);
3237     else
3238       Options.erase(Options.end() - 1);
3239   }
3240 
3241   CodeGenFunction CGF(*this);
3242   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3243 
3244   if (getTarget().supportsIFunc()) {
3245     std::string AliasName = getMangledNameImpl(
3246         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3247     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3248     if (!AliasFunc) {
3249       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3250           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3251           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3252       auto *GA = llvm::GlobalAlias::create(
3253          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3254       GA->setLinkage(llvm::Function::WeakODRLinkage);
3255       SetCommonAttributes(GD, GA);
3256     }
3257   }
3258 }
3259 
3260 /// If a dispatcher for the specified mangled name is not in the module, create
3261 /// and return an llvm Function with the specified type.
GetOrCreateMultiVersionResolver(GlobalDecl GD,llvm::Type * DeclTy,const FunctionDecl * FD)3262 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3263     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3264   std::string MangledName =
3265       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3266 
3267   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3268   // a separate resolver).
3269   std::string ResolverName = MangledName;
3270   if (getTarget().supportsIFunc())
3271     ResolverName += ".ifunc";
3272   else if (FD->isTargetMultiVersion())
3273     ResolverName += ".resolver";
3274 
3275   // If this already exists, just return that one.
3276   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3277     return ResolverGV;
3278 
3279   // Since this is the first time we've created this IFunc, make sure
3280   // that we put this multiversioned function into the list to be
3281   // replaced later if necessary (target multiversioning only).
3282   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3283     MultiVersionFuncs.push_back(GD);
3284 
3285   if (getTarget().supportsIFunc()) {
3286     llvm::Type *ResolverType = llvm::FunctionType::get(
3287         llvm::PointerType::get(
3288             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3289         false);
3290     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3291         MangledName + ".resolver", ResolverType, GlobalDecl{},
3292         /*ForVTable=*/false);
3293     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3294         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3295     GIF->setName(ResolverName);
3296     SetCommonAttributes(FD, GIF);
3297 
3298     return GIF;
3299   }
3300 
3301   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3302       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3303   assert(isa<llvm::GlobalValue>(Resolver) &&
3304          "Resolver should be created for the first time");
3305   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3306   return Resolver;
3307 }
3308 
3309 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3310 /// module, create and return an llvm Function with the specified type. If there
3311 /// is something in the module with the specified name, return it potentially
3312 /// bitcasted to the right type.
3313 ///
3314 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3315 /// to set the attributes on the function when it is first created.
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl GD,bool ForVTable,bool DontDefer,bool IsThunk,llvm::AttributeList ExtraAttrs,ForDefinition_t IsForDefinition)3316 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3317     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3318     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3319     ForDefinition_t IsForDefinition) {
3320   const Decl *D = GD.getDecl();
3321 
3322   // Any attempts to use a MultiVersion function should result in retrieving
3323   // the iFunc instead. Name Mangling will handle the rest of the changes.
3324   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3325     // For the device mark the function as one that should be emitted.
3326     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3327         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3328         !DontDefer && !IsForDefinition) {
3329       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3330         GlobalDecl GDDef;
3331         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3332           GDDef = GlobalDecl(CD, GD.getCtorType());
3333         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3334           GDDef = GlobalDecl(DD, GD.getDtorType());
3335         else
3336           GDDef = GlobalDecl(FDDef);
3337         EmitGlobal(GDDef);
3338       }
3339     }
3340 
3341     if (FD->isMultiVersion()) {
3342       if (FD->hasAttr<TargetAttr>())
3343         UpdateMultiVersionNames(GD, FD);
3344       if (!IsForDefinition)
3345         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3346     }
3347   }
3348 
3349   // Lookup the entry, lazily creating it if necessary.
3350   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3351   if (Entry) {
3352     if (WeakRefReferences.erase(Entry)) {
3353       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3354       if (FD && !FD->hasAttr<WeakAttr>())
3355         Entry->setLinkage(llvm::Function::ExternalLinkage);
3356     }
3357 
3358     // Handle dropped DLL attributes.
3359     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3360       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3361       setDSOLocal(Entry);
3362     }
3363 
3364     // If there are two attempts to define the same mangled name, issue an
3365     // error.
3366     if (IsForDefinition && !Entry->isDeclaration()) {
3367       GlobalDecl OtherGD;
3368       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3369       // to make sure that we issue an error only once.
3370       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3371           (GD.getCanonicalDecl().getDecl() !=
3372            OtherGD.getCanonicalDecl().getDecl()) &&
3373           DiagnosedConflictingDefinitions.insert(GD).second) {
3374         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3375             << MangledName;
3376         getDiags().Report(OtherGD.getDecl()->getLocation(),
3377                           diag::note_previous_definition);
3378       }
3379     }
3380 
3381     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3382         (Entry->getValueType() == Ty)) {
3383       return Entry;
3384     }
3385 
3386     // Make sure the result is of the correct type.
3387     // (If function is requested for a definition, we always need to create a new
3388     // function, not just return a bitcast.)
3389     if (!IsForDefinition)
3390       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3391   }
3392 
3393   // This function doesn't have a complete type (for example, the return
3394   // type is an incomplete struct). Use a fake type instead, and make
3395   // sure not to try to set attributes.
3396   bool IsIncompleteFunction = false;
3397 
3398   llvm::FunctionType *FTy;
3399   if (isa<llvm::FunctionType>(Ty)) {
3400     FTy = cast<llvm::FunctionType>(Ty);
3401   } else {
3402     FTy = llvm::FunctionType::get(VoidTy, false);
3403     IsIncompleteFunction = true;
3404   }
3405 
3406   llvm::Function *F =
3407       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3408                              Entry ? StringRef() : MangledName, &getModule());
3409 
3410   // If we already created a function with the same mangled name (but different
3411   // type) before, take its name and add it to the list of functions to be
3412   // replaced with F at the end of CodeGen.
3413   //
3414   // This happens if there is a prototype for a function (e.g. "int f()") and
3415   // then a definition of a different type (e.g. "int f(int x)").
3416   if (Entry) {
3417     F->takeName(Entry);
3418 
3419     // This might be an implementation of a function without a prototype, in
3420     // which case, try to do special replacement of calls which match the new
3421     // prototype.  The really key thing here is that we also potentially drop
3422     // arguments from the call site so as to make a direct call, which makes the
3423     // inliner happier and suppresses a number of optimizer warnings (!) about
3424     // dropping arguments.
3425     if (!Entry->use_empty()) {
3426       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3427       Entry->removeDeadConstantUsers();
3428     }
3429 
3430     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3431         F, Entry->getValueType()->getPointerTo());
3432     addGlobalValReplacement(Entry, BC);
3433   }
3434 
3435   assert(F->getName() == MangledName && "name was uniqued!");
3436   if (D)
3437     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3438   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3439     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3440     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3441   }
3442 
3443   if (!DontDefer) {
3444     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3445     // each other bottoming out with the base dtor.  Therefore we emit non-base
3446     // dtors on usage, even if there is no dtor definition in the TU.
3447     if (D && isa<CXXDestructorDecl>(D) &&
3448         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3449                                            GD.getDtorType()))
3450       addDeferredDeclToEmit(GD);
3451 
3452     // This is the first use or definition of a mangled name.  If there is a
3453     // deferred decl with this name, remember that we need to emit it at the end
3454     // of the file.
3455     auto DDI = DeferredDecls.find(MangledName);
3456     if (DDI != DeferredDecls.end()) {
3457       // Move the potentially referenced deferred decl to the
3458       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3459       // don't need it anymore).
3460       addDeferredDeclToEmit(DDI->second);
3461       DeferredDecls.erase(DDI);
3462 
3463       // Otherwise, there are cases we have to worry about where we're
3464       // using a declaration for which we must emit a definition but where
3465       // we might not find a top-level definition:
3466       //   - member functions defined inline in their classes
3467       //   - friend functions defined inline in some class
3468       //   - special member functions with implicit definitions
3469       // If we ever change our AST traversal to walk into class methods,
3470       // this will be unnecessary.
3471       //
3472       // We also don't emit a definition for a function if it's going to be an
3473       // entry in a vtable, unless it's already marked as used.
3474     } else if (getLangOpts().CPlusPlus && D) {
3475       // Look for a declaration that's lexically in a record.
3476       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3477            FD = FD->getPreviousDecl()) {
3478         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3479           if (FD->doesThisDeclarationHaveABody()) {
3480             addDeferredDeclToEmit(GD.getWithDecl(FD));
3481             break;
3482           }
3483         }
3484       }
3485     }
3486   }
3487 
3488   // Make sure the result is of the requested type.
3489   if (!IsIncompleteFunction) {
3490     assert(F->getFunctionType() == Ty);
3491     return F;
3492   }
3493 
3494   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3495   return llvm::ConstantExpr::getBitCast(F, PTy);
3496 }
3497 
3498 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3499 /// non-null, then this function will use the specified type if it has to
3500 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable,bool DontDefer,ForDefinition_t IsForDefinition)3501 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3502                                                  llvm::Type *Ty,
3503                                                  bool ForVTable,
3504                                                  bool DontDefer,
3505                                               ForDefinition_t IsForDefinition) {
3506   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3507          "consteval function should never be emitted");
3508   // If there was no specific requested type, just convert it now.
3509   if (!Ty) {
3510     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3511     Ty = getTypes().ConvertType(FD->getType());
3512   }
3513 
3514   // Devirtualized destructor calls may come through here instead of via
3515   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3516   // of the complete destructor when necessary.
3517   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3518     if (getTarget().getCXXABI().isMicrosoft() &&
3519         GD.getDtorType() == Dtor_Complete &&
3520         DD->getParent()->getNumVBases() == 0)
3521       GD = GlobalDecl(DD, Dtor_Base);
3522   }
3523 
3524   StringRef MangledName = getMangledName(GD);
3525   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3526                                  /*IsThunk=*/false, llvm::AttributeList(),
3527                                  IsForDefinition);
3528 }
3529 
3530 static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext & C,StringRef Name)3531 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3532   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3533   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3534 
3535   IdentifierInfo &CII = C.Idents.get(Name);
3536   for (const auto &Result : DC->lookup(&CII))
3537     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3538       return FD;
3539 
3540   if (!C.getLangOpts().CPlusPlus)
3541     return nullptr;
3542 
3543   // Demangle the premangled name from getTerminateFn()
3544   IdentifierInfo &CXXII =
3545       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3546           ? C.Idents.get("terminate")
3547           : C.Idents.get(Name);
3548 
3549   for (const auto &N : {"__cxxabiv1", "std"}) {
3550     IdentifierInfo &NS = C.Idents.get(N);
3551     for (const auto &Result : DC->lookup(&NS)) {
3552       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3553       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3554         for (const auto &Result : LSD->lookup(&NS))
3555           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3556             break;
3557 
3558       if (ND)
3559         for (const auto &Result : ND->lookup(&CXXII))
3560           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3561             return FD;
3562     }
3563   }
3564 
3565   return nullptr;
3566 }
3567 
3568 /// CreateRuntimeFunction - Create a new runtime function with the specified
3569 /// type and name.
3570 llvm::FunctionCallee
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeList ExtraAttrs,bool Local,bool AssumeConvergent)3571 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3572                                      llvm::AttributeList ExtraAttrs, bool Local,
3573                                      bool AssumeConvergent) {
3574   if (AssumeConvergent) {
3575     ExtraAttrs =
3576         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3577                                 llvm::Attribute::Convergent);
3578   }
3579 
3580   llvm::Constant *C =
3581       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3582                               /*DontDefer=*/false, /*IsThunk=*/false,
3583                               ExtraAttrs);
3584 
3585   if (auto *F = dyn_cast<llvm::Function>(C)) {
3586     if (F->empty()) {
3587       F->setCallingConv(getRuntimeCC());
3588 
3589       // In Windows Itanium environments, try to mark runtime functions
3590       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3591       // will link their standard library statically or dynamically. Marking
3592       // functions imported when they are not imported can cause linker errors
3593       // and warnings.
3594       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3595           !getCodeGenOpts().LTOVisibilityPublicStd) {
3596         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3597         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3598           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3599           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3600         }
3601       }
3602       setDSOLocal(F);
3603     }
3604   }
3605 
3606   return {FTy, C};
3607 }
3608 
3609 /// isTypeConstant - Determine whether an object of this type can be emitted
3610 /// as a constant.
3611 ///
3612 /// If ExcludeCtor is true, the duration when the object's constructor runs
3613 /// will not be considered. The caller will need to verify that the object is
3614 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)3615 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3616   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3617     return false;
3618 
3619   if (Context.getLangOpts().CPlusPlus) {
3620     if (const CXXRecordDecl *Record
3621           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3622       return ExcludeCtor && !Record->hasMutableFields() &&
3623              Record->hasTrivialDestructor();
3624   }
3625 
3626   return true;
3627 }
3628 
3629 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3630 /// create and return an llvm GlobalVariable with the specified type.  If there
3631 /// is something in the module with the specified name, return it potentially
3632 /// bitcasted to the right type.
3633 ///
3634 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3635 /// to set the attributes on the global when it is first created.
3636 ///
3637 /// If IsForDefinition is true, it is guaranteed that an actual global with
3638 /// type Ty will be returned, not conversion of a variable with the same
3639 /// mangled name but some other type.
3640 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::PointerType * Ty,const VarDecl * D,ForDefinition_t IsForDefinition)3641 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3642                                      llvm::PointerType *Ty,
3643                                      const VarDecl *D,
3644                                      ForDefinition_t IsForDefinition) {
3645   // Lookup the entry, lazily creating it if necessary.
3646   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3647   if (Entry) {
3648     if (WeakRefReferences.erase(Entry)) {
3649       if (D && !D->hasAttr<WeakAttr>())
3650         Entry->setLinkage(llvm::Function::ExternalLinkage);
3651     }
3652 
3653     // Handle dropped DLL attributes.
3654     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3655       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3656 
3657     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3658       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3659 
3660     if (Entry->getType() == Ty)
3661       return Entry;
3662 
3663     // If there are two attempts to define the same mangled name, issue an
3664     // error.
3665     if (IsForDefinition && !Entry->isDeclaration()) {
3666       GlobalDecl OtherGD;
3667       const VarDecl *OtherD;
3668 
3669       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3670       // to make sure that we issue an error only once.
3671       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3672           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3673           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3674           OtherD->hasInit() &&
3675           DiagnosedConflictingDefinitions.insert(D).second) {
3676         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3677             << MangledName;
3678         getDiags().Report(OtherGD.getDecl()->getLocation(),
3679                           diag::note_previous_definition);
3680       }
3681     }
3682 
3683     // Make sure the result is of the correct type.
3684     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3685       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3686 
3687     // (If global is requested for a definition, we always need to create a new
3688     // global, not just return a bitcast.)
3689     if (!IsForDefinition)
3690       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3691   }
3692 
3693   auto AddrSpace = GetGlobalVarAddressSpace(D);
3694   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3695 
3696   auto *GV = new llvm::GlobalVariable(
3697       getModule(), Ty->getElementType(), false,
3698       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3699       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3700 
3701   // If we already created a global with the same mangled name (but different
3702   // type) before, take its name and remove it from its parent.
3703   if (Entry) {
3704     GV->takeName(Entry);
3705 
3706     if (!Entry->use_empty()) {
3707       llvm::Constant *NewPtrForOldDecl =
3708           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3709       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3710     }
3711 
3712     Entry->eraseFromParent();
3713   }
3714 
3715   // This is the first use or definition of a mangled name.  If there is a
3716   // deferred decl with this name, remember that we need to emit it at the end
3717   // of the file.
3718   auto DDI = DeferredDecls.find(MangledName);
3719   if (DDI != DeferredDecls.end()) {
3720     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3721     // list, and remove it from DeferredDecls (since we don't need it anymore).
3722     addDeferredDeclToEmit(DDI->second);
3723     DeferredDecls.erase(DDI);
3724   }
3725 
3726   // Handle things which are present even on external declarations.
3727   if (D) {
3728     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3729       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3730 
3731     // FIXME: This code is overly simple and should be merged with other global
3732     // handling.
3733     GV->setConstant(isTypeConstant(D->getType(), false));
3734 
3735     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3736 
3737     setLinkageForGV(GV, D);
3738 
3739     if (D->getTLSKind()) {
3740       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3741         CXXThreadLocals.push_back(D);
3742       setTLSMode(GV, *D);
3743     }
3744 
3745     setGVProperties(GV, D);
3746 
3747     // If required by the ABI, treat declarations of static data members with
3748     // inline initializers as definitions.
3749     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3750       EmitGlobalVarDefinition(D);
3751     }
3752 
3753     // Emit section information for extern variables.
3754     if (D->hasExternalStorage()) {
3755       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3756         GV->setSection(SA->getName());
3757     }
3758 
3759     // Handle XCore specific ABI requirements.
3760     if (getTriple().getArch() == llvm::Triple::xcore &&
3761         D->getLanguageLinkage() == CLanguageLinkage &&
3762         D->getType().isConstant(Context) &&
3763         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3764       GV->setSection(".cp.rodata");
3765 
3766     // Check if we a have a const declaration with an initializer, we may be
3767     // able to emit it as available_externally to expose it's value to the
3768     // optimizer.
3769     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3770         D->getType().isConstQualified() && !GV->hasInitializer() &&
3771         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3772       const auto *Record =
3773           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3774       bool HasMutableFields = Record && Record->hasMutableFields();
3775       if (!HasMutableFields) {
3776         const VarDecl *InitDecl;
3777         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3778         if (InitExpr) {
3779           ConstantEmitter emitter(*this);
3780           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3781           if (Init) {
3782             auto *InitType = Init->getType();
3783             if (GV->getValueType() != InitType) {
3784               // The type of the initializer does not match the definition.
3785               // This happens when an initializer has a different type from
3786               // the type of the global (because of padding at the end of a
3787               // structure for instance).
3788               GV->setName(StringRef());
3789               // Make a new global with the correct type, this is now guaranteed
3790               // to work.
3791               auto *NewGV = cast<llvm::GlobalVariable>(
3792                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3793                       ->stripPointerCasts());
3794 
3795               // Erase the old global, since it is no longer used.
3796               GV->eraseFromParent();
3797               GV = NewGV;
3798             } else {
3799               GV->setInitializer(Init);
3800               GV->setConstant(true);
3801               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3802             }
3803             emitter.finalize(GV);
3804           }
3805         }
3806       }
3807     }
3808   }
3809 
3810   if (GV->isDeclaration())
3811     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3812 
3813   LangAS ExpectedAS =
3814       D ? D->getType().getAddressSpace()
3815         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3816   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3817          Ty->getPointerAddressSpace());
3818   if (AddrSpace != ExpectedAS)
3819     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3820                                                        ExpectedAS, Ty);
3821 
3822   return GV;
3823 }
3824 
3825 llvm::Constant *
GetAddrOfGlobal(GlobalDecl GD,ForDefinition_t IsForDefinition)3826 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3827   const Decl *D = GD.getDecl();
3828 
3829   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3830     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3831                                 /*DontDefer=*/false, IsForDefinition);
3832 
3833   if (isa<CXXMethodDecl>(D)) {
3834     auto FInfo =
3835         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3836     auto Ty = getTypes().GetFunctionType(*FInfo);
3837     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3838                              IsForDefinition);
3839   }
3840 
3841   if (isa<FunctionDecl>(D)) {
3842     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3843     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3844     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3845                              IsForDefinition);
3846   }
3847 
3848   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3849 }
3850 
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage,unsigned Alignment)3851 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3852     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3853     unsigned Alignment) {
3854   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3855   llvm::GlobalVariable *OldGV = nullptr;
3856 
3857   if (GV) {
3858     // Check if the variable has the right type.
3859     if (GV->getValueType() == Ty)
3860       return GV;
3861 
3862     // Because C++ name mangling, the only way we can end up with an already
3863     // existing global with the same name is if it has been declared extern "C".
3864     assert(GV->isDeclaration() && "Declaration has wrong type!");
3865     OldGV = GV;
3866   }
3867 
3868   // Create a new variable.
3869   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3870                                 Linkage, nullptr, Name);
3871 
3872   if (OldGV) {
3873     // Replace occurrences of the old variable if needed.
3874     GV->takeName(OldGV);
3875 
3876     if (!OldGV->use_empty()) {
3877       llvm::Constant *NewPtrForOldDecl =
3878       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3879       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3880     }
3881 
3882     OldGV->eraseFromParent();
3883   }
3884 
3885   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3886       !GV->hasAvailableExternallyLinkage())
3887     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3888 
3889   GV->setAlignment(llvm::MaybeAlign(Alignment));
3890 
3891   return GV;
3892 }
3893 
3894 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3895 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3896 /// then it will be created with the specified type instead of whatever the
3897 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3898 /// that an actual global with type Ty will be returned, not conversion of a
3899 /// variable with the same mangled name but some other type.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty,ForDefinition_t IsForDefinition)3900 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3901                                                   llvm::Type *Ty,
3902                                            ForDefinition_t IsForDefinition) {
3903   assert(D->hasGlobalStorage() && "Not a global variable");
3904   QualType ASTTy = D->getType();
3905   if (!Ty)
3906     Ty = getTypes().ConvertTypeForMem(ASTTy);
3907 
3908   llvm::PointerType *PTy =
3909     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3910 
3911   StringRef MangledName = getMangledName(D);
3912   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3913 }
3914 
3915 /// CreateRuntimeVariable - Create a new runtime global variable with the
3916 /// specified type and name.
3917 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)3918 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3919                                      StringRef Name) {
3920   auto PtrTy =
3921       getContext().getLangOpts().OpenCL
3922           ? llvm::PointerType::get(
3923                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3924           : llvm::PointerType::getUnqual(Ty);
3925   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3926   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3927   return Ret;
3928 }
3929 
EmitTentativeDefinition(const VarDecl * D)3930 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3931   assert(!D->getInit() && "Cannot emit definite definitions here!");
3932 
3933   StringRef MangledName = getMangledName(D);
3934   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3935 
3936   // We already have a definition, not declaration, with the same mangled name.
3937   // Emitting of declaration is not required (and actually overwrites emitted
3938   // definition).
3939   if (GV && !GV->isDeclaration())
3940     return;
3941 
3942   // If we have not seen a reference to this variable yet, place it into the
3943   // deferred declarations table to be emitted if needed later.
3944   if (!MustBeEmitted(D) && !GV) {
3945       DeferredDecls[MangledName] = D;
3946       return;
3947   }
3948 
3949   // The tentative definition is the only definition.
3950   EmitGlobalVarDefinition(D);
3951 }
3952 
EmitExternalDeclaration(const VarDecl * D)3953 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3954   EmitExternalVarDeclaration(D);
3955 }
3956 
GetTargetTypeStoreSize(llvm::Type * Ty) const3957 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3958   return Context.toCharUnitsFromBits(
3959       getDataLayout().getTypeStoreSizeInBits(Ty));
3960 }
3961 
GetGlobalVarAddressSpace(const VarDecl * D)3962 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3963   LangAS AddrSpace = LangAS::Default;
3964   if (LangOpts.OpenCL) {
3965     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3966     assert(AddrSpace == LangAS::opencl_global ||
3967            AddrSpace == LangAS::opencl_global_device ||
3968            AddrSpace == LangAS::opencl_global_host ||
3969            AddrSpace == LangAS::opencl_constant ||
3970            AddrSpace == LangAS::opencl_local ||
3971            AddrSpace >= LangAS::FirstTargetAddressSpace);
3972     return AddrSpace;
3973   }
3974 
3975   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3976     if (D && D->hasAttr<CUDAConstantAttr>())
3977       return LangAS::cuda_constant;
3978     else if (D && D->hasAttr<CUDASharedAttr>())
3979       return LangAS::cuda_shared;
3980     else if (D && D->hasAttr<CUDADeviceAttr>())
3981       return LangAS::cuda_device;
3982     else if (D && D->getType().isConstQualified())
3983       return LangAS::cuda_constant;
3984     else
3985       return LangAS::cuda_device;
3986   }
3987 
3988   if (LangOpts.OpenMP) {
3989     LangAS AS;
3990     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3991       return AS;
3992   }
3993   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3994 }
3995 
getStringLiteralAddressSpace() const3996 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3997   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3998   if (LangOpts.OpenCL)
3999     return LangAS::opencl_constant;
4000   if (auto AS = getTarget().getConstantAddressSpace())
4001     return AS.getValue();
4002   return LangAS::Default;
4003 }
4004 
4005 // In address space agnostic languages, string literals are in default address
4006 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4007 // emitted in constant address space in LLVM IR. To be consistent with other
4008 // parts of AST, string literal global variables in constant address space
4009 // need to be casted to default address space before being put into address
4010 // map and referenced by other part of CodeGen.
4011 // In OpenCL, string literals are in constant address space in AST, therefore
4012 // they should not be casted to default address space.
4013 static llvm::Constant *
castStringLiteralToDefaultAddressSpace(CodeGenModule & CGM,llvm::GlobalVariable * GV)4014 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4015                                        llvm::GlobalVariable *GV) {
4016   llvm::Constant *Cast = GV;
4017   if (!CGM.getLangOpts().OpenCL) {
4018     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4019       if (AS != LangAS::Default)
4020         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4021             CGM, GV, AS.getValue(), LangAS::Default,
4022             GV->getValueType()->getPointerTo(
4023                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4024     }
4025   }
4026   return Cast;
4027 }
4028 
4029 template<typename SomeDecl>
MaybeHandleStaticInExternC(const SomeDecl * D,llvm::GlobalValue * GV)4030 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4031                                                llvm::GlobalValue *GV) {
4032   if (!getLangOpts().CPlusPlus)
4033     return;
4034 
4035   // Must have 'used' attribute, or else inline assembly can't rely on
4036   // the name existing.
4037   if (!D->template hasAttr<UsedAttr>())
4038     return;
4039 
4040   // Must have internal linkage and an ordinary name.
4041   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4042     return;
4043 
4044   // Must be in an extern "C" context. Entities declared directly within
4045   // a record are not extern "C" even if the record is in such a context.
4046   const SomeDecl *First = D->getFirstDecl();
4047   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4048     return;
4049 
4050   // OK, this is an internal linkage entity inside an extern "C" linkage
4051   // specification. Make a note of that so we can give it the "expected"
4052   // mangled name if nothing else is using that name.
4053   std::pair<StaticExternCMap::iterator, bool> R =
4054       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4055 
4056   // If we have multiple internal linkage entities with the same name
4057   // in extern "C" regions, none of them gets that name.
4058   if (!R.second)
4059     R.first->second = nullptr;
4060 }
4061 
shouldBeInCOMDAT(CodeGenModule & CGM,const Decl & D)4062 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4063   if (!CGM.supportsCOMDAT())
4064     return false;
4065 
4066   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4067   // them being "merged" by the COMDAT Folding linker optimization.
4068   if (D.hasAttr<CUDAGlobalAttr>())
4069     return false;
4070 
4071   if (D.hasAttr<SelectAnyAttr>())
4072     return true;
4073 
4074   GVALinkage Linkage;
4075   if (auto *VD = dyn_cast<VarDecl>(&D))
4076     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4077   else
4078     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4079 
4080   switch (Linkage) {
4081   case GVA_Internal:
4082   case GVA_AvailableExternally:
4083   case GVA_StrongExternal:
4084     return false;
4085   case GVA_DiscardableODR:
4086   case GVA_StrongODR:
4087     return true;
4088   }
4089   llvm_unreachable("No such linkage");
4090 }
4091 
maybeSetTrivialComdat(const Decl & D,llvm::GlobalObject & GO)4092 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4093                                           llvm::GlobalObject &GO) {
4094   if (!shouldBeInCOMDAT(*this, D))
4095     return;
4096   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4097 }
4098 
4099 /// Pass IsTentative as true if you want to create a tentative definition.
EmitGlobalVarDefinition(const VarDecl * D,bool IsTentative)4100 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4101                                             bool IsTentative) {
4102   // OpenCL global variables of sampler type are translated to function calls,
4103   // therefore no need to be translated.
4104   QualType ASTTy = D->getType();
4105   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4106     return;
4107 
4108   // If this is OpenMP device, check if it is legal to emit this global
4109   // normally.
4110   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4111       OpenMPRuntime->emitTargetGlobalVariable(D))
4112     return;
4113 
4114   llvm::Constant *Init = nullptr;
4115   bool NeedsGlobalCtor = false;
4116   bool NeedsGlobalDtor =
4117       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4118 
4119   const VarDecl *InitDecl;
4120   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4121 
4122   Optional<ConstantEmitter> emitter;
4123 
4124   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4125   // as part of their declaration."  Sema has already checked for
4126   // error cases, so we just need to set Init to UndefValue.
4127   bool IsCUDASharedVar =
4128       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4129   // Shadows of initialized device-side global variables are also left
4130   // undefined.
4131   bool IsCUDAShadowVar =
4132       !getLangOpts().CUDAIsDevice &&
4133       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4134        D->hasAttr<CUDASharedAttr>());
4135   bool IsCUDADeviceShadowVar =
4136       getLangOpts().CUDAIsDevice &&
4137       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4138        D->getType()->isCUDADeviceBuiltinTextureType());
4139   // HIP pinned shadow of initialized host-side global variables are also
4140   // left undefined.
4141   if (getLangOpts().CUDA &&
4142       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4143     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4144   else if (D->hasAttr<LoaderUninitializedAttr>())
4145     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4146   else if (!InitExpr) {
4147     // This is a tentative definition; tentative definitions are
4148     // implicitly initialized with { 0 }.
4149     //
4150     // Note that tentative definitions are only emitted at the end of
4151     // a translation unit, so they should never have incomplete
4152     // type. In addition, EmitTentativeDefinition makes sure that we
4153     // never attempt to emit a tentative definition if a real one
4154     // exists. A use may still exists, however, so we still may need
4155     // to do a RAUW.
4156     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4157     Init = EmitNullConstant(D->getType());
4158   } else {
4159     initializedGlobalDecl = GlobalDecl(D);
4160     emitter.emplace(*this);
4161     Init = emitter->tryEmitForInitializer(*InitDecl);
4162 
4163     if (!Init) {
4164       QualType T = InitExpr->getType();
4165       if (D->getType()->isReferenceType())
4166         T = D->getType();
4167 
4168       if (getLangOpts().CPlusPlus) {
4169         Init = EmitNullConstant(T);
4170         NeedsGlobalCtor = true;
4171       } else {
4172         ErrorUnsupported(D, "static initializer");
4173         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4174       }
4175     } else {
4176       // We don't need an initializer, so remove the entry for the delayed
4177       // initializer position (just in case this entry was delayed) if we
4178       // also don't need to register a destructor.
4179       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4180         DelayedCXXInitPosition.erase(D);
4181     }
4182   }
4183 
4184   llvm::Type* InitType = Init->getType();
4185   llvm::Constant *Entry =
4186       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4187 
4188   // Strip off pointer casts if we got them.
4189   Entry = Entry->stripPointerCasts();
4190 
4191   // Entry is now either a Function or GlobalVariable.
4192   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4193 
4194   // We have a definition after a declaration with the wrong type.
4195   // We must make a new GlobalVariable* and update everything that used OldGV
4196   // (a declaration or tentative definition) with the new GlobalVariable*
4197   // (which will be a definition).
4198   //
4199   // This happens if there is a prototype for a global (e.g.
4200   // "extern int x[];") and then a definition of a different type (e.g.
4201   // "int x[10];"). This also happens when an initializer has a different type
4202   // from the type of the global (this happens with unions).
4203   if (!GV || GV->getValueType() != InitType ||
4204       GV->getType()->getAddressSpace() !=
4205           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4206 
4207     // Move the old entry aside so that we'll create a new one.
4208     Entry->setName(StringRef());
4209 
4210     // Make a new global with the correct type, this is now guaranteed to work.
4211     GV = cast<llvm::GlobalVariable>(
4212         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4213             ->stripPointerCasts());
4214 
4215     // Replace all uses of the old global with the new global
4216     llvm::Constant *NewPtrForOldDecl =
4217         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4218     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4219 
4220     // Erase the old global, since it is no longer used.
4221     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4222   }
4223 
4224   MaybeHandleStaticInExternC(D, GV);
4225 
4226   if (D->hasAttr<AnnotateAttr>())
4227     AddGlobalAnnotations(D, GV);
4228 
4229   // Set the llvm linkage type as appropriate.
4230   llvm::GlobalValue::LinkageTypes Linkage =
4231       getLLVMLinkageVarDefinition(D, GV->isConstant());
4232 
4233   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4234   // the device. [...]"
4235   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4236   // __device__, declares a variable that: [...]
4237   // Is accessible from all the threads within the grid and from the host
4238   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4239   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4240   if (GV && LangOpts.CUDA) {
4241     if (LangOpts.CUDAIsDevice) {
4242       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4243           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4244         GV->setExternallyInitialized(true);
4245     } else {
4246       // Host-side shadows of external declarations of device-side
4247       // global variables become internal definitions. These have to
4248       // be internal in order to prevent name conflicts with global
4249       // host variables with the same name in a different TUs.
4250       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4251         Linkage = llvm::GlobalValue::InternalLinkage;
4252         // Shadow variables and their properties must be registered with CUDA
4253         // runtime. Skip Extern global variables, which will be registered in
4254         // the TU where they are defined.
4255         //
4256         // Don't register a C++17 inline variable. The local symbol can be
4257         // discarded and referencing a discarded local symbol from outside the
4258         // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4259         // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4260         if (!D->hasExternalStorage() && !D->isInline())
4261           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4262                                              D->hasAttr<CUDAConstantAttr>());
4263       } else if (D->hasAttr<CUDASharedAttr>()) {
4264         // __shared__ variables are odd. Shadows do get created, but
4265         // they are not registered with the CUDA runtime, so they
4266         // can't really be used to access their device-side
4267         // counterparts. It's not clear yet whether it's nvcc's bug or
4268         // a feature, but we've got to do the same for compatibility.
4269         Linkage = llvm::GlobalValue::InternalLinkage;
4270       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4271                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4272         // Builtin surfaces and textures and their template arguments are
4273         // also registered with CUDA runtime.
4274         Linkage = llvm::GlobalValue::InternalLinkage;
4275         const ClassTemplateSpecializationDecl *TD =
4276             cast<ClassTemplateSpecializationDecl>(
4277                 D->getType()->getAs<RecordType>()->getDecl());
4278         const TemplateArgumentList &Args = TD->getTemplateArgs();
4279         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4280           assert(Args.size() == 2 &&
4281                  "Unexpected number of template arguments of CUDA device "
4282                  "builtin surface type.");
4283           auto SurfType = Args[1].getAsIntegral();
4284           if (!D->hasExternalStorage())
4285             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4286                                                 SurfType.getSExtValue());
4287         } else {
4288           assert(Args.size() == 3 &&
4289                  "Unexpected number of template arguments of CUDA device "
4290                  "builtin texture type.");
4291           auto TexType = Args[1].getAsIntegral();
4292           auto Normalized = Args[2].getAsIntegral();
4293           if (!D->hasExternalStorage())
4294             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4295                                                TexType.getSExtValue(),
4296                                                Normalized.getZExtValue());
4297         }
4298       }
4299     }
4300   }
4301 
4302   GV->setInitializer(Init);
4303   if (emitter)
4304     emitter->finalize(GV);
4305 
4306   // If it is safe to mark the global 'constant', do so now.
4307   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4308                   isTypeConstant(D->getType(), true));
4309 
4310   // If it is in a read-only section, mark it 'constant'.
4311   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4312     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4313     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4314       GV->setConstant(true);
4315   }
4316 
4317   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4318 
4319   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4320   // function is only defined alongside the variable, not also alongside
4321   // callers. Normally, all accesses to a thread_local go through the
4322   // thread-wrapper in order to ensure initialization has occurred, underlying
4323   // variable will never be used other than the thread-wrapper, so it can be
4324   // converted to internal linkage.
4325   //
4326   // However, if the variable has the 'constinit' attribute, it _can_ be
4327   // referenced directly, without calling the thread-wrapper, so the linkage
4328   // must not be changed.
4329   //
4330   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4331   // weak or linkonce, the de-duplication semantics are important to preserve,
4332   // so we don't change the linkage.
4333   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4334       Linkage == llvm::GlobalValue::ExternalLinkage &&
4335       Context.getTargetInfo().getTriple().isOSDarwin() &&
4336       !D->hasAttr<ConstInitAttr>())
4337     Linkage = llvm::GlobalValue::InternalLinkage;
4338 
4339   GV->setLinkage(Linkage);
4340   if (D->hasAttr<DLLImportAttr>())
4341     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4342   else if (D->hasAttr<DLLExportAttr>())
4343     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4344   else
4345     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4346 
4347   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4348     // common vars aren't constant even if declared const.
4349     GV->setConstant(false);
4350     // Tentative definition of global variables may be initialized with
4351     // non-zero null pointers. In this case they should have weak linkage
4352     // since common linkage must have zero initializer and must not have
4353     // explicit section therefore cannot have non-zero initial value.
4354     if (!GV->getInitializer()->isNullValue())
4355       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4356   }
4357 
4358   setNonAliasAttributes(D, GV);
4359 
4360   if (D->getTLSKind() && !GV->isThreadLocal()) {
4361     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4362       CXXThreadLocals.push_back(D);
4363     setTLSMode(GV, *D);
4364   }
4365 
4366   maybeSetTrivialComdat(*D, *GV);
4367 
4368   // Emit the initializer function if necessary.
4369   if (NeedsGlobalCtor || NeedsGlobalDtor)
4370     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4371 
4372   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4373 
4374   // Emit global variable debug information.
4375   if (CGDebugInfo *DI = getModuleDebugInfo())
4376     if (getCodeGenOpts().hasReducedDebugInfo())
4377       DI->EmitGlobalVariable(GV, D);
4378 }
4379 
EmitExternalVarDeclaration(const VarDecl * D)4380 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4381   if (CGDebugInfo *DI = getModuleDebugInfo())
4382     if (getCodeGenOpts().hasReducedDebugInfo()) {
4383       QualType ASTTy = D->getType();
4384       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4385       llvm::PointerType *PTy =
4386           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4387       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4388       DI->EmitExternalVariable(
4389           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4390     }
4391 }
4392 
isVarDeclStrongDefinition(const ASTContext & Context,CodeGenModule & CGM,const VarDecl * D,bool NoCommon)4393 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4394                                       CodeGenModule &CGM, const VarDecl *D,
4395                                       bool NoCommon) {
4396   // Don't give variables common linkage if -fno-common was specified unless it
4397   // was overridden by a NoCommon attribute.
4398   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4399     return true;
4400 
4401   // C11 6.9.2/2:
4402   //   A declaration of an identifier for an object that has file scope without
4403   //   an initializer, and without a storage-class specifier or with the
4404   //   storage-class specifier static, constitutes a tentative definition.
4405   if (D->getInit() || D->hasExternalStorage())
4406     return true;
4407 
4408   // A variable cannot be both common and exist in a section.
4409   if (D->hasAttr<SectionAttr>())
4410     return true;
4411 
4412   // A variable cannot be both common and exist in a section.
4413   // We don't try to determine which is the right section in the front-end.
4414   // If no specialized section name is applicable, it will resort to default.
4415   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4416       D->hasAttr<PragmaClangDataSectionAttr>() ||
4417       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4418       D->hasAttr<PragmaClangRodataSectionAttr>())
4419     return true;
4420 
4421   // Thread local vars aren't considered common linkage.
4422   if (D->getTLSKind())
4423     return true;
4424 
4425   // Tentative definitions marked with WeakImportAttr are true definitions.
4426   if (D->hasAttr<WeakImportAttr>())
4427     return true;
4428 
4429   // A variable cannot be both common and exist in a comdat.
4430   if (shouldBeInCOMDAT(CGM, *D))
4431     return true;
4432 
4433   // Declarations with a required alignment do not have common linkage in MSVC
4434   // mode.
4435   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4436     if (D->hasAttr<AlignedAttr>())
4437       return true;
4438     QualType VarType = D->getType();
4439     if (Context.isAlignmentRequired(VarType))
4440       return true;
4441 
4442     if (const auto *RT = VarType->getAs<RecordType>()) {
4443       const RecordDecl *RD = RT->getDecl();
4444       for (const FieldDecl *FD : RD->fields()) {
4445         if (FD->isBitField())
4446           continue;
4447         if (FD->hasAttr<AlignedAttr>())
4448           return true;
4449         if (Context.isAlignmentRequired(FD->getType()))
4450           return true;
4451       }
4452     }
4453   }
4454 
4455   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4456   // common symbols, so symbols with greater alignment requirements cannot be
4457   // common.
4458   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4459   // alignments for common symbols via the aligncomm directive, so this
4460   // restriction only applies to MSVC environments.
4461   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4462       Context.getTypeAlignIfKnown(D->getType()) >
4463           Context.toBits(CharUnits::fromQuantity(32)))
4464     return true;
4465 
4466   return false;
4467 }
4468 
getLLVMLinkageForDeclarator(const DeclaratorDecl * D,GVALinkage Linkage,bool IsConstantVariable)4469 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4470     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4471   if (Linkage == GVA_Internal)
4472     return llvm::Function::InternalLinkage;
4473 
4474   if (D->hasAttr<WeakAttr>()) {
4475     if (IsConstantVariable)
4476       return llvm::GlobalVariable::WeakODRLinkage;
4477     else
4478       return llvm::GlobalVariable::WeakAnyLinkage;
4479   }
4480 
4481   if (const auto *FD = D->getAsFunction())
4482     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4483       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4484 
4485   // We are guaranteed to have a strong definition somewhere else,
4486   // so we can use available_externally linkage.
4487   if (Linkage == GVA_AvailableExternally)
4488     return llvm::GlobalValue::AvailableExternallyLinkage;
4489 
4490   // Note that Apple's kernel linker doesn't support symbol
4491   // coalescing, so we need to avoid linkonce and weak linkages there.
4492   // Normally, this means we just map to internal, but for explicit
4493   // instantiations we'll map to external.
4494 
4495   // In C++, the compiler has to emit a definition in every translation unit
4496   // that references the function.  We should use linkonce_odr because
4497   // a) if all references in this translation unit are optimized away, we
4498   // don't need to codegen it.  b) if the function persists, it needs to be
4499   // merged with other definitions. c) C++ has the ODR, so we know the
4500   // definition is dependable.
4501   if (Linkage == GVA_DiscardableODR)
4502     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4503                                             : llvm::Function::InternalLinkage;
4504 
4505   // An explicit instantiation of a template has weak linkage, since
4506   // explicit instantiations can occur in multiple translation units
4507   // and must all be equivalent. However, we are not allowed to
4508   // throw away these explicit instantiations.
4509   //
4510   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4511   // so say that CUDA templates are either external (for kernels) or internal.
4512   // This lets llvm perform aggressive inter-procedural optimizations. For
4513   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4514   // therefore we need to follow the normal linkage paradigm.
4515   if (Linkage == GVA_StrongODR) {
4516     if (getLangOpts().AppleKext)
4517       return llvm::Function::ExternalLinkage;
4518     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4519         !getLangOpts().GPURelocatableDeviceCode)
4520       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4521                                           : llvm::Function::InternalLinkage;
4522     return llvm::Function::WeakODRLinkage;
4523   }
4524 
4525   // C++ doesn't have tentative definitions and thus cannot have common
4526   // linkage.
4527   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4528       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4529                                  CodeGenOpts.NoCommon))
4530     return llvm::GlobalVariable::CommonLinkage;
4531 
4532   // selectany symbols are externally visible, so use weak instead of
4533   // linkonce.  MSVC optimizes away references to const selectany globals, so
4534   // all definitions should be the same and ODR linkage should be used.
4535   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4536   if (D->hasAttr<SelectAnyAttr>())
4537     return llvm::GlobalVariable::WeakODRLinkage;
4538 
4539   // Otherwise, we have strong external linkage.
4540   assert(Linkage == GVA_StrongExternal);
4541   return llvm::GlobalVariable::ExternalLinkage;
4542 }
4543 
getLLVMLinkageVarDefinition(const VarDecl * VD,bool IsConstant)4544 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4545     const VarDecl *VD, bool IsConstant) {
4546   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4547   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4548 }
4549 
4550 /// Replace the uses of a function that was declared with a non-proto type.
4551 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)4552 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4553                                           llvm::Function *newFn) {
4554   // Fast path.
4555   if (old->use_empty()) return;
4556 
4557   llvm::Type *newRetTy = newFn->getReturnType();
4558   SmallVector<llvm::Value*, 4> newArgs;
4559   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4560 
4561   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4562          ui != ue; ) {
4563     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4564     llvm::User *user = use->getUser();
4565 
4566     // Recognize and replace uses of bitcasts.  Most calls to
4567     // unprototyped functions will use bitcasts.
4568     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4569       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4570         replaceUsesOfNonProtoConstant(bitcast, newFn);
4571       continue;
4572     }
4573 
4574     // Recognize calls to the function.
4575     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4576     if (!callSite) continue;
4577     if (!callSite->isCallee(&*use))
4578       continue;
4579 
4580     // If the return types don't match exactly, then we can't
4581     // transform this call unless it's dead.
4582     if (callSite->getType() != newRetTy && !callSite->use_empty())
4583       continue;
4584 
4585     // Get the call site's attribute list.
4586     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4587     llvm::AttributeList oldAttrs = callSite->getAttributes();
4588 
4589     // If the function was passed too few arguments, don't transform.
4590     unsigned newNumArgs = newFn->arg_size();
4591     if (callSite->arg_size() < newNumArgs)
4592       continue;
4593 
4594     // If extra arguments were passed, we silently drop them.
4595     // If any of the types mismatch, we don't transform.
4596     unsigned argNo = 0;
4597     bool dontTransform = false;
4598     for (llvm::Argument &A : newFn->args()) {
4599       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4600         dontTransform = true;
4601         break;
4602       }
4603 
4604       // Add any parameter attributes.
4605       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4606       argNo++;
4607     }
4608     if (dontTransform)
4609       continue;
4610 
4611     // Okay, we can transform this.  Create the new call instruction and copy
4612     // over the required information.
4613     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4614 
4615     // Copy over any operand bundles.
4616     callSite->getOperandBundlesAsDefs(newBundles);
4617 
4618     llvm::CallBase *newCall;
4619     if (dyn_cast<llvm::CallInst>(callSite)) {
4620       newCall =
4621           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4622     } else {
4623       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4624       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4625                                          oldInvoke->getUnwindDest(), newArgs,
4626                                          newBundles, "", callSite);
4627     }
4628     newArgs.clear(); // for the next iteration
4629 
4630     if (!newCall->getType()->isVoidTy())
4631       newCall->takeName(callSite);
4632     newCall->setAttributes(llvm::AttributeList::get(
4633         newFn->getContext(), oldAttrs.getFnAttributes(),
4634         oldAttrs.getRetAttributes(), newArgAttrs));
4635     newCall->setCallingConv(callSite->getCallingConv());
4636 
4637     // Finally, remove the old call, replacing any uses with the new one.
4638     if (!callSite->use_empty())
4639       callSite->replaceAllUsesWith(newCall);
4640 
4641     // Copy debug location attached to CI.
4642     if (callSite->getDebugLoc())
4643       newCall->setDebugLoc(callSite->getDebugLoc());
4644 
4645     callSite->eraseFromParent();
4646   }
4647 }
4648 
4649 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4650 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4651 /// existing call uses of the old function in the module, this adjusts them to
4652 /// call the new function directly.
4653 ///
4654 /// This is not just a cleanup: the always_inline pass requires direct calls to
4655 /// functions to be able to inline them.  If there is a bitcast in the way, it
4656 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4657 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)4658 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4659                                                       llvm::Function *NewFn) {
4660   // If we're redefining a global as a function, don't transform it.
4661   if (!isa<llvm::Function>(Old)) return;
4662 
4663   replaceUsesOfNonProtoConstant(Old, NewFn);
4664 }
4665 
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)4666 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4667   auto DK = VD->isThisDeclarationADefinition();
4668   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4669     return;
4670 
4671   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4672   // If we have a definition, this might be a deferred decl. If the
4673   // instantiation is explicit, make sure we emit it at the end.
4674   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4675     GetAddrOfGlobalVar(VD);
4676 
4677   EmitTopLevelDecl(VD);
4678 }
4679 
EmitGlobalFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)4680 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4681                                                  llvm::GlobalValue *GV) {
4682   const auto *D = cast<FunctionDecl>(GD.getDecl());
4683 
4684   // Compute the function info and LLVM type.
4685   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4686   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4687 
4688   // Get or create the prototype for the function.
4689   if (!GV || (GV->getValueType() != Ty))
4690     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4691                                                    /*DontDefer=*/true,
4692                                                    ForDefinition));
4693 
4694   // Already emitted.
4695   if (!GV->isDeclaration())
4696     return;
4697 
4698   // We need to set linkage and visibility on the function before
4699   // generating code for it because various parts of IR generation
4700   // want to propagate this information down (e.g. to local static
4701   // declarations).
4702   auto *Fn = cast<llvm::Function>(GV);
4703   setFunctionLinkage(GD, Fn);
4704 
4705   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4706   setGVProperties(Fn, GD);
4707 
4708   MaybeHandleStaticInExternC(D, Fn);
4709 
4710   maybeSetTrivialComdat(*D, *Fn);
4711 
4712   // Set CodeGen attributes that represent floating point environment.
4713   setLLVMFunctionFEnvAttributes(D, Fn);
4714 
4715   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4716 
4717   setNonAliasAttributes(GD, Fn);
4718   SetLLVMFunctionAttributesForDefinition(D, Fn);
4719 
4720   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4721     AddGlobalCtor(Fn, CA->getPriority());
4722   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4723     AddGlobalDtor(Fn, DA->getPriority(), true);
4724   if (D->hasAttr<AnnotateAttr>())
4725     AddGlobalAnnotations(D, Fn);
4726 }
4727 
EmitAliasDefinition(GlobalDecl GD)4728 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4729   const auto *D = cast<ValueDecl>(GD.getDecl());
4730   const AliasAttr *AA = D->getAttr<AliasAttr>();
4731   assert(AA && "Not an alias?");
4732 
4733   StringRef MangledName = getMangledName(GD);
4734 
4735   if (AA->getAliasee() == MangledName) {
4736     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4737     return;
4738   }
4739 
4740   // If there is a definition in the module, then it wins over the alias.
4741   // This is dubious, but allow it to be safe.  Just ignore the alias.
4742   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4743   if (Entry && !Entry->isDeclaration())
4744     return;
4745 
4746   Aliases.push_back(GD);
4747 
4748   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4749 
4750   // Create a reference to the named value.  This ensures that it is emitted
4751   // if a deferred decl.
4752   llvm::Constant *Aliasee;
4753   llvm::GlobalValue::LinkageTypes LT;
4754   if (isa<llvm::FunctionType>(DeclTy)) {
4755     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4756                                       /*ForVTable=*/false);
4757     LT = getFunctionLinkage(GD);
4758   } else {
4759     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4760                                     llvm::PointerType::getUnqual(DeclTy),
4761                                     /*D=*/nullptr);
4762     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4763       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4764     else
4765       LT = getFunctionLinkage(GD);
4766   }
4767 
4768   // Create the new alias itself, but don't set a name yet.
4769   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4770   auto *GA =
4771       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4772 
4773   if (Entry) {
4774     if (GA->getAliasee() == Entry) {
4775       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4776       return;
4777     }
4778 
4779     assert(Entry->isDeclaration());
4780 
4781     // If there is a declaration in the module, then we had an extern followed
4782     // by the alias, as in:
4783     //   extern int test6();
4784     //   ...
4785     //   int test6() __attribute__((alias("test7")));
4786     //
4787     // Remove it and replace uses of it with the alias.
4788     GA->takeName(Entry);
4789 
4790     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4791                                                           Entry->getType()));
4792     Entry->eraseFromParent();
4793   } else {
4794     GA->setName(MangledName);
4795   }
4796 
4797   // Set attributes which are particular to an alias; this is a
4798   // specialization of the attributes which may be set on a global
4799   // variable/function.
4800   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4801       D->isWeakImported()) {
4802     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4803   }
4804 
4805   if (const auto *VD = dyn_cast<VarDecl>(D))
4806     if (VD->getTLSKind())
4807       setTLSMode(GA, *VD);
4808 
4809   SetCommonAttributes(GD, GA);
4810 }
4811 
emitIFuncDefinition(GlobalDecl GD)4812 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4813   const auto *D = cast<ValueDecl>(GD.getDecl());
4814   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4815   assert(IFA && "Not an ifunc?");
4816 
4817   StringRef MangledName = getMangledName(GD);
4818 
4819   if (IFA->getResolver() == MangledName) {
4820     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4821     return;
4822   }
4823 
4824   // Report an error if some definition overrides ifunc.
4825   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4826   if (Entry && !Entry->isDeclaration()) {
4827     GlobalDecl OtherGD;
4828     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4829         DiagnosedConflictingDefinitions.insert(GD).second) {
4830       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4831           << MangledName;
4832       Diags.Report(OtherGD.getDecl()->getLocation(),
4833                    diag::note_previous_definition);
4834     }
4835     return;
4836   }
4837 
4838   Aliases.push_back(GD);
4839 
4840   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4841   llvm::Constant *Resolver =
4842       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4843                               /*ForVTable=*/false);
4844   llvm::GlobalIFunc *GIF =
4845       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4846                                 "", Resolver, &getModule());
4847   if (Entry) {
4848     if (GIF->getResolver() == Entry) {
4849       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4850       return;
4851     }
4852     assert(Entry->isDeclaration());
4853 
4854     // If there is a declaration in the module, then we had an extern followed
4855     // by the ifunc, as in:
4856     //   extern int test();
4857     //   ...
4858     //   int test() __attribute__((ifunc("resolver")));
4859     //
4860     // Remove it and replace uses of it with the ifunc.
4861     GIF->takeName(Entry);
4862 
4863     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4864                                                           Entry->getType()));
4865     Entry->eraseFromParent();
4866   } else
4867     GIF->setName(MangledName);
4868 
4869   SetCommonAttributes(GD, GIF);
4870 }
4871 
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)4872 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4873                                             ArrayRef<llvm::Type*> Tys) {
4874   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4875                                          Tys);
4876 }
4877 
4878 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)4879 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4880                          const StringLiteral *Literal, bool TargetIsLSB,
4881                          bool &IsUTF16, unsigned &StringLength) {
4882   StringRef String = Literal->getString();
4883   unsigned NumBytes = String.size();
4884 
4885   // Check for simple case.
4886   if (!Literal->containsNonAsciiOrNull()) {
4887     StringLength = NumBytes;
4888     return *Map.insert(std::make_pair(String, nullptr)).first;
4889   }
4890 
4891   // Otherwise, convert the UTF8 literals into a string of shorts.
4892   IsUTF16 = true;
4893 
4894   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4895   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4896   llvm::UTF16 *ToPtr = &ToBuf[0];
4897 
4898   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4899                                  ToPtr + NumBytes, llvm::strictConversion);
4900 
4901   // ConvertUTF8toUTF16 returns the length in ToPtr.
4902   StringLength = ToPtr - &ToBuf[0];
4903 
4904   // Add an explicit null.
4905   *ToPtr = 0;
4906   return *Map.insert(std::make_pair(
4907                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4908                                    (StringLength + 1) * 2),
4909                          nullptr)).first;
4910 }
4911 
4912 ConstantAddress
GetAddrOfConstantCFString(const StringLiteral * Literal)4913 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4914   unsigned StringLength = 0;
4915   bool isUTF16 = false;
4916   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4917       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4918                                getDataLayout().isLittleEndian(), isUTF16,
4919                                StringLength);
4920 
4921   if (auto *C = Entry.second)
4922     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4923 
4924   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4925   llvm::Constant *Zeros[] = { Zero, Zero };
4926 
4927   const ASTContext &Context = getContext();
4928   const llvm::Triple &Triple = getTriple();
4929 
4930   const auto CFRuntime = getLangOpts().CFRuntime;
4931   const bool IsSwiftABI =
4932       static_cast<unsigned>(CFRuntime) >=
4933       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4934   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4935 
4936   // If we don't already have it, get __CFConstantStringClassReference.
4937   if (!CFConstantStringClassRef) {
4938     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4939     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4940     Ty = llvm::ArrayType::get(Ty, 0);
4941 
4942     switch (CFRuntime) {
4943     default: break;
4944     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4945     case LangOptions::CoreFoundationABI::Swift5_0:
4946       CFConstantStringClassName =
4947           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4948                               : "$s10Foundation19_NSCFConstantStringCN";
4949       Ty = IntPtrTy;
4950       break;
4951     case LangOptions::CoreFoundationABI::Swift4_2:
4952       CFConstantStringClassName =
4953           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4954                               : "$S10Foundation19_NSCFConstantStringCN";
4955       Ty = IntPtrTy;
4956       break;
4957     case LangOptions::CoreFoundationABI::Swift4_1:
4958       CFConstantStringClassName =
4959           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4960                               : "__T010Foundation19_NSCFConstantStringCN";
4961       Ty = IntPtrTy;
4962       break;
4963     }
4964 
4965     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4966 
4967     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4968       llvm::GlobalValue *GV = nullptr;
4969 
4970       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4971         IdentifierInfo &II = Context.Idents.get(GV->getName());
4972         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4973         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4974 
4975         const VarDecl *VD = nullptr;
4976         for (const auto &Result : DC->lookup(&II))
4977           if ((VD = dyn_cast<VarDecl>(Result)))
4978             break;
4979 
4980         if (Triple.isOSBinFormatELF()) {
4981           if (!VD)
4982             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4983         } else {
4984           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4985           if (!VD || !VD->hasAttr<DLLExportAttr>())
4986             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4987           else
4988             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4989         }
4990 
4991         setDSOLocal(GV);
4992       }
4993     }
4994 
4995     // Decay array -> ptr
4996     CFConstantStringClassRef =
4997         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4998                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4999   }
5000 
5001   QualType CFTy = Context.getCFConstantStringType();
5002 
5003   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5004 
5005   ConstantInitBuilder Builder(*this);
5006   auto Fields = Builder.beginStruct(STy);
5007 
5008   // Class pointer.
5009   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5010 
5011   // Flags.
5012   if (IsSwiftABI) {
5013     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5014     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5015   } else {
5016     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5017   }
5018 
5019   // String pointer.
5020   llvm::Constant *C = nullptr;
5021   if (isUTF16) {
5022     auto Arr = llvm::makeArrayRef(
5023         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5024         Entry.first().size() / 2);
5025     C = llvm::ConstantDataArray::get(VMContext, Arr);
5026   } else {
5027     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5028   }
5029 
5030   // Note: -fwritable-strings doesn't make the backing store strings of
5031   // CFStrings writable. (See <rdar://problem/10657500>)
5032   auto *GV =
5033       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5034                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5035   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5036   // Don't enforce the target's minimum global alignment, since the only use
5037   // of the string is via this class initializer.
5038   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5039                             : Context.getTypeAlignInChars(Context.CharTy);
5040   GV->setAlignment(Align.getAsAlign());
5041 
5042   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5043   // Without it LLVM can merge the string with a non unnamed_addr one during
5044   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5045   if (Triple.isOSBinFormatMachO())
5046     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5047                            : "__TEXT,__cstring,cstring_literals");
5048   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5049   // the static linker to adjust permissions to read-only later on.
5050   else if (Triple.isOSBinFormatELF())
5051     GV->setSection(".rodata");
5052 
5053   // String.
5054   llvm::Constant *Str =
5055       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5056 
5057   if (isUTF16)
5058     // Cast the UTF16 string to the correct type.
5059     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5060   Fields.add(Str);
5061 
5062   // String length.
5063   llvm::IntegerType *LengthTy =
5064       llvm::IntegerType::get(getModule().getContext(),
5065                              Context.getTargetInfo().getLongWidth());
5066   if (IsSwiftABI) {
5067     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5068         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5069       LengthTy = Int32Ty;
5070     else
5071       LengthTy = IntPtrTy;
5072   }
5073   Fields.addInt(LengthTy, StringLength);
5074 
5075   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5076   // properly aligned on 32-bit platforms.
5077   CharUnits Alignment =
5078       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5079 
5080   // The struct.
5081   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5082                                     /*isConstant=*/false,
5083                                     llvm::GlobalVariable::PrivateLinkage);
5084   GV->addAttribute("objc_arc_inert");
5085   switch (Triple.getObjectFormat()) {
5086   case llvm::Triple::UnknownObjectFormat:
5087     llvm_unreachable("unknown file format");
5088   case llvm::Triple::GOFF:
5089     llvm_unreachable("GOFF is not yet implemented");
5090   case llvm::Triple::XCOFF:
5091     llvm_unreachable("XCOFF is not yet implemented");
5092   case llvm::Triple::COFF:
5093   case llvm::Triple::ELF:
5094   case llvm::Triple::Wasm:
5095     GV->setSection("cfstring");
5096     break;
5097   case llvm::Triple::MachO:
5098     GV->setSection("__DATA,__cfstring");
5099     break;
5100   }
5101   Entry.second = GV;
5102 
5103   return ConstantAddress(GV, Alignment);
5104 }
5105 
getExpressionLocationsEnabled() const5106 bool CodeGenModule::getExpressionLocationsEnabled() const {
5107   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5108 }
5109 
getObjCFastEnumerationStateType()5110 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5111   if (ObjCFastEnumerationStateType.isNull()) {
5112     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5113     D->startDefinition();
5114 
5115     QualType FieldTypes[] = {
5116       Context.UnsignedLongTy,
5117       Context.getPointerType(Context.getObjCIdType()),
5118       Context.getPointerType(Context.UnsignedLongTy),
5119       Context.getConstantArrayType(Context.UnsignedLongTy,
5120                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5121     };
5122 
5123     for (size_t i = 0; i < 4; ++i) {
5124       FieldDecl *Field = FieldDecl::Create(Context,
5125                                            D,
5126                                            SourceLocation(),
5127                                            SourceLocation(), nullptr,
5128                                            FieldTypes[i], /*TInfo=*/nullptr,
5129                                            /*BitWidth=*/nullptr,
5130                                            /*Mutable=*/false,
5131                                            ICIS_NoInit);
5132       Field->setAccess(AS_public);
5133       D->addDecl(Field);
5134     }
5135 
5136     D->completeDefinition();
5137     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5138   }
5139 
5140   return ObjCFastEnumerationStateType;
5141 }
5142 
5143 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)5144 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5145   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5146 
5147   // Don't emit it as the address of the string, emit the string data itself
5148   // as an inline array.
5149   if (E->getCharByteWidth() == 1) {
5150     SmallString<64> Str(E->getString());
5151 
5152     // Resize the string to the right size, which is indicated by its type.
5153     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5154     Str.resize(CAT->getSize().getZExtValue());
5155     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5156   }
5157 
5158   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5159   llvm::Type *ElemTy = AType->getElementType();
5160   unsigned NumElements = AType->getNumElements();
5161 
5162   // Wide strings have either 2-byte or 4-byte elements.
5163   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5164     SmallVector<uint16_t, 32> Elements;
5165     Elements.reserve(NumElements);
5166 
5167     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5168       Elements.push_back(E->getCodeUnit(i));
5169     Elements.resize(NumElements);
5170     return llvm::ConstantDataArray::get(VMContext, Elements);
5171   }
5172 
5173   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5174   SmallVector<uint32_t, 32> Elements;
5175   Elements.reserve(NumElements);
5176 
5177   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5178     Elements.push_back(E->getCodeUnit(i));
5179   Elements.resize(NumElements);
5180   return llvm::ConstantDataArray::get(VMContext, Elements);
5181 }
5182 
5183 static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant * C,llvm::GlobalValue::LinkageTypes LT,CodeGenModule & CGM,StringRef GlobalName,CharUnits Alignment)5184 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5185                       CodeGenModule &CGM, StringRef GlobalName,
5186                       CharUnits Alignment) {
5187   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5188       CGM.getStringLiteralAddressSpace());
5189 
5190   llvm::Module &M = CGM.getModule();
5191   // Create a global variable for this string
5192   auto *GV = new llvm::GlobalVariable(
5193       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5194       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5195   GV->setAlignment(Alignment.getAsAlign());
5196   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5197   if (GV->isWeakForLinker()) {
5198     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5199     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5200   }
5201   CGM.setDSOLocal(GV);
5202 
5203   return GV;
5204 }
5205 
5206 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5207 /// constant array for the given string literal.
5208 ConstantAddress
GetAddrOfConstantStringFromLiteral(const StringLiteral * S,StringRef Name)5209 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5210                                                   StringRef Name) {
5211   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5212 
5213   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5214   llvm::GlobalVariable **Entry = nullptr;
5215   if (!LangOpts.WritableStrings) {
5216     Entry = &ConstantStringMap[C];
5217     if (auto GV = *Entry) {
5218       if (Alignment.getQuantity() > GV->getAlignment())
5219         GV->setAlignment(Alignment.getAsAlign());
5220       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5221                              Alignment);
5222     }
5223   }
5224 
5225   SmallString<256> MangledNameBuffer;
5226   StringRef GlobalVariableName;
5227   llvm::GlobalValue::LinkageTypes LT;
5228 
5229   // Mangle the string literal if that's how the ABI merges duplicate strings.
5230   // Don't do it if they are writable, since we don't want writes in one TU to
5231   // affect strings in another.
5232   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5233       !LangOpts.WritableStrings) {
5234     llvm::raw_svector_ostream Out(MangledNameBuffer);
5235     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5236     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5237     GlobalVariableName = MangledNameBuffer;
5238   } else {
5239     LT = llvm::GlobalValue::PrivateLinkage;
5240     GlobalVariableName = Name;
5241   }
5242 
5243   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5244   if (Entry)
5245     *Entry = GV;
5246 
5247   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5248                                   QualType());
5249 
5250   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5251                          Alignment);
5252 }
5253 
5254 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5255 /// array for the given ObjCEncodeExpr node.
5256 ConstantAddress
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)5257 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5258   std::string Str;
5259   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5260 
5261   return GetAddrOfConstantCString(Str);
5262 }
5263 
5264 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5265 /// the literal and a terminating '\0' character.
5266 /// The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName)5267 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5268     const std::string &Str, const char *GlobalName) {
5269   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5270   CharUnits Alignment =
5271     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5272 
5273   llvm::Constant *C =
5274       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5275 
5276   // Don't share any string literals if strings aren't constant.
5277   llvm::GlobalVariable **Entry = nullptr;
5278   if (!LangOpts.WritableStrings) {
5279     Entry = &ConstantStringMap[C];
5280     if (auto GV = *Entry) {
5281       if (Alignment.getQuantity() > GV->getAlignment())
5282         GV->setAlignment(Alignment.getAsAlign());
5283       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5284                              Alignment);
5285     }
5286   }
5287 
5288   // Get the default prefix if a name wasn't specified.
5289   if (!GlobalName)
5290     GlobalName = ".str";
5291   // Create a global variable for this.
5292   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5293                                   GlobalName, Alignment);
5294   if (Entry)
5295     *Entry = GV;
5296 
5297   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5298                          Alignment);
5299 }
5300 
GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr * E,const Expr * Init)5301 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5302     const MaterializeTemporaryExpr *E, const Expr *Init) {
5303   assert((E->getStorageDuration() == SD_Static ||
5304           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5305   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5306 
5307   // If we're not materializing a subobject of the temporary, keep the
5308   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5309   QualType MaterializedType = Init->getType();
5310   if (Init == E->getSubExpr())
5311     MaterializedType = E->getType();
5312 
5313   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5314 
5315   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5316     return ConstantAddress(Slot, Align);
5317 
5318   // FIXME: If an externally-visible declaration extends multiple temporaries,
5319   // we need to give each temporary the same name in every translation unit (and
5320   // we also need to make the temporaries externally-visible).
5321   SmallString<256> Name;
5322   llvm::raw_svector_ostream Out(Name);
5323   getCXXABI().getMangleContext().mangleReferenceTemporary(
5324       VD, E->getManglingNumber(), Out);
5325 
5326   APValue *Value = nullptr;
5327   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5328     // If the initializer of the extending declaration is a constant
5329     // initializer, we should have a cached constant initializer for this
5330     // temporary. Note that this might have a different value from the value
5331     // computed by evaluating the initializer if the surrounding constant
5332     // expression modifies the temporary.
5333     Value = E->getOrCreateValue(false);
5334   }
5335 
5336   // Try evaluating it now, it might have a constant initializer.
5337   Expr::EvalResult EvalResult;
5338   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5339       !EvalResult.hasSideEffects())
5340     Value = &EvalResult.Val;
5341 
5342   LangAS AddrSpace =
5343       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5344 
5345   Optional<ConstantEmitter> emitter;
5346   llvm::Constant *InitialValue = nullptr;
5347   bool Constant = false;
5348   llvm::Type *Type;
5349   if (Value) {
5350     // The temporary has a constant initializer, use it.
5351     emitter.emplace(*this);
5352     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5353                                                MaterializedType);
5354     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5355     Type = InitialValue->getType();
5356   } else {
5357     // No initializer, the initialization will be provided when we
5358     // initialize the declaration which performed lifetime extension.
5359     Type = getTypes().ConvertTypeForMem(MaterializedType);
5360   }
5361 
5362   // Create a global variable for this lifetime-extended temporary.
5363   llvm::GlobalValue::LinkageTypes Linkage =
5364       getLLVMLinkageVarDefinition(VD, Constant);
5365   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5366     const VarDecl *InitVD;
5367     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5368         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5369       // Temporaries defined inside a class get linkonce_odr linkage because the
5370       // class can be defined in multiple translation units.
5371       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5372     } else {
5373       // There is no need for this temporary to have external linkage if the
5374       // VarDecl has external linkage.
5375       Linkage = llvm::GlobalVariable::InternalLinkage;
5376     }
5377   }
5378   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5379   auto *GV = new llvm::GlobalVariable(
5380       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5381       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5382   if (emitter) emitter->finalize(GV);
5383   setGVProperties(GV, VD);
5384   GV->setAlignment(Align.getAsAlign());
5385   if (supportsCOMDAT() && GV->isWeakForLinker())
5386     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5387   if (VD->getTLSKind())
5388     setTLSMode(GV, *VD);
5389   llvm::Constant *CV = GV;
5390   if (AddrSpace != LangAS::Default)
5391     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5392         *this, GV, AddrSpace, LangAS::Default,
5393         Type->getPointerTo(
5394             getContext().getTargetAddressSpace(LangAS::Default)));
5395   MaterializedGlobalTemporaryMap[E] = CV;
5396   return ConstantAddress(CV, Align);
5397 }
5398 
5399 /// EmitObjCPropertyImplementations - Emit information for synthesized
5400 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)5401 void CodeGenModule::EmitObjCPropertyImplementations(const
5402                                                     ObjCImplementationDecl *D) {
5403   for (const auto *PID : D->property_impls()) {
5404     // Dynamic is just for type-checking.
5405     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5406       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5407 
5408       // Determine which methods need to be implemented, some may have
5409       // been overridden. Note that ::isPropertyAccessor is not the method
5410       // we want, that just indicates if the decl came from a
5411       // property. What we want to know is if the method is defined in
5412       // this implementation.
5413       auto *Getter = PID->getGetterMethodDecl();
5414       if (!Getter || Getter->isSynthesizedAccessorStub())
5415         CodeGenFunction(*this).GenerateObjCGetter(
5416             const_cast<ObjCImplementationDecl *>(D), PID);
5417       auto *Setter = PID->getSetterMethodDecl();
5418       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5419         CodeGenFunction(*this).GenerateObjCSetter(
5420                                  const_cast<ObjCImplementationDecl *>(D), PID);
5421     }
5422   }
5423 }
5424 
needsDestructMethod(ObjCImplementationDecl * impl)5425 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5426   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5427   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5428        ivar; ivar = ivar->getNextIvar())
5429     if (ivar->getType().isDestructedType())
5430       return true;
5431 
5432   return false;
5433 }
5434 
AllTrivialInitializers(CodeGenModule & CGM,ObjCImplementationDecl * D)5435 static bool AllTrivialInitializers(CodeGenModule &CGM,
5436                                    ObjCImplementationDecl *D) {
5437   CodeGenFunction CGF(CGM);
5438   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5439        E = D->init_end(); B != E; ++B) {
5440     CXXCtorInitializer *CtorInitExp = *B;
5441     Expr *Init = CtorInitExp->getInit();
5442     if (!CGF.isTrivialInitializer(Init))
5443       return false;
5444   }
5445   return true;
5446 }
5447 
5448 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5449 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)5450 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5451   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5452   if (needsDestructMethod(D)) {
5453     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5454     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5455     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5456         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5457         getContext().VoidTy, nullptr, D,
5458         /*isInstance=*/true, /*isVariadic=*/false,
5459         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5460         /*isImplicitlyDeclared=*/true,
5461         /*isDefined=*/false, ObjCMethodDecl::Required);
5462     D->addInstanceMethod(DTORMethod);
5463     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5464     D->setHasDestructors(true);
5465   }
5466 
5467   // If the implementation doesn't have any ivar initializers, we don't need
5468   // a .cxx_construct.
5469   if (D->getNumIvarInitializers() == 0 ||
5470       AllTrivialInitializers(*this, D))
5471     return;
5472 
5473   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5474   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5475   // The constructor returns 'self'.
5476   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5477       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5478       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5479       /*isVariadic=*/false,
5480       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5481       /*isImplicitlyDeclared=*/true,
5482       /*isDefined=*/false, ObjCMethodDecl::Required);
5483   D->addInstanceMethod(CTORMethod);
5484   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5485   D->setHasNonZeroConstructors(true);
5486 }
5487 
5488 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)5489 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5490   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5491       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5492     ErrorUnsupported(LSD, "linkage spec");
5493     return;
5494   }
5495 
5496   EmitDeclContext(LSD);
5497 }
5498 
EmitDeclContext(const DeclContext * DC)5499 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5500   for (auto *I : DC->decls()) {
5501     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5502     // are themselves considered "top-level", so EmitTopLevelDecl on an
5503     // ObjCImplDecl does not recursively visit them. We need to do that in
5504     // case they're nested inside another construct (LinkageSpecDecl /
5505     // ExportDecl) that does stop them from being considered "top-level".
5506     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5507       for (auto *M : OID->methods())
5508         EmitTopLevelDecl(M);
5509     }
5510 
5511     EmitTopLevelDecl(I);
5512   }
5513 }
5514 
5515 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)5516 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5517   // Ignore dependent declarations.
5518   if (D->isTemplated())
5519     return;
5520 
5521   // Consteval function shouldn't be emitted.
5522   if (auto *FD = dyn_cast<FunctionDecl>(D))
5523     if (FD->isConsteval())
5524       return;
5525 
5526   switch (D->getKind()) {
5527   case Decl::CXXConversion:
5528   case Decl::CXXMethod:
5529   case Decl::Function:
5530     EmitGlobal(cast<FunctionDecl>(D));
5531     // Always provide some coverage mapping
5532     // even for the functions that aren't emitted.
5533     AddDeferredUnusedCoverageMapping(D);
5534     break;
5535 
5536   case Decl::CXXDeductionGuide:
5537     // Function-like, but does not result in code emission.
5538     break;
5539 
5540   case Decl::Var:
5541   case Decl::Decomposition:
5542   case Decl::VarTemplateSpecialization:
5543     EmitGlobal(cast<VarDecl>(D));
5544     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5545       for (auto *B : DD->bindings())
5546         if (auto *HD = B->getHoldingVar())
5547           EmitGlobal(HD);
5548     break;
5549 
5550   // Indirect fields from global anonymous structs and unions can be
5551   // ignored; only the actual variable requires IR gen support.
5552   case Decl::IndirectField:
5553     break;
5554 
5555   // C++ Decls
5556   case Decl::Namespace:
5557     EmitDeclContext(cast<NamespaceDecl>(D));
5558     break;
5559   case Decl::ClassTemplateSpecialization: {
5560     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5561     if (CGDebugInfo *DI = getModuleDebugInfo())
5562       if (Spec->getSpecializationKind() ==
5563               TSK_ExplicitInstantiationDefinition &&
5564           Spec->hasDefinition())
5565         DI->completeTemplateDefinition(*Spec);
5566   } LLVM_FALLTHROUGH;
5567   case Decl::CXXRecord: {
5568     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5569     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5570       if (CRD->hasDefinition())
5571         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5572       if (auto *ES = D->getASTContext().getExternalSource())
5573         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5574           DI->completeUnusedClass(*CRD);
5575     }
5576     // Emit any static data members, they may be definitions.
5577     for (auto *I : CRD->decls())
5578       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5579         EmitTopLevelDecl(I);
5580     break;
5581   }
5582     // No code generation needed.
5583   case Decl::UsingShadow:
5584   case Decl::ClassTemplate:
5585   case Decl::VarTemplate:
5586   case Decl::Concept:
5587   case Decl::VarTemplatePartialSpecialization:
5588   case Decl::FunctionTemplate:
5589   case Decl::TypeAliasTemplate:
5590   case Decl::Block:
5591   case Decl::Empty:
5592   case Decl::Binding:
5593     break;
5594   case Decl::Using:          // using X; [C++]
5595     if (CGDebugInfo *DI = getModuleDebugInfo())
5596         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5597     break;
5598   case Decl::NamespaceAlias:
5599     if (CGDebugInfo *DI = getModuleDebugInfo())
5600         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5601     break;
5602   case Decl::UsingDirective: // using namespace X; [C++]
5603     if (CGDebugInfo *DI = getModuleDebugInfo())
5604       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5605     break;
5606   case Decl::CXXConstructor:
5607     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5608     break;
5609   case Decl::CXXDestructor:
5610     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5611     break;
5612 
5613   case Decl::StaticAssert:
5614     // Nothing to do.
5615     break;
5616 
5617   // Objective-C Decls
5618 
5619   // Forward declarations, no (immediate) code generation.
5620   case Decl::ObjCInterface:
5621   case Decl::ObjCCategory:
5622     break;
5623 
5624   case Decl::ObjCProtocol: {
5625     auto *Proto = cast<ObjCProtocolDecl>(D);
5626     if (Proto->isThisDeclarationADefinition())
5627       ObjCRuntime->GenerateProtocol(Proto);
5628     break;
5629   }
5630 
5631   case Decl::ObjCCategoryImpl:
5632     // Categories have properties but don't support synthesize so we
5633     // can ignore them here.
5634     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5635     break;
5636 
5637   case Decl::ObjCImplementation: {
5638     auto *OMD = cast<ObjCImplementationDecl>(D);
5639     EmitObjCPropertyImplementations(OMD);
5640     EmitObjCIvarInitializations(OMD);
5641     ObjCRuntime->GenerateClass(OMD);
5642     // Emit global variable debug information.
5643     if (CGDebugInfo *DI = getModuleDebugInfo())
5644       if (getCodeGenOpts().hasReducedDebugInfo())
5645         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5646             OMD->getClassInterface()), OMD->getLocation());
5647     break;
5648   }
5649   case Decl::ObjCMethod: {
5650     auto *OMD = cast<ObjCMethodDecl>(D);
5651     // If this is not a prototype, emit the body.
5652     if (OMD->getBody())
5653       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5654     break;
5655   }
5656   case Decl::ObjCCompatibleAlias:
5657     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5658     break;
5659 
5660   case Decl::PragmaComment: {
5661     const auto *PCD = cast<PragmaCommentDecl>(D);
5662     switch (PCD->getCommentKind()) {
5663     case PCK_Unknown:
5664       llvm_unreachable("unexpected pragma comment kind");
5665     case PCK_Linker:
5666       AppendLinkerOptions(PCD->getArg());
5667       break;
5668     case PCK_Lib:
5669         AddDependentLib(PCD->getArg());
5670       break;
5671     case PCK_Compiler:
5672     case PCK_ExeStr:
5673     case PCK_User:
5674       break; // We ignore all of these.
5675     }
5676     break;
5677   }
5678 
5679   case Decl::PragmaDetectMismatch: {
5680     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5681     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5682     break;
5683   }
5684 
5685   case Decl::LinkageSpec:
5686     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5687     break;
5688 
5689   case Decl::FileScopeAsm: {
5690     // File-scope asm is ignored during device-side CUDA compilation.
5691     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5692       break;
5693     // File-scope asm is ignored during device-side OpenMP compilation.
5694     if (LangOpts.OpenMPIsDevice)
5695       break;
5696     auto *AD = cast<FileScopeAsmDecl>(D);
5697     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5698     break;
5699   }
5700 
5701   case Decl::Import: {
5702     auto *Import = cast<ImportDecl>(D);
5703 
5704     // If we've already imported this module, we're done.
5705     if (!ImportedModules.insert(Import->getImportedModule()))
5706       break;
5707 
5708     // Emit debug information for direct imports.
5709     if (!Import->getImportedOwningModule()) {
5710       if (CGDebugInfo *DI = getModuleDebugInfo())
5711         DI->EmitImportDecl(*Import);
5712     }
5713 
5714     // Find all of the submodules and emit the module initializers.
5715     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5716     SmallVector<clang::Module *, 16> Stack;
5717     Visited.insert(Import->getImportedModule());
5718     Stack.push_back(Import->getImportedModule());
5719 
5720     while (!Stack.empty()) {
5721       clang::Module *Mod = Stack.pop_back_val();
5722       if (!EmittedModuleInitializers.insert(Mod).second)
5723         continue;
5724 
5725       for (auto *D : Context.getModuleInitializers(Mod))
5726         EmitTopLevelDecl(D);
5727 
5728       // Visit the submodules of this module.
5729       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5730                                              SubEnd = Mod->submodule_end();
5731            Sub != SubEnd; ++Sub) {
5732         // Skip explicit children; they need to be explicitly imported to emit
5733         // the initializers.
5734         if ((*Sub)->IsExplicit)
5735           continue;
5736 
5737         if (Visited.insert(*Sub).second)
5738           Stack.push_back(*Sub);
5739       }
5740     }
5741     break;
5742   }
5743 
5744   case Decl::Export:
5745     EmitDeclContext(cast<ExportDecl>(D));
5746     break;
5747 
5748   case Decl::OMPThreadPrivate:
5749     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5750     break;
5751 
5752   case Decl::OMPAllocate:
5753     break;
5754 
5755   case Decl::OMPDeclareReduction:
5756     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5757     break;
5758 
5759   case Decl::OMPDeclareMapper:
5760     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5761     break;
5762 
5763   case Decl::OMPRequires:
5764     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5765     break;
5766 
5767   case Decl::Typedef:
5768   case Decl::TypeAlias: // using foo = bar; [C++11]
5769     if (CGDebugInfo *DI = getModuleDebugInfo())
5770       DI->EmitAndRetainType(
5771           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5772     break;
5773 
5774   case Decl::Record:
5775     if (CGDebugInfo *DI = getModuleDebugInfo())
5776       if (cast<RecordDecl>(D)->getDefinition())
5777         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5778     break;
5779 
5780   case Decl::Enum:
5781     if (CGDebugInfo *DI = getModuleDebugInfo())
5782       if (cast<EnumDecl>(D)->getDefinition())
5783         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5784     break;
5785 
5786   default:
5787     // Make sure we handled everything we should, every other kind is a
5788     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5789     // function. Need to recode Decl::Kind to do that easily.
5790     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5791     break;
5792   }
5793 }
5794 
AddDeferredUnusedCoverageMapping(Decl * D)5795 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5796   // Do we need to generate coverage mapping?
5797   if (!CodeGenOpts.CoverageMapping)
5798     return;
5799   switch (D->getKind()) {
5800   case Decl::CXXConversion:
5801   case Decl::CXXMethod:
5802   case Decl::Function:
5803   case Decl::ObjCMethod:
5804   case Decl::CXXConstructor:
5805   case Decl::CXXDestructor: {
5806     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5807       break;
5808     SourceManager &SM = getContext().getSourceManager();
5809     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5810       break;
5811     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5812     if (I == DeferredEmptyCoverageMappingDecls.end())
5813       DeferredEmptyCoverageMappingDecls[D] = true;
5814     break;
5815   }
5816   default:
5817     break;
5818   };
5819 }
5820 
ClearUnusedCoverageMapping(const Decl * D)5821 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5822   // Do we need to generate coverage mapping?
5823   if (!CodeGenOpts.CoverageMapping)
5824     return;
5825   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5826     if (Fn->isTemplateInstantiation())
5827       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5828   }
5829   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5830   if (I == DeferredEmptyCoverageMappingDecls.end())
5831     DeferredEmptyCoverageMappingDecls[D] = false;
5832   else
5833     I->second = false;
5834 }
5835 
EmitDeferredUnusedCoverageMappings()5836 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5837   // We call takeVector() here to avoid use-after-free.
5838   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5839   // we deserialize function bodies to emit coverage info for them, and that
5840   // deserializes more declarations. How should we handle that case?
5841   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5842     if (!Entry.second)
5843       continue;
5844     const Decl *D = Entry.first;
5845     switch (D->getKind()) {
5846     case Decl::CXXConversion:
5847     case Decl::CXXMethod:
5848     case Decl::Function:
5849     case Decl::ObjCMethod: {
5850       CodeGenPGO PGO(*this);
5851       GlobalDecl GD(cast<FunctionDecl>(D));
5852       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5853                                   getFunctionLinkage(GD));
5854       break;
5855     }
5856     case Decl::CXXConstructor: {
5857       CodeGenPGO PGO(*this);
5858       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5859       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5860                                   getFunctionLinkage(GD));
5861       break;
5862     }
5863     case Decl::CXXDestructor: {
5864       CodeGenPGO PGO(*this);
5865       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5866       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5867                                   getFunctionLinkage(GD));
5868       break;
5869     }
5870     default:
5871       break;
5872     };
5873   }
5874 }
5875 
EmitMainVoidAlias()5876 void CodeGenModule::EmitMainVoidAlias() {
5877   // In order to transition away from "__original_main" gracefully, emit an
5878   // alias for "main" in the no-argument case so that libc can detect when
5879   // new-style no-argument main is in used.
5880   if (llvm::Function *F = getModule().getFunction("main")) {
5881     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5882         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5883       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5884   }
5885 }
5886 
5887 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)5888 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5889                                           const void *Ptr) {
5890   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5891   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5892   return llvm::ConstantInt::get(i64, PtrInt);
5893 }
5894 
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)5895 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5896                                    llvm::NamedMDNode *&GlobalMetadata,
5897                                    GlobalDecl D,
5898                                    llvm::GlobalValue *Addr) {
5899   if (!GlobalMetadata)
5900     GlobalMetadata =
5901       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5902 
5903   // TODO: should we report variant information for ctors/dtors?
5904   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5905                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5906                                CGM.getLLVMContext(), D.getDecl()))};
5907   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5908 }
5909 
5910 /// For each function which is declared within an extern "C" region and marked
5911 /// as 'used', but has internal linkage, create an alias from the unmangled
5912 /// name to the mangled name if possible. People expect to be able to refer
5913 /// to such functions with an unmangled name from inline assembly within the
5914 /// same translation unit.
EmitStaticExternCAliases()5915 void CodeGenModule::EmitStaticExternCAliases() {
5916   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5917     return;
5918   for (auto &I : StaticExternCValues) {
5919     IdentifierInfo *Name = I.first;
5920     llvm::GlobalValue *Val = I.second;
5921     if (Val && !getModule().getNamedValue(Name->getName()))
5922       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5923   }
5924 }
5925 
lookupRepresentativeDecl(StringRef MangledName,GlobalDecl & Result) const5926 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5927                                              GlobalDecl &Result) const {
5928   auto Res = Manglings.find(MangledName);
5929   if (Res == Manglings.end())
5930     return false;
5931   Result = Res->getValue();
5932   return true;
5933 }
5934 
5935 /// Emits metadata nodes associating all the global values in the
5936 /// current module with the Decls they came from.  This is useful for
5937 /// projects using IR gen as a subroutine.
5938 ///
5939 /// Since there's currently no way to associate an MDNode directly
5940 /// with an llvm::GlobalValue, we create a global named metadata
5941 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()5942 void CodeGenModule::EmitDeclMetadata() {
5943   llvm::NamedMDNode *GlobalMetadata = nullptr;
5944 
5945   for (auto &I : MangledDeclNames) {
5946     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5947     // Some mangled names don't necessarily have an associated GlobalValue
5948     // in this module, e.g. if we mangled it for DebugInfo.
5949     if (Addr)
5950       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5951   }
5952 }
5953 
5954 /// Emits metadata nodes for all the local variables in the current
5955 /// function.
EmitDeclMetadata()5956 void CodeGenFunction::EmitDeclMetadata() {
5957   if (LocalDeclMap.empty()) return;
5958 
5959   llvm::LLVMContext &Context = getLLVMContext();
5960 
5961   // Find the unique metadata ID for this name.
5962   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5963 
5964   llvm::NamedMDNode *GlobalMetadata = nullptr;
5965 
5966   for (auto &I : LocalDeclMap) {
5967     const Decl *D = I.first;
5968     llvm::Value *Addr = I.second.getPointer();
5969     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5970       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5971       Alloca->setMetadata(
5972           DeclPtrKind, llvm::MDNode::get(
5973                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5974     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5975       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5976       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5977     }
5978   }
5979 }
5980 
EmitVersionIdentMetadata()5981 void CodeGenModule::EmitVersionIdentMetadata() {
5982   llvm::NamedMDNode *IdentMetadata =
5983     TheModule.getOrInsertNamedMetadata("llvm.ident");
5984   std::string Version = getClangFullVersion();
5985   llvm::LLVMContext &Ctx = TheModule.getContext();
5986 
5987   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5988   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5989 }
5990 
EmitCommandLineMetadata()5991 void CodeGenModule::EmitCommandLineMetadata() {
5992   llvm::NamedMDNode *CommandLineMetadata =
5993     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5994   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5995   llvm::LLVMContext &Ctx = TheModule.getContext();
5996 
5997   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5998   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5999 }
6000 
EmitCoverageFile()6001 void CodeGenModule::EmitCoverageFile() {
6002   if (getCodeGenOpts().CoverageDataFile.empty() &&
6003       getCodeGenOpts().CoverageNotesFile.empty())
6004     return;
6005 
6006   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6007   if (!CUNode)
6008     return;
6009 
6010   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6011   llvm::LLVMContext &Ctx = TheModule.getContext();
6012   auto *CoverageDataFile =
6013       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6014   auto *CoverageNotesFile =
6015       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6016   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6017     llvm::MDNode *CU = CUNode->getOperand(i);
6018     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6019     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6020   }
6021 }
6022 
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)6023 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6024                                                        bool ForEH) {
6025   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6026   // FIXME: should we even be calling this method if RTTI is disabled
6027   // and it's not for EH?
6028   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6029       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6030        getTriple().isNVPTX()))
6031     return llvm::Constant::getNullValue(Int8PtrTy);
6032 
6033   if (ForEH && Ty->isObjCObjectPointerType() &&
6034       LangOpts.ObjCRuntime.isGNUFamily())
6035     return ObjCRuntime->GetEHType(Ty);
6036 
6037   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6038 }
6039 
EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl * D)6040 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6041   // Do not emit threadprivates in simd-only mode.
6042   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6043     return;
6044   for (auto RefExpr : D->varlists()) {
6045     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6046     bool PerformInit =
6047         VD->getAnyInitializer() &&
6048         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6049                                                         /*ForRef=*/false);
6050 
6051     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6052     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6053             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6054       CXXGlobalInits.push_back(InitFunction);
6055   }
6056 }
6057 
6058 llvm::Metadata *
CreateMetadataIdentifierImpl(QualType T,MetadataTypeMap & Map,StringRef Suffix)6059 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6060                                             StringRef Suffix) {
6061   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6062   if (InternalId)
6063     return InternalId;
6064 
6065   if (isExternallyVisible(T->getLinkage())) {
6066     std::string OutName;
6067     llvm::raw_string_ostream Out(OutName);
6068     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6069     Out << Suffix;
6070 
6071     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6072   } else {
6073     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6074                                            llvm::ArrayRef<llvm::Metadata *>());
6075   }
6076 
6077   return InternalId;
6078 }
6079 
CreateMetadataIdentifierForType(QualType T)6080 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6081   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6082 }
6083 
6084 llvm::Metadata *
CreateMetadataIdentifierForVirtualMemPtrType(QualType T)6085 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6086   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6087 }
6088 
6089 // Generalize pointer types to a void pointer with the qualifiers of the
6090 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6091 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6092 // 'void *'.
GeneralizeType(ASTContext & Ctx,QualType Ty)6093 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6094   if (!Ty->isPointerType())
6095     return Ty;
6096 
6097   return Ctx.getPointerType(
6098       QualType(Ctx.VoidTy).withCVRQualifiers(
6099           Ty->getPointeeType().getCVRQualifiers()));
6100 }
6101 
6102 // Apply type generalization to a FunctionType's return and argument types
GeneralizeFunctionType(ASTContext & Ctx,QualType Ty)6103 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6104   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6105     SmallVector<QualType, 8> GeneralizedParams;
6106     for (auto &Param : FnType->param_types())
6107       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6108 
6109     return Ctx.getFunctionType(
6110         GeneralizeType(Ctx, FnType->getReturnType()),
6111         GeneralizedParams, FnType->getExtProtoInfo());
6112   }
6113 
6114   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6115     return Ctx.getFunctionNoProtoType(
6116         GeneralizeType(Ctx, FnType->getReturnType()));
6117 
6118   llvm_unreachable("Encountered unknown FunctionType");
6119 }
6120 
CreateMetadataIdentifierGeneralized(QualType T)6121 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6122   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6123                                       GeneralizedMetadataIdMap, ".generalized");
6124 }
6125 
6126 /// Returns whether this module needs the "all-vtables" type identifier.
NeedAllVtablesTypeId() const6127 bool CodeGenModule::NeedAllVtablesTypeId() const {
6128   // Returns true if at least one of vtable-based CFI checkers is enabled and
6129   // is not in the trapping mode.
6130   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6131            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6132           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6133            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6134           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6135            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6136           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6137            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6138 }
6139 
AddVTableTypeMetadata(llvm::GlobalVariable * VTable,CharUnits Offset,const CXXRecordDecl * RD)6140 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6141                                           CharUnits Offset,
6142                                           const CXXRecordDecl *RD) {
6143   llvm::Metadata *MD =
6144       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6145   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6146 
6147   if (CodeGenOpts.SanitizeCfiCrossDso)
6148     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6149       VTable->addTypeMetadata(Offset.getQuantity(),
6150                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6151 
6152   if (NeedAllVtablesTypeId()) {
6153     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6154     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6155   }
6156 }
6157 
getSanStats()6158 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6159   if (!SanStats)
6160     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6161 
6162   return *SanStats;
6163 }
6164 llvm::Value *
createOpenCLIntToSamplerConversion(const Expr * E,CodeGenFunction & CGF)6165 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6166                                                   CodeGenFunction &CGF) {
6167   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6168   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6169   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6170   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6171                                 "__translate_sampler_initializer"),
6172                                 {C});
6173 }
6174 
getNaturalPointeeTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)6175 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6176     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6177   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6178                                  /* forPointeeType= */ true);
6179 }
6180 
getNaturalTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo,bool forPointeeType)6181 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6182                                                  LValueBaseInfo *BaseInfo,
6183                                                  TBAAAccessInfo *TBAAInfo,
6184                                                  bool forPointeeType) {
6185   if (TBAAInfo)
6186     *TBAAInfo = getTBAAAccessInfo(T);
6187 
6188   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6189   // that doesn't return the information we need to compute BaseInfo.
6190 
6191   // Honor alignment typedef attributes even on incomplete types.
6192   // We also honor them straight for C++ class types, even as pointees;
6193   // there's an expressivity gap here.
6194   if (auto TT = T->getAs<TypedefType>()) {
6195     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6196       if (BaseInfo)
6197         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6198       return getContext().toCharUnitsFromBits(Align);
6199     }
6200   }
6201 
6202   bool AlignForArray = T->isArrayType();
6203 
6204   // Analyze the base element type, so we don't get confused by incomplete
6205   // array types.
6206   T = getContext().getBaseElementType(T);
6207 
6208   if (T->isIncompleteType()) {
6209     // We could try to replicate the logic from
6210     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6211     // type is incomplete, so it's impossible to test. We could try to reuse
6212     // getTypeAlignIfKnown, but that doesn't return the information we need
6213     // to set BaseInfo.  So just ignore the possibility that the alignment is
6214     // greater than one.
6215     if (BaseInfo)
6216       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6217     return CharUnits::One();
6218   }
6219 
6220   if (BaseInfo)
6221     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6222 
6223   CharUnits Alignment;
6224   const CXXRecordDecl *RD;
6225   if (T.getQualifiers().hasUnaligned()) {
6226     Alignment = CharUnits::One();
6227   } else if (forPointeeType && !AlignForArray &&
6228              (RD = T->getAsCXXRecordDecl())) {
6229     // For C++ class pointees, we don't know whether we're pointing at a
6230     // base or a complete object, so we generally need to use the
6231     // non-virtual alignment.
6232     Alignment = getClassPointerAlignment(RD);
6233   } else {
6234     Alignment = getContext().getTypeAlignInChars(T);
6235   }
6236 
6237   // Cap to the global maximum type alignment unless the alignment
6238   // was somehow explicit on the type.
6239   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6240     if (Alignment.getQuantity() > MaxAlign &&
6241         !getContext().isAlignmentRequired(T))
6242       Alignment = CharUnits::fromQuantity(MaxAlign);
6243   }
6244   return Alignment;
6245 }
6246 
stopAutoInit()6247 bool CodeGenModule::stopAutoInit() {
6248   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6249   if (StopAfter) {
6250     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6251     // used
6252     if (NumAutoVarInit >= StopAfter) {
6253       return true;
6254     }
6255     if (!NumAutoVarInit) {
6256       unsigned DiagID = getDiags().getCustomDiagID(
6257           DiagnosticsEngine::Warning,
6258           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6259           "number of times ftrivial-auto-var-init=%1 gets applied.");
6260       getDiags().Report(DiagID)
6261           << StopAfter
6262           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6263                       LangOptions::TrivialAutoVarInitKind::Zero
6264                   ? "zero"
6265                   : "pattern");
6266     }
6267     ++NumAutoVarInit;
6268   }
6269   return false;
6270 }
6271