1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66
67 using namespace clang;
68 using namespace CodeGen;
69
70 static llvm::cl::opt<bool> LimitedCoverage(
71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73 llvm::cl::init(false));
74
75 static const char AnnotationSection[] = "llvm.metadata";
76
createCXXABI(CodeGenModule & CGM)77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78 switch (CGM.getTarget().getCXXABI().getKind()) {
79 case TargetCXXABI::AppleARM64:
80 case TargetCXXABI::Fuchsia:
81 case TargetCXXABI::GenericAArch64:
82 case TargetCXXABI::GenericARM:
83 case TargetCXXABI::iOS:
84 case TargetCXXABI::WatchOS:
85 case TargetCXXABI::GenericMIPS:
86 case TargetCXXABI::GenericItanium:
87 case TargetCXXABI::WebAssembly:
88 case TargetCXXABI::XL:
89 return CreateItaniumCXXABI(CGM);
90 case TargetCXXABI::Microsoft:
91 return CreateMicrosoftCXXABI(CGM);
92 }
93
94 llvm_unreachable("invalid C++ ABI kind");
95 }
96
CodeGenModule(ASTContext & C,const HeaderSearchOptions & HSO,const PreprocessorOptions & PPO,const CodeGenOptions & CGO,llvm::Module & M,DiagnosticsEngine & diags,CoverageSourceInfo * CoverageInfo)97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98 const PreprocessorOptions &PPO,
99 const CodeGenOptions &CGO, llvm::Module &M,
100 DiagnosticsEngine &diags,
101 CoverageSourceInfo *CoverageInfo)
102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105 VMContext(M.getContext()), Types(*this), VTables(*this),
106 SanitizerMD(new SanitizerMetadata(*this)) {
107
108 // Initialize the type cache.
109 llvm::LLVMContext &LLVMContext = M.getContext();
110 VoidTy = llvm::Type::getVoidTy(LLVMContext);
111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115 HalfTy = llvm::Type::getHalfTy(LLVMContext);
116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117 FloatTy = llvm::Type::getFloatTy(LLVMContext);
118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120 PointerAlignInBytes =
121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122 SizeSizeInBytes =
123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124 IntAlignInBytes =
125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127 IntPtrTy = llvm::IntegerType::get(LLVMContext,
128 C.getTargetInfo().getMaxPointerWidth());
129 Int8PtrTy = Int8Ty->getPointerTo(0);
130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131 AllocaInt8PtrTy = Int8Ty->getPointerTo(
132 M.getDataLayout().getAllocaAddrSpace());
133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134
135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136
137 if (LangOpts.ObjC)
138 createObjCRuntime();
139 if (LangOpts.OpenCL)
140 createOpenCLRuntime();
141 if (LangOpts.OpenMP)
142 createOpenMPRuntime();
143 if (LangOpts.CUDA)
144 createCUDARuntime();
145
146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150 getCXXABI().getMangleContext()));
151
152 // If debug info or coverage generation is enabled, create the CGDebugInfo
153 // object.
154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156 DebugInfo.reset(new CGDebugInfo(*this));
157
158 Block.GlobalUniqueCount = 0;
159
160 if (C.getLangOpts().ObjC)
161 ObjCData.reset(new ObjCEntrypoints());
162
163 if (CodeGenOpts.hasProfileClangUse()) {
164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166 if (auto E = ReaderOrErr.takeError()) {
167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168 "Could not read profile %0: %1");
169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171 << EI.message();
172 });
173 } else
174 PGOReader = std::move(ReaderOrErr.get());
175 }
176
177 // If coverage mapping generation is enabled, create the
178 // CoverageMappingModuleGen object.
179 if (CodeGenOpts.CoverageMapping)
180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182
~CodeGenModule()183 CodeGenModule::~CodeGenModule() {}
184
createObjCRuntime()185 void CodeGenModule::createObjCRuntime() {
186 // This is just isGNUFamily(), but we want to force implementors of
187 // new ABIs to decide how best to do this.
188 switch (LangOpts.ObjCRuntime.getKind()) {
189 case ObjCRuntime::GNUstep:
190 case ObjCRuntime::GCC:
191 case ObjCRuntime::ObjFW:
192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193 return;
194
195 case ObjCRuntime::FragileMacOSX:
196 case ObjCRuntime::MacOSX:
197 case ObjCRuntime::iOS:
198 case ObjCRuntime::WatchOS:
199 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200 return;
201 }
202 llvm_unreachable("bad runtime kind");
203 }
204
createOpenCLRuntime()205 void CodeGenModule::createOpenCLRuntime() {
206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208
createOpenMPRuntime()209 void CodeGenModule::createOpenMPRuntime() {
210 // Select a specialized code generation class based on the target, if any.
211 // If it does not exist use the default implementation.
212 switch (getTriple().getArch()) {
213 case llvm::Triple::nvptx:
214 case llvm::Triple::nvptx64:
215 assert(getLangOpts().OpenMPIsDevice &&
216 "OpenMP NVPTX is only prepared to deal with device code.");
217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218 break;
219 case llvm::Triple::amdgcn:
220 assert(getLangOpts().OpenMPIsDevice &&
221 "OpenMP AMDGCN is only prepared to deal with device code.");
222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223 break;
224 default:
225 if (LangOpts.OpenMPSimd)
226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227 else
228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229 break;
230 }
231 }
232
createCUDARuntime()233 void CodeGenModule::createCUDARuntime() {
234 CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236
addReplacement(StringRef Name,llvm::Constant * C)237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238 Replacements[Name] = C;
239 }
240
applyReplacements()241 void CodeGenModule::applyReplacements() {
242 for (auto &I : Replacements) {
243 StringRef MangledName = I.first();
244 llvm::Constant *Replacement = I.second;
245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246 if (!Entry)
247 continue;
248 auto *OldF = cast<llvm::Function>(Entry);
249 auto *NewF = dyn_cast<llvm::Function>(Replacement);
250 if (!NewF) {
251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253 } else {
254 auto *CE = cast<llvm::ConstantExpr>(Replacement);
255 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256 CE->getOpcode() == llvm::Instruction::GetElementPtr);
257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258 }
259 }
260
261 // Replace old with new, but keep the old order.
262 OldF->replaceAllUsesWith(Replacement);
263 if (NewF) {
264 NewF->removeFromParent();
265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266 NewF);
267 }
268 OldF->eraseFromParent();
269 }
270 }
271
addGlobalValReplacement(llvm::GlobalValue * GV,llvm::Constant * C)272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273 GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275
applyGlobalValReplacements()276 void CodeGenModule::applyGlobalValReplacements() {
277 for (auto &I : GlobalValReplacements) {
278 llvm::GlobalValue *GV = I.first;
279 llvm::Constant *C = I.second;
280
281 GV->replaceAllUsesWith(C);
282 GV->eraseFromParent();
283 }
284 }
285
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
getAliasedGlobal(const llvm::GlobalIndirectSymbol & GIS)288 static const llvm::GlobalObject *getAliasedGlobal(
289 const llvm::GlobalIndirectSymbol &GIS) {
290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291 const llvm::Constant *C = &GIS;
292 for (;;) {
293 C = C->stripPointerCasts();
294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295 return GO;
296 // stripPointerCasts will not walk over weak aliases.
297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298 if (!GIS2)
299 return nullptr;
300 if (!Visited.insert(GIS2).second)
301 return nullptr;
302 C = GIS2->getIndirectSymbol();
303 }
304 }
305
checkAliases()306 void CodeGenModule::checkAliases() {
307 // Check if the constructed aliases are well formed. It is really unfortunate
308 // that we have to do this in CodeGen, but we only construct mangled names
309 // and aliases during codegen.
310 bool Error = false;
311 DiagnosticsEngine &Diags = getDiags();
312 for (const GlobalDecl &GD : Aliases) {
313 const auto *D = cast<ValueDecl>(GD.getDecl());
314 SourceLocation Location;
315 bool IsIFunc = D->hasAttr<IFuncAttr>();
316 if (const Attr *A = D->getDefiningAttr())
317 Location = A->getLocation();
318 else
319 llvm_unreachable("Not an alias or ifunc?");
320 StringRef MangledName = getMangledName(GD);
321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324 if (!GV) {
325 Error = true;
326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327 } else if (GV->isDeclaration()) {
328 Error = true;
329 Diags.Report(Location, diag::err_alias_to_undefined)
330 << IsIFunc << IsIFunc;
331 } else if (IsIFunc) {
332 // Check resolver function type.
333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334 GV->getType()->getPointerElementType());
335 assert(FTy);
336 if (!FTy->getReturnType()->isPointerTy())
337 Diags.Report(Location, diag::err_ifunc_resolver_return);
338 }
339
340 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341 llvm::GlobalValue *AliaseeGV;
342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344 else
345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346
347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348 StringRef AliasSection = SA->getName();
349 if (AliasSection != AliaseeGV->getSection())
350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351 << AliasSection << IsIFunc << IsIFunc;
352 }
353
354 // We have to handle alias to weak aliases in here. LLVM itself disallows
355 // this since the object semantics would not match the IL one. For
356 // compatibility with gcc we implement it by just pointing the alias
357 // to its aliasee's aliasee. We also warn, since the user is probably
358 // expecting the link to be weak.
359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360 if (GA->isInterposable()) {
361 Diags.Report(Location, diag::warn_alias_to_weak_alias)
362 << GV->getName() << GA->getName() << IsIFunc;
363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364 GA->getIndirectSymbol(), Alias->getType());
365 Alias->setIndirectSymbol(Aliasee);
366 }
367 }
368 }
369 if (!Error)
370 return;
371
372 for (const GlobalDecl &GD : Aliases) {
373 StringRef MangledName = getMangledName(GD);
374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377 Alias->eraseFromParent();
378 }
379 }
380
clear()381 void CodeGenModule::clear() {
382 DeferredDeclsToEmit.clear();
383 if (OpenMPRuntime)
384 OpenMPRuntime->clear();
385 }
386
reportDiagnostics(DiagnosticsEngine & Diags,StringRef MainFile)387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388 StringRef MainFile) {
389 if (!hasDiagnostics())
390 return;
391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392 if (MainFile.empty())
393 MainFile = "<stdin>";
394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395 } else {
396 if (Mismatched > 0)
397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398
399 if (Missing > 0)
400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401 }
402 }
403
setVisibilityFromDLLStorageClass(const clang::LangOptions & LO,llvm::Module & M)404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
405 llvm::Module &M) {
406 if (!LO.VisibilityFromDLLStorageClass)
407 return;
408
409 llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
410 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
411 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
412 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
413 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
414 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
415 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
416 CodeGenModule::GetLLVMVisibility(
417 LO.getExternDeclNoDLLStorageClassVisibility());
418
419 for (llvm::GlobalValue &GV : M.global_values()) {
420 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
421 continue;
422
423 // Reset DSO locality before setting the visibility. This removes
424 // any effects that visibility options and annotations may have
425 // had on the DSO locality. Setting the visibility will implicitly set
426 // appropriate globals to DSO Local; however, this will be pessimistic
427 // w.r.t. to the normal compiler IRGen.
428 GV.setDSOLocal(false);
429
430 if (GV.isDeclarationForLinker()) {
431 GV.setVisibility(GV.getDLLStorageClass() ==
432 llvm::GlobalValue::DLLImportStorageClass
433 ? ExternDeclDLLImportVisibility
434 : ExternDeclNoDLLStorageClassVisibility);
435 } else {
436 GV.setVisibility(GV.getDLLStorageClass() ==
437 llvm::GlobalValue::DLLExportStorageClass
438 ? DLLExportVisibility
439 : NoDLLStorageClassVisibility);
440 }
441
442 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
443 }
444 }
445
Release()446 void CodeGenModule::Release() {
447 EmitDeferred();
448 EmitVTablesOpportunistically();
449 applyGlobalValReplacements();
450 applyReplacements();
451 checkAliases();
452 emitMultiVersionFunctions();
453 EmitCXXGlobalInitFunc();
454 EmitCXXGlobalCleanUpFunc();
455 registerGlobalDtorsWithAtExit();
456 EmitCXXThreadLocalInitFunc();
457 if (ObjCRuntime)
458 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
459 AddGlobalCtor(ObjCInitFunction);
460 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
461 CUDARuntime) {
462 if (llvm::Function *CudaCtorFunction =
463 CUDARuntime->makeModuleCtorFunction())
464 AddGlobalCtor(CudaCtorFunction);
465 }
466 if (OpenMPRuntime) {
467 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
468 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
470 }
471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
472 OpenMPRuntime->clear();
473 }
474 if (PGOReader) {
475 getModule().setProfileSummary(
476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
477 llvm::ProfileSummary::PSK_Instr);
478 if (PGOStats.hasDiagnostics())
479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
480 }
481 EmitCtorList(GlobalCtors, "llvm.global_ctors");
482 EmitCtorList(GlobalDtors, "llvm.global_dtors");
483 EmitGlobalAnnotations();
484 EmitStaticExternCAliases();
485 EmitDeferredUnusedCoverageMappings();
486 if (CoverageMapping)
487 CoverageMapping->emit();
488 if (CodeGenOpts.SanitizeCfiCrossDso) {
489 CodeGenFunction(*this).EmitCfiCheckFail();
490 CodeGenFunction(*this).EmitCfiCheckStub();
491 }
492 emitAtAvailableLinkGuard();
493 if (Context.getTargetInfo().getTriple().isWasm() &&
494 !Context.getTargetInfo().getTriple().isOSEmscripten()) {
495 EmitMainVoidAlias();
496 }
497 emitLLVMUsed();
498 if (SanStats)
499 SanStats->finish();
500
501 if (CodeGenOpts.Autolink &&
502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
503 EmitModuleLinkOptions();
504 }
505
506 // On ELF we pass the dependent library specifiers directly to the linker
507 // without manipulating them. This is in contrast to other platforms where
508 // they are mapped to a specific linker option by the compiler. This
509 // difference is a result of the greater variety of ELF linkers and the fact
510 // that ELF linkers tend to handle libraries in a more complicated fashion
511 // than on other platforms. This forces us to defer handling the dependent
512 // libs to the linker.
513 //
514 // CUDA/HIP device and host libraries are different. Currently there is no
515 // way to differentiate dependent libraries for host or device. Existing
516 // usage of #pragma comment(lib, *) is intended for host libraries on
517 // Windows. Therefore emit llvm.dependent-libraries only for host.
518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
520 for (auto *MD : ELFDependentLibraries)
521 NMD->addOperand(MD);
522 }
523
524 // Record mregparm value now so it is visible through rest of codegen.
525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
527 CodeGenOpts.NumRegisterParameters);
528
529 if (CodeGenOpts.DwarfVersion) {
530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
531 CodeGenOpts.DwarfVersion);
532 }
533
534 if (Context.getLangOpts().SemanticInterposition)
535 // Require various optimization to respect semantic interposition.
536 getModule().setSemanticInterposition(1);
537 else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
538 // Allow dso_local on applicable targets.
539 getModule().setSemanticInterposition(0);
540
541 if (CodeGenOpts.EmitCodeView) {
542 // Indicate that we want CodeView in the metadata.
543 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
544 }
545 if (CodeGenOpts.CodeViewGHash) {
546 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
547 }
548 if (CodeGenOpts.ControlFlowGuard) {
549 // Function ID tables and checks for Control Flow Guard (cfguard=2).
550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
551 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
552 // Function ID tables for Control Flow Guard (cfguard=1).
553 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
554 }
555 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
556 // We don't support LTO with 2 with different StrictVTablePointers
557 // FIXME: we could support it by stripping all the information introduced
558 // by StrictVTablePointers.
559
560 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
561
562 llvm::Metadata *Ops[2] = {
563 llvm::MDString::get(VMContext, "StrictVTablePointers"),
564 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
565 llvm::Type::getInt32Ty(VMContext), 1))};
566
567 getModule().addModuleFlag(llvm::Module::Require,
568 "StrictVTablePointersRequirement",
569 llvm::MDNode::get(VMContext, Ops));
570 }
571 if (getModuleDebugInfo())
572 // We support a single version in the linked module. The LLVM
573 // parser will drop debug info with a different version number
574 // (and warn about it, too).
575 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
576 llvm::DEBUG_METADATA_VERSION);
577
578 // We need to record the widths of enums and wchar_t, so that we can generate
579 // the correct build attributes in the ARM backend. wchar_size is also used by
580 // TargetLibraryInfo.
581 uint64_t WCharWidth =
582 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
583 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
584
585 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
586 if ( Arch == llvm::Triple::arm
587 || Arch == llvm::Triple::armeb
588 || Arch == llvm::Triple::thumb
589 || Arch == llvm::Triple::thumbeb) {
590 // The minimum width of an enum in bytes
591 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
592 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
593 }
594
595 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
596 StringRef ABIStr = Target.getABI();
597 llvm::LLVMContext &Ctx = TheModule.getContext();
598 getModule().addModuleFlag(llvm::Module::Error, "target-abi",
599 llvm::MDString::get(Ctx, ABIStr));
600 }
601
602 if (CodeGenOpts.SanitizeCfiCrossDso) {
603 // Indicate that we want cross-DSO control flow integrity checks.
604 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
605 }
606
607 if (CodeGenOpts.WholeProgramVTables) {
608 // Indicate whether VFE was enabled for this module, so that the
609 // vcall_visibility metadata added under whole program vtables is handled
610 // appropriately in the optimizer.
611 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
612 CodeGenOpts.VirtualFunctionElimination);
613 }
614
615 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
616 getModule().addModuleFlag(llvm::Module::Override,
617 "CFI Canonical Jump Tables",
618 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
619 }
620
621 if (CodeGenOpts.CFProtectionReturn &&
622 Target.checkCFProtectionReturnSupported(getDiags())) {
623 // Indicate that we want to instrument return control flow protection.
624 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
625 1);
626 }
627
628 if (CodeGenOpts.CFProtectionBranch &&
629 Target.checkCFProtectionBranchSupported(getDiags())) {
630 // Indicate that we want to instrument branch control flow protection.
631 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
632 1);
633 }
634
635 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
636 Arch == llvm::Triple::aarch64_be) {
637 getModule().addModuleFlag(llvm::Module::Error,
638 "branch-target-enforcement",
639 LangOpts.BranchTargetEnforcement);
640
641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
642 LangOpts.hasSignReturnAddress());
643
644 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
645 LangOpts.isSignReturnAddressScopeAll());
646
647 getModule().addModuleFlag(llvm::Module::Error,
648 "sign-return-address-with-bkey",
649 !LangOpts.isSignReturnAddressWithAKey());
650 }
651
652 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
653 llvm::LLVMContext &Ctx = TheModule.getContext();
654 getModule().addModuleFlag(
655 llvm::Module::Error, "MemProfProfileFilename",
656 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
657 }
658
659 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
660 // Indicate whether __nvvm_reflect should be configured to flush denormal
661 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
662 // property.)
663 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
664 CodeGenOpts.FP32DenormalMode.Output !=
665 llvm::DenormalMode::IEEE);
666 }
667
668 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
669 if (LangOpts.OpenCL) {
670 EmitOpenCLMetadata();
671 // Emit SPIR version.
672 if (getTriple().isSPIR()) {
673 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
674 // opencl.spir.version named metadata.
675 // C++ is backwards compatible with OpenCL v2.0.
676 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
677 llvm::Metadata *SPIRVerElts[] = {
678 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679 Int32Ty, Version / 100)),
680 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
681 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
682 llvm::NamedMDNode *SPIRVerMD =
683 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
684 llvm::LLVMContext &Ctx = TheModule.getContext();
685 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
686 }
687 }
688
689 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
690 assert(PLevel < 3 && "Invalid PIC Level");
691 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
692 if (Context.getLangOpts().PIE)
693 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
694 }
695
696 if (getCodeGenOpts().CodeModel.size() > 0) {
697 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
698 .Case("tiny", llvm::CodeModel::Tiny)
699 .Case("small", llvm::CodeModel::Small)
700 .Case("kernel", llvm::CodeModel::Kernel)
701 .Case("medium", llvm::CodeModel::Medium)
702 .Case("large", llvm::CodeModel::Large)
703 .Default(~0u);
704 if (CM != ~0u) {
705 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
706 getModule().setCodeModel(codeModel);
707 }
708 }
709
710 if (CodeGenOpts.NoPLT)
711 getModule().setRtLibUseGOT();
712
713 SimplifyPersonality();
714
715 if (getCodeGenOpts().EmitDeclMetadata)
716 EmitDeclMetadata();
717
718 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
719 EmitCoverageFile();
720
721 if (CGDebugInfo *DI = getModuleDebugInfo())
722 DI->finalize();
723
724 if (getCodeGenOpts().EmitVersionIdentMetadata)
725 EmitVersionIdentMetadata();
726
727 if (!getCodeGenOpts().RecordCommandLine.empty())
728 EmitCommandLineMetadata();
729
730 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
731
732 EmitBackendOptionsMetadata(getCodeGenOpts());
733
734 // Set visibility from DLL storage class
735 // We do this at the end of LLVM IR generation; after any operation
736 // that might affect the DLL storage class or the visibility, and
737 // before anything that might act on these.
738 setVisibilityFromDLLStorageClass(LangOpts, getModule());
739 }
740
EmitOpenCLMetadata()741 void CodeGenModule::EmitOpenCLMetadata() {
742 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
743 // opencl.ocl.version named metadata node.
744 // C++ is backwards compatible with OpenCL v2.0.
745 // FIXME: We might need to add CXX version at some point too?
746 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
747 llvm::Metadata *OCLVerElts[] = {
748 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
749 Int32Ty, Version / 100)),
750 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
751 Int32Ty, (Version % 100) / 10))};
752 llvm::NamedMDNode *OCLVerMD =
753 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
754 llvm::LLVMContext &Ctx = TheModule.getContext();
755 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
756 }
757
EmitBackendOptionsMetadata(const CodeGenOptions CodeGenOpts)758 void CodeGenModule::EmitBackendOptionsMetadata(
759 const CodeGenOptions CodeGenOpts) {
760 switch (getTriple().getArch()) {
761 default:
762 break;
763 case llvm::Triple::riscv32:
764 case llvm::Triple::riscv64:
765 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
766 CodeGenOpts.SmallDataLimit);
767 break;
768 }
769 }
770
UpdateCompletedType(const TagDecl * TD)771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
772 // Make sure that this type is translated.
773 Types.UpdateCompletedType(TD);
774 }
775
RefreshTypeCacheForClass(const CXXRecordDecl * RD)776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
777 // Make sure that this type is translated.
778 Types.RefreshTypeCacheForClass(RD);
779 }
780
getTBAATypeInfo(QualType QTy)781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
782 if (!TBAA)
783 return nullptr;
784 return TBAA->getTypeInfo(QTy);
785 }
786
getTBAAAccessInfo(QualType AccessType)787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
788 if (!TBAA)
789 return TBAAAccessInfo();
790 if (getLangOpts().CUDAIsDevice) {
791 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
792 // access info.
793 if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
794 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
795 nullptr)
796 return TBAAAccessInfo();
797 } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
798 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
799 nullptr)
800 return TBAAAccessInfo();
801 }
802 }
803 return TBAA->getAccessInfo(AccessType);
804 }
805
806 TBAAAccessInfo
getTBAAVTablePtrAccessInfo(llvm::Type * VTablePtrType)807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
808 if (!TBAA)
809 return TBAAAccessInfo();
810 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
811 }
812
getTBAAStructInfo(QualType QTy)813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
814 if (!TBAA)
815 return nullptr;
816 return TBAA->getTBAAStructInfo(QTy);
817 }
818
getTBAABaseTypeInfo(QualType QTy)819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
820 if (!TBAA)
821 return nullptr;
822 return TBAA->getBaseTypeInfo(QTy);
823 }
824
getTBAAAccessTagInfo(TBAAAccessInfo Info)825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
826 if (!TBAA)
827 return nullptr;
828 return TBAA->getAccessTagInfo(Info);
829 }
830
mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,TBAAAccessInfo TargetInfo)831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
832 TBAAAccessInfo TargetInfo) {
833 if (!TBAA)
834 return TBAAAccessInfo();
835 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
836 }
837
838 TBAAAccessInfo
mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,TBAAAccessInfo InfoB)839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
840 TBAAAccessInfo InfoB) {
841 if (!TBAA)
842 return TBAAAccessInfo();
843 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
844 }
845
846 TBAAAccessInfo
mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,TBAAAccessInfo SrcInfo)847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
848 TBAAAccessInfo SrcInfo) {
849 if (!TBAA)
850 return TBAAAccessInfo();
851 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
852 }
853
DecorateInstructionWithTBAA(llvm::Instruction * Inst,TBAAAccessInfo TBAAInfo)854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
855 TBAAAccessInfo TBAAInfo) {
856 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
857 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
858 }
859
DecorateInstructionWithInvariantGroup(llvm::Instruction * I,const CXXRecordDecl * RD)860 void CodeGenModule::DecorateInstructionWithInvariantGroup(
861 llvm::Instruction *I, const CXXRecordDecl *RD) {
862 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
863 llvm::MDNode::get(getLLVMContext(), {}));
864 }
865
Error(SourceLocation loc,StringRef message)866 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
867 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
868 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
869 }
870
871 /// ErrorUnsupported - Print out an error that codegen doesn't support the
872 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
874 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
875 "cannot compile this %0 yet");
876 std::string Msg = Type;
877 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
878 << Msg << S->getSourceRange();
879 }
880
881 /// ErrorUnsupported - Print out an error that codegen doesn't support the
882 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type)883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
884 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
885 "cannot compile this %0 yet");
886 std::string Msg = Type;
887 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
888 }
889
getSize(CharUnits size)890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
891 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
892 }
893
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
895 const NamedDecl *D) const {
896 if (GV->hasDLLImportStorageClass())
897 return;
898 // Internal definitions always have default visibility.
899 if (GV->hasLocalLinkage()) {
900 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
901 return;
902 }
903 if (!D)
904 return;
905 // Set visibility for definitions, and for declarations if requested globally
906 // or set explicitly.
907 LinkageInfo LV = D->getLinkageAndVisibility();
908 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
909 !GV->isDeclarationForLinker())
910 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
911 }
912
shouldAssumeDSOLocal(const CodeGenModule & CGM,llvm::GlobalValue * GV)913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
914 llvm::GlobalValue *GV) {
915 if (GV->hasLocalLinkage())
916 return true;
917
918 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
919 return true;
920
921 // DLLImport explicitly marks the GV as external.
922 if (GV->hasDLLImportStorageClass())
923 return false;
924
925 const llvm::Triple &TT = CGM.getTriple();
926 if (TT.isWindowsGNUEnvironment()) {
927 // In MinGW, variables without DLLImport can still be automatically
928 // imported from a DLL by the linker; don't mark variables that
929 // potentially could come from another DLL as DSO local.
930 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
931 !GV->isThreadLocal())
932 return false;
933 }
934
935 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
936 // remain unresolved in the link, they can be resolved to zero, which is
937 // outside the current DSO.
938 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
939 return false;
940
941 // Every other GV is local on COFF.
942 // Make an exception for windows OS in the triple: Some firmware builds use
943 // *-win32-macho triples. This (accidentally?) produced windows relocations
944 // without GOT tables in older clang versions; Keep this behaviour.
945 // FIXME: even thread local variables?
946 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
947 return true;
948
949 // Only handle COFF and ELF for now.
950 if (!TT.isOSBinFormatELF())
951 return false;
952
953 // If this is not an executable, don't assume anything is local.
954 const auto &CGOpts = CGM.getCodeGenOpts();
955 llvm::Reloc::Model RM = CGOpts.RelocationModel;
956 const auto &LOpts = CGM.getLangOpts();
957 if (RM != llvm::Reloc::Static && !LOpts.PIE)
958 return false;
959
960 // A definition cannot be preempted from an executable.
961 if (!GV->isDeclarationForLinker())
962 return true;
963
964 // Most PIC code sequences that assume that a symbol is local cannot produce a
965 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
966 // depended, it seems worth it to handle it here.
967 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
968 return false;
969
970 // PowerPC64 prefers TOC indirection to avoid copy relocations.
971 if (TT.isPPC64())
972 return false;
973
974 // If we can use copy relocations we can assume it is local.
975 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
976 if (!Var->isThreadLocal() &&
977 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
978 return true;
979
980 // If we can use a plt entry as the symbol address we can assume it
981 // is local.
982 // FIXME: This should work for PIE, but the gold linker doesn't support it.
983 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
984 return true;
985
986 // Otherwise don't assume it is local.
987 return false;
988 }
989
setDSOLocal(llvm::GlobalValue * GV) const990 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
991 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
992 }
993
setDLLImportDLLExport(llvm::GlobalValue * GV,GlobalDecl GD) const994 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
995 GlobalDecl GD) const {
996 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
997 // C++ destructors have a few C++ ABI specific special cases.
998 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
999 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1000 return;
1001 }
1002 setDLLImportDLLExport(GV, D);
1003 }
1004
setDLLImportDLLExport(llvm::GlobalValue * GV,const NamedDecl * D) const1005 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1006 const NamedDecl *D) const {
1007 if (D && D->isExternallyVisible()) {
1008 if (D->hasAttr<DLLImportAttr>())
1009 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1010 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1011 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1012 }
1013 }
1014
setGVProperties(llvm::GlobalValue * GV,GlobalDecl GD) const1015 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1016 GlobalDecl GD) const {
1017 setDLLImportDLLExport(GV, GD);
1018 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1019 }
1020
setGVProperties(llvm::GlobalValue * GV,const NamedDecl * D) const1021 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1022 const NamedDecl *D) const {
1023 setDLLImportDLLExport(GV, D);
1024 setGVPropertiesAux(GV, D);
1025 }
1026
setGVPropertiesAux(llvm::GlobalValue * GV,const NamedDecl * D) const1027 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1028 const NamedDecl *D) const {
1029 setGlobalVisibility(GV, D);
1030 setDSOLocal(GV);
1031 GV->setPartition(CodeGenOpts.SymbolPartition);
1032 }
1033
GetLLVMTLSModel(StringRef S)1034 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1035 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1036 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1037 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1038 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1039 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1040 }
1041
1042 llvm::GlobalVariable::ThreadLocalMode
GetDefaultLLVMTLSModel() const1043 CodeGenModule::GetDefaultLLVMTLSModel() const {
1044 switch (CodeGenOpts.getDefaultTLSModel()) {
1045 case CodeGenOptions::GeneralDynamicTLSModel:
1046 return llvm::GlobalVariable::GeneralDynamicTLSModel;
1047 case CodeGenOptions::LocalDynamicTLSModel:
1048 return llvm::GlobalVariable::LocalDynamicTLSModel;
1049 case CodeGenOptions::InitialExecTLSModel:
1050 return llvm::GlobalVariable::InitialExecTLSModel;
1051 case CodeGenOptions::LocalExecTLSModel:
1052 return llvm::GlobalVariable::LocalExecTLSModel;
1053 }
1054 llvm_unreachable("Invalid TLS model!");
1055 }
1056
setTLSMode(llvm::GlobalValue * GV,const VarDecl & D) const1057 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1058 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1059
1060 llvm::GlobalValue::ThreadLocalMode TLM;
1061 TLM = GetDefaultLLVMTLSModel();
1062
1063 // Override the TLS model if it is explicitly specified.
1064 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1065 TLM = GetLLVMTLSModel(Attr->getModel());
1066 }
1067
1068 GV->setThreadLocalMode(TLM);
1069 }
1070
getCPUSpecificMangling(const CodeGenModule & CGM,StringRef Name)1071 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1072 StringRef Name) {
1073 const TargetInfo &Target = CGM.getTarget();
1074 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1075 }
1076
AppendCPUSpecificCPUDispatchMangling(const CodeGenModule & CGM,const CPUSpecificAttr * Attr,unsigned CPUIndex,raw_ostream & Out)1077 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1078 const CPUSpecificAttr *Attr,
1079 unsigned CPUIndex,
1080 raw_ostream &Out) {
1081 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1082 // supported.
1083 if (Attr)
1084 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1085 else if (CGM.getTarget().supportsIFunc())
1086 Out << ".resolver";
1087 }
1088
AppendTargetMangling(const CodeGenModule & CGM,const TargetAttr * Attr,raw_ostream & Out)1089 static void AppendTargetMangling(const CodeGenModule &CGM,
1090 const TargetAttr *Attr, raw_ostream &Out) {
1091 if (Attr->isDefaultVersion())
1092 return;
1093
1094 Out << '.';
1095 const TargetInfo &Target = CGM.getTarget();
1096 ParsedTargetAttr Info =
1097 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1098 // Multiversioning doesn't allow "no-${feature}", so we can
1099 // only have "+" prefixes here.
1100 assert(LHS.startswith("+") && RHS.startswith("+") &&
1101 "Features should always have a prefix.");
1102 return Target.multiVersionSortPriority(LHS.substr(1)) >
1103 Target.multiVersionSortPriority(RHS.substr(1));
1104 });
1105
1106 bool IsFirst = true;
1107
1108 if (!Info.Architecture.empty()) {
1109 IsFirst = false;
1110 Out << "arch_" << Info.Architecture;
1111 }
1112
1113 for (StringRef Feat : Info.Features) {
1114 if (!IsFirst)
1115 Out << '_';
1116 IsFirst = false;
1117 Out << Feat.substr(1);
1118 }
1119 }
1120
getMangledNameImpl(const CodeGenModule & CGM,GlobalDecl GD,const NamedDecl * ND,bool OmitMultiVersionMangling=false)1121 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1122 const NamedDecl *ND,
1123 bool OmitMultiVersionMangling = false) {
1124 SmallString<256> Buffer;
1125 llvm::raw_svector_ostream Out(Buffer);
1126 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1127 if (MC.shouldMangleDeclName(ND))
1128 MC.mangleName(GD.getWithDecl(ND), Out);
1129 else {
1130 IdentifierInfo *II = ND->getIdentifier();
1131 assert(II && "Attempt to mangle unnamed decl.");
1132 const auto *FD = dyn_cast<FunctionDecl>(ND);
1133
1134 if (FD &&
1135 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1136 Out << "__regcall3__" << II->getName();
1137 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1138 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1139 Out << "__device_stub__" << II->getName();
1140 } else {
1141 Out << II->getName();
1142 }
1143 }
1144
1145 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1146 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1147 switch (FD->getMultiVersionKind()) {
1148 case MultiVersionKind::CPUDispatch:
1149 case MultiVersionKind::CPUSpecific:
1150 AppendCPUSpecificCPUDispatchMangling(CGM,
1151 FD->getAttr<CPUSpecificAttr>(),
1152 GD.getMultiVersionIndex(), Out);
1153 break;
1154 case MultiVersionKind::Target:
1155 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1156 break;
1157 case MultiVersionKind::None:
1158 llvm_unreachable("None multiversion type isn't valid here");
1159 }
1160 }
1161
1162 return std::string(Out.str());
1163 }
1164
UpdateMultiVersionNames(GlobalDecl GD,const FunctionDecl * FD)1165 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1166 const FunctionDecl *FD) {
1167 if (!FD->isMultiVersion())
1168 return;
1169
1170 // Get the name of what this would be without the 'target' attribute. This
1171 // allows us to lookup the version that was emitted when this wasn't a
1172 // multiversion function.
1173 std::string NonTargetName =
1174 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1175 GlobalDecl OtherGD;
1176 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1177 assert(OtherGD.getCanonicalDecl()
1178 .getDecl()
1179 ->getAsFunction()
1180 ->isMultiVersion() &&
1181 "Other GD should now be a multiversioned function");
1182 // OtherFD is the version of this function that was mangled BEFORE
1183 // becoming a MultiVersion function. It potentially needs to be updated.
1184 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1185 .getDecl()
1186 ->getAsFunction()
1187 ->getMostRecentDecl();
1188 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1189 // This is so that if the initial version was already the 'default'
1190 // version, we don't try to update it.
1191 if (OtherName != NonTargetName) {
1192 // Remove instead of erase, since others may have stored the StringRef
1193 // to this.
1194 const auto ExistingRecord = Manglings.find(NonTargetName);
1195 if (ExistingRecord != std::end(Manglings))
1196 Manglings.remove(&(*ExistingRecord));
1197 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1198 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1199 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1200 Entry->setName(OtherName);
1201 }
1202 }
1203 }
1204
getMangledName(GlobalDecl GD)1205 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1206 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1207
1208 // Some ABIs don't have constructor variants. Make sure that base and
1209 // complete constructors get mangled the same.
1210 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1211 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1212 CXXCtorType OrigCtorType = GD.getCtorType();
1213 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1214 if (OrigCtorType == Ctor_Base)
1215 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1216 }
1217 }
1218
1219 auto FoundName = MangledDeclNames.find(CanonicalGD);
1220 if (FoundName != MangledDeclNames.end())
1221 return FoundName->second;
1222
1223 // Keep the first result in the case of a mangling collision.
1224 const auto *ND = cast<NamedDecl>(GD.getDecl());
1225 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1226
1227 // Ensure either we have different ABIs between host and device compilations,
1228 // says host compilation following MSVC ABI but device compilation follows
1229 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1230 // mangling should be the same after name stubbing. The later checking is
1231 // very important as the device kernel name being mangled in host-compilation
1232 // is used to resolve the device binaries to be executed. Inconsistent naming
1233 // result in undefined behavior. Even though we cannot check that naming
1234 // directly between host- and device-compilations, the host- and
1235 // device-mangling in host compilation could help catching certain ones.
1236 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1237 getLangOpts().CUDAIsDevice ||
1238 (getContext().getAuxTargetInfo() &&
1239 (getContext().getAuxTargetInfo()->getCXXABI() !=
1240 getContext().getTargetInfo().getCXXABI())) ||
1241 getCUDARuntime().getDeviceSideName(ND) ==
1242 getMangledNameImpl(
1243 *this,
1244 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1245 ND));
1246
1247 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1248 return MangledDeclNames[CanonicalGD] = Result.first->first();
1249 }
1250
getBlockMangledName(GlobalDecl GD,const BlockDecl * BD)1251 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1252 const BlockDecl *BD) {
1253 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1254 const Decl *D = GD.getDecl();
1255
1256 SmallString<256> Buffer;
1257 llvm::raw_svector_ostream Out(Buffer);
1258 if (!D)
1259 MangleCtx.mangleGlobalBlock(BD,
1260 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1261 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1262 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1263 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1264 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1265 else
1266 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1267
1268 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1269 return Result.first->first();
1270 }
1271
GetGlobalValue(StringRef Name)1272 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1273 return getModule().getNamedValue(Name);
1274 }
1275
1276 /// AddGlobalCtor - Add a function to the list that will be called before
1277 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority,llvm::Constant * AssociatedData)1278 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1279 llvm::Constant *AssociatedData) {
1280 // FIXME: Type coercion of void()* types.
1281 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1282 }
1283
1284 /// AddGlobalDtor - Add a function to the list that will be called
1285 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority,bool IsDtorAttrFunc)1286 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1287 bool IsDtorAttrFunc) {
1288 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1289 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1290 DtorsUsingAtExit[Priority].push_back(Dtor);
1291 return;
1292 }
1293
1294 // FIXME: Type coercion of void()* types.
1295 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1296 }
1297
EmitCtorList(CtorList & Fns,const char * GlobalName)1298 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1299 if (Fns.empty()) return;
1300
1301 // Ctor function type is void()*.
1302 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1303 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1304 TheModule.getDataLayout().getProgramAddressSpace());
1305
1306 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1307 llvm::StructType *CtorStructTy = llvm::StructType::get(
1308 Int32Ty, CtorPFTy, VoidPtrTy);
1309
1310 // Construct the constructor and destructor arrays.
1311 ConstantInitBuilder builder(*this);
1312 auto ctors = builder.beginArray(CtorStructTy);
1313 for (const auto &I : Fns) {
1314 auto ctor = ctors.beginStruct(CtorStructTy);
1315 ctor.addInt(Int32Ty, I.Priority);
1316 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1317 if (I.AssociatedData)
1318 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1319 else
1320 ctor.addNullPointer(VoidPtrTy);
1321 ctor.finishAndAddTo(ctors);
1322 }
1323
1324 auto list =
1325 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1326 /*constant*/ false,
1327 llvm::GlobalValue::AppendingLinkage);
1328
1329 // The LTO linker doesn't seem to like it when we set an alignment
1330 // on appending variables. Take it off as a workaround.
1331 list->setAlignment(llvm::None);
1332
1333 Fns.clear();
1334 }
1335
1336 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(GlobalDecl GD)1337 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1338 const auto *D = cast<FunctionDecl>(GD.getDecl());
1339
1340 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1341
1342 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1343 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1344
1345 if (isa<CXXConstructorDecl>(D) &&
1346 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1347 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1348 // Our approach to inheriting constructors is fundamentally different from
1349 // that used by the MS ABI, so keep our inheriting constructor thunks
1350 // internal rather than trying to pick an unambiguous mangling for them.
1351 return llvm::GlobalValue::InternalLinkage;
1352 }
1353
1354 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1355 }
1356
CreateCrossDsoCfiTypeId(llvm::Metadata * MD)1357 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1358 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1359 if (!MDS) return nullptr;
1360
1361 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1362 }
1363
SetLLVMFunctionAttributes(GlobalDecl GD,const CGFunctionInfo & Info,llvm::Function * F)1364 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1365 const CGFunctionInfo &Info,
1366 llvm::Function *F) {
1367 unsigned CallingConv;
1368 llvm::AttributeList PAL;
1369 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1370 F->setAttributes(PAL);
1371 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1372 }
1373
removeImageAccessQualifier(std::string & TyName)1374 static void removeImageAccessQualifier(std::string& TyName) {
1375 std::string ReadOnlyQual("__read_only");
1376 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1377 if (ReadOnlyPos != std::string::npos)
1378 // "+ 1" for the space after access qualifier.
1379 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1380 else {
1381 std::string WriteOnlyQual("__write_only");
1382 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1383 if (WriteOnlyPos != std::string::npos)
1384 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1385 else {
1386 std::string ReadWriteQual("__read_write");
1387 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1388 if (ReadWritePos != std::string::npos)
1389 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1390 }
1391 }
1392 }
1393
1394 // Returns the address space id that should be produced to the
1395 // kernel_arg_addr_space metadata. This is always fixed to the ids
1396 // as specified in the SPIR 2.0 specification in order to differentiate
1397 // for example in clGetKernelArgInfo() implementation between the address
1398 // spaces with targets without unique mapping to the OpenCL address spaces
1399 // (basically all single AS CPUs).
ArgInfoAddressSpace(LangAS AS)1400 static unsigned ArgInfoAddressSpace(LangAS AS) {
1401 switch (AS) {
1402 case LangAS::opencl_global:
1403 return 1;
1404 case LangAS::opencl_constant:
1405 return 2;
1406 case LangAS::opencl_local:
1407 return 3;
1408 case LangAS::opencl_generic:
1409 return 4; // Not in SPIR 2.0 specs.
1410 case LangAS::opencl_global_device:
1411 return 5;
1412 case LangAS::opencl_global_host:
1413 return 6;
1414 default:
1415 return 0; // Assume private.
1416 }
1417 }
1418
GenOpenCLArgMetadata(llvm::Function * Fn,const FunctionDecl * FD,CodeGenFunction * CGF)1419 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1420 const FunctionDecl *FD,
1421 CodeGenFunction *CGF) {
1422 assert(((FD && CGF) || (!FD && !CGF)) &&
1423 "Incorrect use - FD and CGF should either be both null or not!");
1424 // Create MDNodes that represent the kernel arg metadata.
1425 // Each MDNode is a list in the form of "key", N number of values which is
1426 // the same number of values as their are kernel arguments.
1427
1428 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1429
1430 // MDNode for the kernel argument address space qualifiers.
1431 SmallVector<llvm::Metadata *, 8> addressQuals;
1432
1433 // MDNode for the kernel argument access qualifiers (images only).
1434 SmallVector<llvm::Metadata *, 8> accessQuals;
1435
1436 // MDNode for the kernel argument type names.
1437 SmallVector<llvm::Metadata *, 8> argTypeNames;
1438
1439 // MDNode for the kernel argument base type names.
1440 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1441
1442 // MDNode for the kernel argument type qualifiers.
1443 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1444
1445 // MDNode for the kernel argument names.
1446 SmallVector<llvm::Metadata *, 8> argNames;
1447
1448 if (FD && CGF)
1449 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1450 const ParmVarDecl *parm = FD->getParamDecl(i);
1451 QualType ty = parm->getType();
1452 std::string typeQuals;
1453
1454 if (ty->isPointerType()) {
1455 QualType pointeeTy = ty->getPointeeType();
1456
1457 // Get address qualifier.
1458 addressQuals.push_back(
1459 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1460 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1461
1462 // Get argument type name.
1463 std::string typeName =
1464 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1465
1466 // Turn "unsigned type" to "utype"
1467 std::string::size_type pos = typeName.find("unsigned");
1468 if (pointeeTy.isCanonical() && pos != std::string::npos)
1469 typeName.erase(pos + 1, 8);
1470
1471 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1472
1473 std::string baseTypeName =
1474 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1475 Policy) +
1476 "*";
1477
1478 // Turn "unsigned type" to "utype"
1479 pos = baseTypeName.find("unsigned");
1480 if (pos != std::string::npos)
1481 baseTypeName.erase(pos + 1, 8);
1482
1483 argBaseTypeNames.push_back(
1484 llvm::MDString::get(VMContext, baseTypeName));
1485
1486 // Get argument type qualifiers:
1487 if (ty.isRestrictQualified())
1488 typeQuals = "restrict";
1489 if (pointeeTy.isConstQualified() ||
1490 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1491 typeQuals += typeQuals.empty() ? "const" : " const";
1492 if (pointeeTy.isVolatileQualified())
1493 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1494 } else {
1495 uint32_t AddrSpc = 0;
1496 bool isPipe = ty->isPipeType();
1497 if (ty->isImageType() || isPipe)
1498 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1499
1500 addressQuals.push_back(
1501 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1502
1503 // Get argument type name.
1504 std::string typeName;
1505 if (isPipe)
1506 typeName = ty.getCanonicalType()
1507 ->castAs<PipeType>()
1508 ->getElementType()
1509 .getAsString(Policy);
1510 else
1511 typeName = ty.getUnqualifiedType().getAsString(Policy);
1512
1513 // Turn "unsigned type" to "utype"
1514 std::string::size_type pos = typeName.find("unsigned");
1515 if (ty.isCanonical() && pos != std::string::npos)
1516 typeName.erase(pos + 1, 8);
1517
1518 std::string baseTypeName;
1519 if (isPipe)
1520 baseTypeName = ty.getCanonicalType()
1521 ->castAs<PipeType>()
1522 ->getElementType()
1523 .getCanonicalType()
1524 .getAsString(Policy);
1525 else
1526 baseTypeName =
1527 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1528
1529 // Remove access qualifiers on images
1530 // (as they are inseparable from type in clang implementation,
1531 // but OpenCL spec provides a special query to get access qualifier
1532 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1533 if (ty->isImageType()) {
1534 removeImageAccessQualifier(typeName);
1535 removeImageAccessQualifier(baseTypeName);
1536 }
1537
1538 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1539
1540 // Turn "unsigned type" to "utype"
1541 pos = baseTypeName.find("unsigned");
1542 if (pos != std::string::npos)
1543 baseTypeName.erase(pos + 1, 8);
1544
1545 argBaseTypeNames.push_back(
1546 llvm::MDString::get(VMContext, baseTypeName));
1547
1548 if (isPipe)
1549 typeQuals = "pipe";
1550 }
1551
1552 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1553
1554 // Get image and pipe access qualifier:
1555 if (ty->isImageType() || ty->isPipeType()) {
1556 const Decl *PDecl = parm;
1557 if (auto *TD = dyn_cast<TypedefType>(ty))
1558 PDecl = TD->getDecl();
1559 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1560 if (A && A->isWriteOnly())
1561 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1562 else if (A && A->isReadWrite())
1563 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1564 else
1565 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1566 } else
1567 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1568
1569 // Get argument name.
1570 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1571 }
1572
1573 Fn->setMetadata("kernel_arg_addr_space",
1574 llvm::MDNode::get(VMContext, addressQuals));
1575 Fn->setMetadata("kernel_arg_access_qual",
1576 llvm::MDNode::get(VMContext, accessQuals));
1577 Fn->setMetadata("kernel_arg_type",
1578 llvm::MDNode::get(VMContext, argTypeNames));
1579 Fn->setMetadata("kernel_arg_base_type",
1580 llvm::MDNode::get(VMContext, argBaseTypeNames));
1581 Fn->setMetadata("kernel_arg_type_qual",
1582 llvm::MDNode::get(VMContext, argTypeQuals));
1583 if (getCodeGenOpts().EmitOpenCLArgMetadata)
1584 Fn->setMetadata("kernel_arg_name",
1585 llvm::MDNode::get(VMContext, argNames));
1586 }
1587
1588 /// Determines whether the language options require us to model
1589 /// unwind exceptions. We treat -fexceptions as mandating this
1590 /// except under the fragile ObjC ABI with only ObjC exceptions
1591 /// enabled. This means, for example, that C with -fexceptions
1592 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)1593 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1594 // If exceptions are completely disabled, obviously this is false.
1595 if (!LangOpts.Exceptions) return false;
1596
1597 // If C++ exceptions are enabled, this is true.
1598 if (LangOpts.CXXExceptions) return true;
1599
1600 // If ObjC exceptions are enabled, this depends on the ABI.
1601 if (LangOpts.ObjCExceptions) {
1602 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1603 }
1604
1605 return true;
1606 }
1607
requiresMemberFunctionPointerTypeMetadata(CodeGenModule & CGM,const CXXMethodDecl * MD)1608 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1609 const CXXMethodDecl *MD) {
1610 // Check that the type metadata can ever actually be used by a call.
1611 if (!CGM.getCodeGenOpts().LTOUnit ||
1612 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1613 return false;
1614
1615 // Only functions whose address can be taken with a member function pointer
1616 // need this sort of type metadata.
1617 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1618 !isa<CXXDestructorDecl>(MD);
1619 }
1620
1621 std::vector<const CXXRecordDecl *>
getMostBaseClasses(const CXXRecordDecl * RD)1622 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1623 llvm::SetVector<const CXXRecordDecl *> MostBases;
1624
1625 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1626 CollectMostBases = [&](const CXXRecordDecl *RD) {
1627 if (RD->getNumBases() == 0)
1628 MostBases.insert(RD);
1629 for (const CXXBaseSpecifier &B : RD->bases())
1630 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1631 };
1632 CollectMostBases(RD);
1633 return MostBases.takeVector();
1634 }
1635
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)1636 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1637 llvm::Function *F) {
1638 llvm::AttrBuilder B;
1639
1640 if (CodeGenOpts.UnwindTables)
1641 B.addAttribute(llvm::Attribute::UWTable);
1642
1643 if (CodeGenOpts.StackClashProtector)
1644 B.addAttribute("probe-stack", "inline-asm");
1645
1646 if (!hasUnwindExceptions(LangOpts))
1647 B.addAttribute(llvm::Attribute::NoUnwind);
1648
1649 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1650 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1651 B.addAttribute(llvm::Attribute::StackProtect);
1652 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1653 B.addAttribute(llvm::Attribute::StackProtectStrong);
1654 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1655 B.addAttribute(llvm::Attribute::StackProtectReq);
1656 }
1657
1658 if (!D) {
1659 // If we don't have a declaration to control inlining, the function isn't
1660 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1661 // disabled, mark the function as noinline.
1662 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1663 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1664 B.addAttribute(llvm::Attribute::NoInline);
1665
1666 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1667 return;
1668 }
1669
1670 // Track whether we need to add the optnone LLVM attribute,
1671 // starting with the default for this optimization level.
1672 bool ShouldAddOptNone =
1673 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1674 // We can't add optnone in the following cases, it won't pass the verifier.
1675 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1676 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1677
1678 // Add optnone, but do so only if the function isn't always_inline.
1679 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1680 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1681 B.addAttribute(llvm::Attribute::OptimizeNone);
1682
1683 // OptimizeNone implies noinline; we should not be inlining such functions.
1684 B.addAttribute(llvm::Attribute::NoInline);
1685
1686 // We still need to handle naked functions even though optnone subsumes
1687 // much of their semantics.
1688 if (D->hasAttr<NakedAttr>())
1689 B.addAttribute(llvm::Attribute::Naked);
1690
1691 // OptimizeNone wins over OptimizeForSize and MinSize.
1692 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1693 F->removeFnAttr(llvm::Attribute::MinSize);
1694 } else if (D->hasAttr<NakedAttr>()) {
1695 // Naked implies noinline: we should not be inlining such functions.
1696 B.addAttribute(llvm::Attribute::Naked);
1697 B.addAttribute(llvm::Attribute::NoInline);
1698 } else if (D->hasAttr<NoDuplicateAttr>()) {
1699 B.addAttribute(llvm::Attribute::NoDuplicate);
1700 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1701 // Add noinline if the function isn't always_inline.
1702 B.addAttribute(llvm::Attribute::NoInline);
1703 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1704 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1705 // (noinline wins over always_inline, and we can't specify both in IR)
1706 B.addAttribute(llvm::Attribute::AlwaysInline);
1707 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1708 // If we're not inlining, then force everything that isn't always_inline to
1709 // carry an explicit noinline attribute.
1710 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1711 B.addAttribute(llvm::Attribute::NoInline);
1712 } else {
1713 // Otherwise, propagate the inline hint attribute and potentially use its
1714 // absence to mark things as noinline.
1715 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1716 // Search function and template pattern redeclarations for inline.
1717 auto CheckForInline = [](const FunctionDecl *FD) {
1718 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1719 return Redecl->isInlineSpecified();
1720 };
1721 if (any_of(FD->redecls(), CheckRedeclForInline))
1722 return true;
1723 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1724 if (!Pattern)
1725 return false;
1726 return any_of(Pattern->redecls(), CheckRedeclForInline);
1727 };
1728 if (CheckForInline(FD)) {
1729 B.addAttribute(llvm::Attribute::InlineHint);
1730 } else if (CodeGenOpts.getInlining() ==
1731 CodeGenOptions::OnlyHintInlining &&
1732 !FD->isInlined() &&
1733 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1734 B.addAttribute(llvm::Attribute::NoInline);
1735 }
1736 }
1737 }
1738
1739 // Add other optimization related attributes if we are optimizing this
1740 // function.
1741 if (!D->hasAttr<OptimizeNoneAttr>()) {
1742 if (D->hasAttr<ColdAttr>()) {
1743 if (!ShouldAddOptNone)
1744 B.addAttribute(llvm::Attribute::OptimizeForSize);
1745 B.addAttribute(llvm::Attribute::Cold);
1746 }
1747
1748 if (D->hasAttr<MinSizeAttr>())
1749 B.addAttribute(llvm::Attribute::MinSize);
1750 }
1751
1752 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1753
1754 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1755 if (alignment)
1756 F->setAlignment(llvm::Align(alignment));
1757
1758 if (!D->hasAttr<AlignedAttr>())
1759 if (LangOpts.FunctionAlignment)
1760 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1761
1762 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1763 // reserve a bit for differentiating between virtual and non-virtual member
1764 // functions. If the current target's C++ ABI requires this and this is a
1765 // member function, set its alignment accordingly.
1766 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1767 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1768 F->setAlignment(llvm::Align(2));
1769 }
1770
1771 // In the cross-dso CFI mode with canonical jump tables, we want !type
1772 // attributes on definitions only.
1773 if (CodeGenOpts.SanitizeCfiCrossDso &&
1774 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1775 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1776 // Skip available_externally functions. They won't be codegen'ed in the
1777 // current module anyway.
1778 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1779 CreateFunctionTypeMetadataForIcall(FD, F);
1780 }
1781 }
1782
1783 // Emit type metadata on member functions for member function pointer checks.
1784 // These are only ever necessary on definitions; we're guaranteed that the
1785 // definition will be present in the LTO unit as a result of LTO visibility.
1786 auto *MD = dyn_cast<CXXMethodDecl>(D);
1787 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1788 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1789 llvm::Metadata *Id =
1790 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1791 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1792 F->addTypeMetadata(0, Id);
1793 }
1794 }
1795 }
1796
setLLVMFunctionFEnvAttributes(const FunctionDecl * D,llvm::Function * F)1797 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1798 llvm::Function *F) {
1799 if (D->hasAttr<StrictFPAttr>()) {
1800 llvm::AttrBuilder FuncAttrs;
1801 FuncAttrs.addAttribute("strictfp");
1802 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1803 }
1804 }
1805
SetCommonAttributes(GlobalDecl GD,llvm::GlobalValue * GV)1806 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1807 const Decl *D = GD.getDecl();
1808 if (dyn_cast_or_null<NamedDecl>(D))
1809 setGVProperties(GV, GD);
1810 else
1811 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1812
1813 if (D && D->hasAttr<UsedAttr>())
1814 addUsedGlobal(GV);
1815
1816 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1817 const auto *VD = cast<VarDecl>(D);
1818 if (VD->getType().isConstQualified() &&
1819 VD->getStorageDuration() == SD_Static)
1820 addUsedGlobal(GV);
1821 }
1822 }
1823
GetCPUAndFeaturesAttributes(GlobalDecl GD,llvm::AttrBuilder & Attrs)1824 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1825 llvm::AttrBuilder &Attrs) {
1826 // Add target-cpu and target-features attributes to functions. If
1827 // we have a decl for the function and it has a target attribute then
1828 // parse that and add it to the feature set.
1829 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1830 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1831 std::vector<std::string> Features;
1832 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1833 FD = FD ? FD->getMostRecentDecl() : FD;
1834 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1835 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1836 bool AddedAttr = false;
1837 if (TD || SD) {
1838 llvm::StringMap<bool> FeatureMap;
1839 getContext().getFunctionFeatureMap(FeatureMap, GD);
1840
1841 // Produce the canonical string for this set of features.
1842 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1843 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1844
1845 // Now add the target-cpu and target-features to the function.
1846 // While we populated the feature map above, we still need to
1847 // get and parse the target attribute so we can get the cpu for
1848 // the function.
1849 if (TD) {
1850 ParsedTargetAttr ParsedAttr = TD->parse();
1851 if (!ParsedAttr.Architecture.empty() &&
1852 getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1853 TargetCPU = ParsedAttr.Architecture;
1854 TuneCPU = ""; // Clear the tune CPU.
1855 }
1856 if (!ParsedAttr.Tune.empty() &&
1857 getTarget().isValidCPUName(ParsedAttr.Tune))
1858 TuneCPU = ParsedAttr.Tune;
1859 }
1860 } else {
1861 // Otherwise just add the existing target cpu and target features to the
1862 // function.
1863 Features = getTarget().getTargetOpts().Features;
1864 }
1865
1866 if (!TargetCPU.empty()) {
1867 Attrs.addAttribute("target-cpu", TargetCPU);
1868 AddedAttr = true;
1869 }
1870 if (!TuneCPU.empty()) {
1871 Attrs.addAttribute("tune-cpu", TuneCPU);
1872 AddedAttr = true;
1873 }
1874 if (!Features.empty()) {
1875 llvm::sort(Features);
1876 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1877 AddedAttr = true;
1878 }
1879
1880 return AddedAttr;
1881 }
1882
setNonAliasAttributes(GlobalDecl GD,llvm::GlobalObject * GO)1883 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1884 llvm::GlobalObject *GO) {
1885 const Decl *D = GD.getDecl();
1886 SetCommonAttributes(GD, GO);
1887
1888 if (D) {
1889 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1890 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1891 GV->addAttribute("bss-section", SA->getName());
1892 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1893 GV->addAttribute("data-section", SA->getName());
1894 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1895 GV->addAttribute("rodata-section", SA->getName());
1896 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1897 GV->addAttribute("relro-section", SA->getName());
1898 }
1899
1900 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1901 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1902 if (!D->getAttr<SectionAttr>())
1903 F->addFnAttr("implicit-section-name", SA->getName());
1904
1905 llvm::AttrBuilder Attrs;
1906 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1907 // We know that GetCPUAndFeaturesAttributes will always have the
1908 // newest set, since it has the newest possible FunctionDecl, so the
1909 // new ones should replace the old.
1910 llvm::AttrBuilder RemoveAttrs;
1911 RemoveAttrs.addAttribute("target-cpu");
1912 RemoveAttrs.addAttribute("target-features");
1913 RemoveAttrs.addAttribute("tune-cpu");
1914 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1915 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1916 }
1917 }
1918
1919 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1920 GO->setSection(CSA->getName());
1921 else if (const auto *SA = D->getAttr<SectionAttr>())
1922 GO->setSection(SA->getName());
1923 }
1924
1925 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1926 }
1927
SetInternalFunctionAttributes(GlobalDecl GD,llvm::Function * F,const CGFunctionInfo & FI)1928 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1929 llvm::Function *F,
1930 const CGFunctionInfo &FI) {
1931 const Decl *D = GD.getDecl();
1932 SetLLVMFunctionAttributes(GD, FI, F);
1933 SetLLVMFunctionAttributesForDefinition(D, F);
1934
1935 F->setLinkage(llvm::Function::InternalLinkage);
1936
1937 setNonAliasAttributes(GD, F);
1938 }
1939
setLinkageForGV(llvm::GlobalValue * GV,const NamedDecl * ND)1940 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1941 // Set linkage and visibility in case we never see a definition.
1942 LinkageInfo LV = ND->getLinkageAndVisibility();
1943 // Don't set internal linkage on declarations.
1944 // "extern_weak" is overloaded in LLVM; we probably should have
1945 // separate linkage types for this.
1946 if (isExternallyVisible(LV.getLinkage()) &&
1947 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1948 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1949 }
1950
CreateFunctionTypeMetadataForIcall(const FunctionDecl * FD,llvm::Function * F)1951 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1952 llvm::Function *F) {
1953 // Only if we are checking indirect calls.
1954 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1955 return;
1956
1957 // Non-static class methods are handled via vtable or member function pointer
1958 // checks elsewhere.
1959 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1960 return;
1961
1962 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1963 F->addTypeMetadata(0, MD);
1964 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1965
1966 // Emit a hash-based bit set entry for cross-DSO calls.
1967 if (CodeGenOpts.SanitizeCfiCrossDso)
1968 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1969 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1970 }
1971
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction,bool IsThunk)1972 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1973 bool IsIncompleteFunction,
1974 bool IsThunk) {
1975
1976 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1977 // If this is an intrinsic function, set the function's attributes
1978 // to the intrinsic's attributes.
1979 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1980 return;
1981 }
1982
1983 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1984
1985 if (!IsIncompleteFunction)
1986 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1987
1988 // Add the Returned attribute for "this", except for iOS 5 and earlier
1989 // where substantial code, including the libstdc++ dylib, was compiled with
1990 // GCC and does not actually return "this".
1991 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1992 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1993 assert(!F->arg_empty() &&
1994 F->arg_begin()->getType()
1995 ->canLosslesslyBitCastTo(F->getReturnType()) &&
1996 "unexpected this return");
1997 F->addAttribute(1, llvm::Attribute::Returned);
1998 }
1999
2000 // Only a few attributes are set on declarations; these may later be
2001 // overridden by a definition.
2002
2003 setLinkageForGV(F, FD);
2004 setGVProperties(F, FD);
2005
2006 // Setup target-specific attributes.
2007 if (!IsIncompleteFunction && F->isDeclaration())
2008 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2009
2010 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2011 F->setSection(CSA->getName());
2012 else if (const auto *SA = FD->getAttr<SectionAttr>())
2013 F->setSection(SA->getName());
2014
2015 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2016 if (FD->isInlineBuiltinDeclaration()) {
2017 const FunctionDecl *FDBody;
2018 bool HasBody = FD->hasBody(FDBody);
2019 (void)HasBody;
2020 assert(HasBody && "Inline builtin declarations should always have an "
2021 "available body!");
2022 if (shouldEmitFunction(FDBody))
2023 F->addAttribute(llvm::AttributeList::FunctionIndex,
2024 llvm::Attribute::NoBuiltin);
2025 }
2026
2027 if (FD->isReplaceableGlobalAllocationFunction()) {
2028 // A replaceable global allocation function does not act like a builtin by
2029 // default, only if it is invoked by a new-expression or delete-expression.
2030 F->addAttribute(llvm::AttributeList::FunctionIndex,
2031 llvm::Attribute::NoBuiltin);
2032 }
2033
2034 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2035 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2036 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2037 if (MD->isVirtual())
2038 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2039
2040 // Don't emit entries for function declarations in the cross-DSO mode. This
2041 // is handled with better precision by the receiving DSO. But if jump tables
2042 // are non-canonical then we need type metadata in order to produce the local
2043 // jump table.
2044 if (!CodeGenOpts.SanitizeCfiCrossDso ||
2045 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2046 CreateFunctionTypeMetadataForIcall(FD, F);
2047
2048 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2049 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2050
2051 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2052 // Annotate the callback behavior as metadata:
2053 // - The callback callee (as argument number).
2054 // - The callback payloads (as argument numbers).
2055 llvm::LLVMContext &Ctx = F->getContext();
2056 llvm::MDBuilder MDB(Ctx);
2057
2058 // The payload indices are all but the first one in the encoding. The first
2059 // identifies the callback callee.
2060 int CalleeIdx = *CB->encoding_begin();
2061 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2062 F->addMetadata(llvm::LLVMContext::MD_callback,
2063 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2064 CalleeIdx, PayloadIndices,
2065 /* VarArgsArePassed */ false)}));
2066 }
2067 }
2068
addUsedGlobal(llvm::GlobalValue * GV)2069 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2070 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2071 "Only globals with definition can force usage.");
2072 LLVMUsed.emplace_back(GV);
2073 }
2074
addCompilerUsedGlobal(llvm::GlobalValue * GV)2075 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2076 assert(!GV->isDeclaration() &&
2077 "Only globals with definition can force usage.");
2078 LLVMCompilerUsed.emplace_back(GV);
2079 }
2080
emitUsed(CodeGenModule & CGM,StringRef Name,std::vector<llvm::WeakTrackingVH> & List)2081 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2082 std::vector<llvm::WeakTrackingVH> &List) {
2083 // Don't create llvm.used if there is no need.
2084 if (List.empty())
2085 return;
2086
2087 // Convert List to what ConstantArray needs.
2088 SmallVector<llvm::Constant*, 8> UsedArray;
2089 UsedArray.resize(List.size());
2090 for (unsigned i = 0, e = List.size(); i != e; ++i) {
2091 UsedArray[i] =
2092 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2093 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2094 }
2095
2096 if (UsedArray.empty())
2097 return;
2098 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2099
2100 auto *GV = new llvm::GlobalVariable(
2101 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2102 llvm::ConstantArray::get(ATy, UsedArray), Name);
2103
2104 GV->setSection("llvm.metadata");
2105 }
2106
emitLLVMUsed()2107 void CodeGenModule::emitLLVMUsed() {
2108 emitUsed(*this, "llvm.used", LLVMUsed);
2109 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2110 }
2111
AppendLinkerOptions(StringRef Opts)2112 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2113 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2114 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2115 }
2116
AddDetectMismatch(StringRef Name,StringRef Value)2117 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2118 llvm::SmallString<32> Opt;
2119 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2120 if (Opt.empty())
2121 return;
2122 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2123 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2124 }
2125
AddDependentLib(StringRef Lib)2126 void CodeGenModule::AddDependentLib(StringRef Lib) {
2127 auto &C = getLLVMContext();
2128 if (getTarget().getTriple().isOSBinFormatELF()) {
2129 ELFDependentLibraries.push_back(
2130 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2131 return;
2132 }
2133
2134 llvm::SmallString<24> Opt;
2135 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2136 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2137 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2138 }
2139
2140 /// Add link options implied by the given module, including modules
2141 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(CodeGenModule & CGM,Module * Mod,SmallVectorImpl<llvm::MDNode * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)2142 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2143 SmallVectorImpl<llvm::MDNode *> &Metadata,
2144 llvm::SmallPtrSet<Module *, 16> &Visited) {
2145 // Import this module's parent.
2146 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2147 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2148 }
2149
2150 // Import this module's dependencies.
2151 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2152 if (Visited.insert(Mod->Imports[I - 1]).second)
2153 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2154 }
2155
2156 // Add linker options to link against the libraries/frameworks
2157 // described by this module.
2158 llvm::LLVMContext &Context = CGM.getLLVMContext();
2159 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2160
2161 // For modules that use export_as for linking, use that module
2162 // name instead.
2163 if (Mod->UseExportAsModuleLinkName)
2164 return;
2165
2166 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2167 // Link against a framework. Frameworks are currently Darwin only, so we
2168 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2169 if (Mod->LinkLibraries[I-1].IsFramework) {
2170 llvm::Metadata *Args[2] = {
2171 llvm::MDString::get(Context, "-framework"),
2172 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2173
2174 Metadata.push_back(llvm::MDNode::get(Context, Args));
2175 continue;
2176 }
2177
2178 // Link against a library.
2179 if (IsELF) {
2180 llvm::Metadata *Args[2] = {
2181 llvm::MDString::get(Context, "lib"),
2182 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2183 };
2184 Metadata.push_back(llvm::MDNode::get(Context, Args));
2185 } else {
2186 llvm::SmallString<24> Opt;
2187 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2188 Mod->LinkLibraries[I - 1].Library, Opt);
2189 auto *OptString = llvm::MDString::get(Context, Opt);
2190 Metadata.push_back(llvm::MDNode::get(Context, OptString));
2191 }
2192 }
2193 }
2194
EmitModuleLinkOptions()2195 void CodeGenModule::EmitModuleLinkOptions() {
2196 // Collect the set of all of the modules we want to visit to emit link
2197 // options, which is essentially the imported modules and all of their
2198 // non-explicit child modules.
2199 llvm::SetVector<clang::Module *> LinkModules;
2200 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2201 SmallVector<clang::Module *, 16> Stack;
2202
2203 // Seed the stack with imported modules.
2204 for (Module *M : ImportedModules) {
2205 // Do not add any link flags when an implementation TU of a module imports
2206 // a header of that same module.
2207 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2208 !getLangOpts().isCompilingModule())
2209 continue;
2210 if (Visited.insert(M).second)
2211 Stack.push_back(M);
2212 }
2213
2214 // Find all of the modules to import, making a little effort to prune
2215 // non-leaf modules.
2216 while (!Stack.empty()) {
2217 clang::Module *Mod = Stack.pop_back_val();
2218
2219 bool AnyChildren = false;
2220
2221 // Visit the submodules of this module.
2222 for (const auto &SM : Mod->submodules()) {
2223 // Skip explicit children; they need to be explicitly imported to be
2224 // linked against.
2225 if (SM->IsExplicit)
2226 continue;
2227
2228 if (Visited.insert(SM).second) {
2229 Stack.push_back(SM);
2230 AnyChildren = true;
2231 }
2232 }
2233
2234 // We didn't find any children, so add this module to the list of
2235 // modules to link against.
2236 if (!AnyChildren) {
2237 LinkModules.insert(Mod);
2238 }
2239 }
2240
2241 // Add link options for all of the imported modules in reverse topological
2242 // order. We don't do anything to try to order import link flags with respect
2243 // to linker options inserted by things like #pragma comment().
2244 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2245 Visited.clear();
2246 for (Module *M : LinkModules)
2247 if (Visited.insert(M).second)
2248 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2249 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2250 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2251
2252 // Add the linker options metadata flag.
2253 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2254 for (auto *MD : LinkerOptionsMetadata)
2255 NMD->addOperand(MD);
2256 }
2257
EmitDeferred()2258 void CodeGenModule::EmitDeferred() {
2259 // Emit deferred declare target declarations.
2260 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2261 getOpenMPRuntime().emitDeferredTargetDecls();
2262
2263 // Emit code for any potentially referenced deferred decls. Since a
2264 // previously unused static decl may become used during the generation of code
2265 // for a static function, iterate until no changes are made.
2266
2267 if (!DeferredVTables.empty()) {
2268 EmitDeferredVTables();
2269
2270 // Emitting a vtable doesn't directly cause more vtables to
2271 // become deferred, although it can cause functions to be
2272 // emitted that then need those vtables.
2273 assert(DeferredVTables.empty());
2274 }
2275
2276 // Emit CUDA/HIP static device variables referenced by host code only.
2277 if (getLangOpts().CUDA)
2278 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2279 DeferredDeclsToEmit.push_back(V);
2280
2281 // Stop if we're out of both deferred vtables and deferred declarations.
2282 if (DeferredDeclsToEmit.empty())
2283 return;
2284
2285 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2286 // work, it will not interfere with this.
2287 std::vector<GlobalDecl> CurDeclsToEmit;
2288 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2289
2290 for (GlobalDecl &D : CurDeclsToEmit) {
2291 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2292 // to get GlobalValue with exactly the type we need, not something that
2293 // might had been created for another decl with the same mangled name but
2294 // different type.
2295 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2296 GetAddrOfGlobal(D, ForDefinition));
2297
2298 // In case of different address spaces, we may still get a cast, even with
2299 // IsForDefinition equal to true. Query mangled names table to get
2300 // GlobalValue.
2301 if (!GV)
2302 GV = GetGlobalValue(getMangledName(D));
2303
2304 // Make sure GetGlobalValue returned non-null.
2305 assert(GV);
2306
2307 // Check to see if we've already emitted this. This is necessary
2308 // for a couple of reasons: first, decls can end up in the
2309 // deferred-decls queue multiple times, and second, decls can end
2310 // up with definitions in unusual ways (e.g. by an extern inline
2311 // function acquiring a strong function redefinition). Just
2312 // ignore these cases.
2313 if (!GV->isDeclaration())
2314 continue;
2315
2316 // If this is OpenMP, check if it is legal to emit this global normally.
2317 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2318 continue;
2319
2320 // Otherwise, emit the definition and move on to the next one.
2321 EmitGlobalDefinition(D, GV);
2322
2323 // If we found out that we need to emit more decls, do that recursively.
2324 // This has the advantage that the decls are emitted in a DFS and related
2325 // ones are close together, which is convenient for testing.
2326 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2327 EmitDeferred();
2328 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2329 }
2330 }
2331 }
2332
EmitVTablesOpportunistically()2333 void CodeGenModule::EmitVTablesOpportunistically() {
2334 // Try to emit external vtables as available_externally if they have emitted
2335 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2336 // is not allowed to create new references to things that need to be emitted
2337 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2338
2339 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2340 && "Only emit opportunistic vtables with optimizations");
2341
2342 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2343 assert(getVTables().isVTableExternal(RD) &&
2344 "This queue should only contain external vtables");
2345 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2346 VTables.GenerateClassData(RD);
2347 }
2348 OpportunisticVTables.clear();
2349 }
2350
EmitGlobalAnnotations()2351 void CodeGenModule::EmitGlobalAnnotations() {
2352 if (Annotations.empty())
2353 return;
2354
2355 // Create a new global variable for the ConstantStruct in the Module.
2356 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2357 Annotations[0]->getType(), Annotations.size()), Annotations);
2358 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2359 llvm::GlobalValue::AppendingLinkage,
2360 Array, "llvm.global.annotations");
2361 gv->setSection(AnnotationSection);
2362 }
2363
EmitAnnotationString(StringRef Str)2364 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2365 llvm::Constant *&AStr = AnnotationStrings[Str];
2366 if (AStr)
2367 return AStr;
2368
2369 // Not found yet, create a new global.
2370 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2371 auto *gv =
2372 new llvm::GlobalVariable(getModule(), s->getType(), true,
2373 llvm::GlobalValue::PrivateLinkage, s, ".str");
2374 gv->setSection(AnnotationSection);
2375 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2376 AStr = gv;
2377 return gv;
2378 }
2379
EmitAnnotationUnit(SourceLocation Loc)2380 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2381 SourceManager &SM = getContext().getSourceManager();
2382 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2383 if (PLoc.isValid())
2384 return EmitAnnotationString(PLoc.getFilename());
2385 return EmitAnnotationString(SM.getBufferName(Loc));
2386 }
2387
EmitAnnotationLineNo(SourceLocation L)2388 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2389 SourceManager &SM = getContext().getSourceManager();
2390 PresumedLoc PLoc = SM.getPresumedLoc(L);
2391 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2392 SM.getExpansionLineNumber(L);
2393 return llvm::ConstantInt::get(Int32Ty, LineNo);
2394 }
2395
EmitAnnotationArgs(const AnnotateAttr * Attr)2396 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2397 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2398 if (Exprs.empty())
2399 return llvm::ConstantPointerNull::get(Int8PtrTy);
2400
2401 llvm::FoldingSetNodeID ID;
2402 for (Expr *E : Exprs) {
2403 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2404 }
2405 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2406 if (Lookup)
2407 return Lookup;
2408
2409 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2410 LLVMArgs.reserve(Exprs.size());
2411 ConstantEmitter ConstEmiter(*this);
2412 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2413 const auto *CE = cast<clang::ConstantExpr>(E);
2414 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2415 CE->getType());
2416 });
2417 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2418 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2419 llvm::GlobalValue::PrivateLinkage, Struct,
2420 ".args");
2421 GV->setSection(AnnotationSection);
2422 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2423 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2424
2425 Lookup = Bitcasted;
2426 return Bitcasted;
2427 }
2428
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)2429 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2430 const AnnotateAttr *AA,
2431 SourceLocation L) {
2432 // Get the globals for file name, annotation, and the line number.
2433 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2434 *UnitGV = EmitAnnotationUnit(L),
2435 *LineNoCst = EmitAnnotationLineNo(L),
2436 *Args = EmitAnnotationArgs(AA);
2437
2438 llvm::Constant *ASZeroGV = GV;
2439 if (GV->getAddressSpace() != 0) {
2440 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2441 GV, GV->getValueType()->getPointerTo(0));
2442 }
2443
2444 // Create the ConstantStruct for the global annotation.
2445 llvm::Constant *Fields[] = {
2446 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2447 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2448 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2449 LineNoCst,
2450 Args,
2451 };
2452 return llvm::ConstantStruct::getAnon(Fields);
2453 }
2454
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)2455 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2456 llvm::GlobalValue *GV) {
2457 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2458 // Get the struct elements for these annotations.
2459 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2460 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2461 }
2462
isInSanitizerBlacklist(SanitizerMask Kind,llvm::Function * Fn,SourceLocation Loc) const2463 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2464 llvm::Function *Fn,
2465 SourceLocation Loc) const {
2466 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2467 // Blacklist by function name.
2468 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2469 return true;
2470 // Blacklist by location.
2471 if (Loc.isValid())
2472 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2473 // If location is unknown, this may be a compiler-generated function. Assume
2474 // it's located in the main file.
2475 auto &SM = Context.getSourceManager();
2476 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2477 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2478 }
2479 return false;
2480 }
2481
isInSanitizerBlacklist(llvm::GlobalVariable * GV,SourceLocation Loc,QualType Ty,StringRef Category) const2482 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2483 SourceLocation Loc, QualType Ty,
2484 StringRef Category) const {
2485 // For now globals can be blacklisted only in ASan and KASan.
2486 const SanitizerMask EnabledAsanMask =
2487 LangOpts.Sanitize.Mask &
2488 (SanitizerKind::Address | SanitizerKind::KernelAddress |
2489 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2490 SanitizerKind::MemTag);
2491 if (!EnabledAsanMask)
2492 return false;
2493 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2494 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2495 return true;
2496 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2497 return true;
2498 // Check global type.
2499 if (!Ty.isNull()) {
2500 // Drill down the array types: if global variable of a fixed type is
2501 // blacklisted, we also don't instrument arrays of them.
2502 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2503 Ty = AT->getElementType();
2504 Ty = Ty.getCanonicalType().getUnqualifiedType();
2505 // We allow to blacklist only record types (classes, structs etc.)
2506 if (Ty->isRecordType()) {
2507 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2508 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2509 return true;
2510 }
2511 }
2512 return false;
2513 }
2514
imbueXRayAttrs(llvm::Function * Fn,SourceLocation Loc,StringRef Category) const2515 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2516 StringRef Category) const {
2517 const auto &XRayFilter = getContext().getXRayFilter();
2518 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2519 auto Attr = ImbueAttr::NONE;
2520 if (Loc.isValid())
2521 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2522 if (Attr == ImbueAttr::NONE)
2523 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2524 switch (Attr) {
2525 case ImbueAttr::NONE:
2526 return false;
2527 case ImbueAttr::ALWAYS:
2528 Fn->addFnAttr("function-instrument", "xray-always");
2529 break;
2530 case ImbueAttr::ALWAYS_ARG1:
2531 Fn->addFnAttr("function-instrument", "xray-always");
2532 Fn->addFnAttr("xray-log-args", "1");
2533 break;
2534 case ImbueAttr::NEVER:
2535 Fn->addFnAttr("function-instrument", "xray-never");
2536 break;
2537 }
2538 return true;
2539 }
2540
MustBeEmitted(const ValueDecl * Global)2541 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2542 // Never defer when EmitAllDecls is specified.
2543 if (LangOpts.EmitAllDecls)
2544 return true;
2545
2546 if (CodeGenOpts.KeepStaticConsts) {
2547 const auto *VD = dyn_cast<VarDecl>(Global);
2548 if (VD && VD->getType().isConstQualified() &&
2549 VD->getStorageDuration() == SD_Static)
2550 return true;
2551 }
2552
2553 return getContext().DeclMustBeEmitted(Global);
2554 }
2555
MayBeEmittedEagerly(const ValueDecl * Global)2556 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2557 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2558 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2559 // Implicit template instantiations may change linkage if they are later
2560 // explicitly instantiated, so they should not be emitted eagerly.
2561 return false;
2562 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2563 // not emit them eagerly unless we sure that the function must be emitted on
2564 // the host.
2565 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2566 !LangOpts.OpenMPIsDevice &&
2567 !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2568 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2569 return false;
2570 }
2571 if (const auto *VD = dyn_cast<VarDecl>(Global))
2572 if (Context.getInlineVariableDefinitionKind(VD) ==
2573 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2574 // A definition of an inline constexpr static data member may change
2575 // linkage later if it's redeclared outside the class.
2576 return false;
2577 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2578 // codegen for global variables, because they may be marked as threadprivate.
2579 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2580 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2581 !isTypeConstant(Global->getType(), false) &&
2582 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2583 return false;
2584
2585 return true;
2586 }
2587
GetAddrOfMSGuidDecl(const MSGuidDecl * GD)2588 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2589 StringRef Name = getMangledName(GD);
2590
2591 // The UUID descriptor should be pointer aligned.
2592 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2593
2594 // Look for an existing global.
2595 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2596 return ConstantAddress(GV, Alignment);
2597
2598 ConstantEmitter Emitter(*this);
2599 llvm::Constant *Init;
2600
2601 APValue &V = GD->getAsAPValue();
2602 if (!V.isAbsent()) {
2603 // If possible, emit the APValue version of the initializer. In particular,
2604 // this gets the type of the constant right.
2605 Init = Emitter.emitForInitializer(
2606 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2607 } else {
2608 // As a fallback, directly construct the constant.
2609 // FIXME: This may get padding wrong under esoteric struct layout rules.
2610 // MSVC appears to create a complete type 'struct __s_GUID' that it
2611 // presumably uses to represent these constants.
2612 MSGuidDecl::Parts Parts = GD->getParts();
2613 llvm::Constant *Fields[4] = {
2614 llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2615 llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2616 llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2617 llvm::ConstantDataArray::getRaw(
2618 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2619 Int8Ty)};
2620 Init = llvm::ConstantStruct::getAnon(Fields);
2621 }
2622
2623 auto *GV = new llvm::GlobalVariable(
2624 getModule(), Init->getType(),
2625 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2626 if (supportsCOMDAT())
2627 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2628 setDSOLocal(GV);
2629
2630 llvm::Constant *Addr = GV;
2631 if (!V.isAbsent()) {
2632 Emitter.finalize(GV);
2633 } else {
2634 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2635 Addr = llvm::ConstantExpr::getBitCast(
2636 GV, Ty->getPointerTo(GV->getAddressSpace()));
2637 }
2638 return ConstantAddress(Addr, Alignment);
2639 }
2640
GetAddrOfTemplateParamObject(const TemplateParamObjectDecl * TPO)2641 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2642 const TemplateParamObjectDecl *TPO) {
2643 StringRef Name = getMangledName(TPO);
2644 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2645
2646 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2647 return ConstantAddress(GV, Alignment);
2648
2649 ConstantEmitter Emitter(*this);
2650 llvm::Constant *Init = Emitter.emitForInitializer(
2651 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2652
2653 if (!Init) {
2654 ErrorUnsupported(TPO, "template parameter object");
2655 return ConstantAddress::invalid();
2656 }
2657
2658 auto *GV = new llvm::GlobalVariable(
2659 getModule(), Init->getType(),
2660 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2661 if (supportsCOMDAT())
2662 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2663 Emitter.finalize(GV);
2664
2665 return ConstantAddress(GV, Alignment);
2666 }
2667
GetWeakRefReference(const ValueDecl * VD)2668 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2669 const AliasAttr *AA = VD->getAttr<AliasAttr>();
2670 assert(AA && "No alias?");
2671
2672 CharUnits Alignment = getContext().getDeclAlign(VD);
2673 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2674
2675 // See if there is already something with the target's name in the module.
2676 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2677 if (Entry) {
2678 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2679 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2680 return ConstantAddress(Ptr, Alignment);
2681 }
2682
2683 llvm::Constant *Aliasee;
2684 if (isa<llvm::FunctionType>(DeclTy))
2685 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2686 GlobalDecl(cast<FunctionDecl>(VD)),
2687 /*ForVTable=*/false);
2688 else
2689 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2690 llvm::PointerType::getUnqual(DeclTy),
2691 nullptr);
2692
2693 auto *F = cast<llvm::GlobalValue>(Aliasee);
2694 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2695 WeakRefReferences.insert(F);
2696
2697 return ConstantAddress(Aliasee, Alignment);
2698 }
2699
EmitGlobal(GlobalDecl GD)2700 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2701 const auto *Global = cast<ValueDecl>(GD.getDecl());
2702
2703 // Weak references don't produce any output by themselves.
2704 if (Global->hasAttr<WeakRefAttr>())
2705 return;
2706
2707 // If this is an alias definition (which otherwise looks like a declaration)
2708 // emit it now.
2709 if (Global->hasAttr<AliasAttr>())
2710 return EmitAliasDefinition(GD);
2711
2712 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2713 if (Global->hasAttr<IFuncAttr>())
2714 return emitIFuncDefinition(GD);
2715
2716 // If this is a cpu_dispatch multiversion function, emit the resolver.
2717 if (Global->hasAttr<CPUDispatchAttr>())
2718 return emitCPUDispatchDefinition(GD);
2719
2720 // If this is CUDA, be selective about which declarations we emit.
2721 if (LangOpts.CUDA) {
2722 if (LangOpts.CUDAIsDevice) {
2723 if (!Global->hasAttr<CUDADeviceAttr>() &&
2724 !Global->hasAttr<CUDAGlobalAttr>() &&
2725 !Global->hasAttr<CUDAConstantAttr>() &&
2726 !Global->hasAttr<CUDASharedAttr>() &&
2727 !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2728 !Global->getType()->isCUDADeviceBuiltinTextureType())
2729 return;
2730 } else {
2731 // We need to emit host-side 'shadows' for all global
2732 // device-side variables because the CUDA runtime needs their
2733 // size and host-side address in order to provide access to
2734 // their device-side incarnations.
2735
2736 // So device-only functions are the only things we skip.
2737 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2738 Global->hasAttr<CUDADeviceAttr>())
2739 return;
2740
2741 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2742 "Expected Variable or Function");
2743 }
2744 }
2745
2746 if (LangOpts.OpenMP) {
2747 // If this is OpenMP, check if it is legal to emit this global normally.
2748 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2749 return;
2750 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2751 if (MustBeEmitted(Global))
2752 EmitOMPDeclareReduction(DRD);
2753 return;
2754 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2755 if (MustBeEmitted(Global))
2756 EmitOMPDeclareMapper(DMD);
2757 return;
2758 }
2759 }
2760
2761 // Ignore declarations, they will be emitted on their first use.
2762 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2763 // Forward declarations are emitted lazily on first use.
2764 if (!FD->doesThisDeclarationHaveABody()) {
2765 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2766 return;
2767
2768 StringRef MangledName = getMangledName(GD);
2769
2770 // Compute the function info and LLVM type.
2771 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2772 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2773
2774 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2775 /*DontDefer=*/false);
2776 return;
2777 }
2778 } else {
2779 const auto *VD = cast<VarDecl>(Global);
2780 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2781 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2782 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2783 if (LangOpts.OpenMP) {
2784 // Emit declaration of the must-be-emitted declare target variable.
2785 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2786 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2787 bool UnifiedMemoryEnabled =
2788 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2789 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2790 !UnifiedMemoryEnabled) {
2791 (void)GetAddrOfGlobalVar(VD);
2792 } else {
2793 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2794 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2795 UnifiedMemoryEnabled)) &&
2796 "Link clause or to clause with unified memory expected.");
2797 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2798 }
2799
2800 return;
2801 }
2802 }
2803 // If this declaration may have caused an inline variable definition to
2804 // change linkage, make sure that it's emitted.
2805 if (Context.getInlineVariableDefinitionKind(VD) ==
2806 ASTContext::InlineVariableDefinitionKind::Strong)
2807 GetAddrOfGlobalVar(VD);
2808 return;
2809 }
2810 }
2811
2812 // Defer code generation to first use when possible, e.g. if this is an inline
2813 // function. If the global must always be emitted, do it eagerly if possible
2814 // to benefit from cache locality.
2815 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2816 // Emit the definition if it can't be deferred.
2817 EmitGlobalDefinition(GD);
2818 return;
2819 }
2820
2821 // If we're deferring emission of a C++ variable with an
2822 // initializer, remember the order in which it appeared in the file.
2823 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2824 cast<VarDecl>(Global)->hasInit()) {
2825 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2826 CXXGlobalInits.push_back(nullptr);
2827 }
2828
2829 StringRef MangledName = getMangledName(GD);
2830 if (GetGlobalValue(MangledName) != nullptr) {
2831 // The value has already been used and should therefore be emitted.
2832 addDeferredDeclToEmit(GD);
2833 } else if (MustBeEmitted(Global)) {
2834 // The value must be emitted, but cannot be emitted eagerly.
2835 assert(!MayBeEmittedEagerly(Global));
2836 addDeferredDeclToEmit(GD);
2837 } else {
2838 // Otherwise, remember that we saw a deferred decl with this name. The
2839 // first use of the mangled name will cause it to move into
2840 // DeferredDeclsToEmit.
2841 DeferredDecls[MangledName] = GD;
2842 }
2843 }
2844
2845 // Check if T is a class type with a destructor that's not dllimport.
HasNonDllImportDtor(QualType T)2846 static bool HasNonDllImportDtor(QualType T) {
2847 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2848 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2849 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2850 return true;
2851
2852 return false;
2853 }
2854
2855 namespace {
2856 struct FunctionIsDirectlyRecursive
2857 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2858 const StringRef Name;
2859 const Builtin::Context &BI;
FunctionIsDirectlyRecursive__anonf37ca5690711::FunctionIsDirectlyRecursive2860 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2861 : Name(N), BI(C) {}
2862
VisitCallExpr__anonf37ca5690711::FunctionIsDirectlyRecursive2863 bool VisitCallExpr(const CallExpr *E) {
2864 const FunctionDecl *FD = E->getDirectCallee();
2865 if (!FD)
2866 return false;
2867 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2868 if (Attr && Name == Attr->getLabel())
2869 return true;
2870 unsigned BuiltinID = FD->getBuiltinID();
2871 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2872 return false;
2873 StringRef BuiltinName = BI.getName(BuiltinID);
2874 if (BuiltinName.startswith("__builtin_") &&
2875 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2876 return true;
2877 }
2878 return false;
2879 }
2880
VisitStmt__anonf37ca5690711::FunctionIsDirectlyRecursive2881 bool VisitStmt(const Stmt *S) {
2882 for (const Stmt *Child : S->children())
2883 if (Child && this->Visit(Child))
2884 return true;
2885 return false;
2886 }
2887 };
2888
2889 // Make sure we're not referencing non-imported vars or functions.
2890 struct DLLImportFunctionVisitor
2891 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2892 bool SafeToInline = true;
2893
shouldVisitImplicitCode__anonf37ca5690711::DLLImportFunctionVisitor2894 bool shouldVisitImplicitCode() const { return true; }
2895
VisitVarDecl__anonf37ca5690711::DLLImportFunctionVisitor2896 bool VisitVarDecl(VarDecl *VD) {
2897 if (VD->getTLSKind()) {
2898 // A thread-local variable cannot be imported.
2899 SafeToInline = false;
2900 return SafeToInline;
2901 }
2902
2903 // A variable definition might imply a destructor call.
2904 if (VD->isThisDeclarationADefinition())
2905 SafeToInline = !HasNonDllImportDtor(VD->getType());
2906
2907 return SafeToInline;
2908 }
2909
VisitCXXBindTemporaryExpr__anonf37ca5690711::DLLImportFunctionVisitor2910 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2911 if (const auto *D = E->getTemporary()->getDestructor())
2912 SafeToInline = D->hasAttr<DLLImportAttr>();
2913 return SafeToInline;
2914 }
2915
VisitDeclRefExpr__anonf37ca5690711::DLLImportFunctionVisitor2916 bool VisitDeclRefExpr(DeclRefExpr *E) {
2917 ValueDecl *VD = E->getDecl();
2918 if (isa<FunctionDecl>(VD))
2919 SafeToInline = VD->hasAttr<DLLImportAttr>();
2920 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2921 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2922 return SafeToInline;
2923 }
2924
VisitCXXConstructExpr__anonf37ca5690711::DLLImportFunctionVisitor2925 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2926 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2927 return SafeToInline;
2928 }
2929
VisitCXXMemberCallExpr__anonf37ca5690711::DLLImportFunctionVisitor2930 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2931 CXXMethodDecl *M = E->getMethodDecl();
2932 if (!M) {
2933 // Call through a pointer to member function. This is safe to inline.
2934 SafeToInline = true;
2935 } else {
2936 SafeToInline = M->hasAttr<DLLImportAttr>();
2937 }
2938 return SafeToInline;
2939 }
2940
VisitCXXDeleteExpr__anonf37ca5690711::DLLImportFunctionVisitor2941 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2942 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2943 return SafeToInline;
2944 }
2945
VisitCXXNewExpr__anonf37ca5690711::DLLImportFunctionVisitor2946 bool VisitCXXNewExpr(CXXNewExpr *E) {
2947 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2948 return SafeToInline;
2949 }
2950 };
2951 }
2952
2953 // isTriviallyRecursive - Check if this function calls another
2954 // decl that, because of the asm attribute or the other decl being a builtin,
2955 // ends up pointing to itself.
2956 bool
isTriviallyRecursive(const FunctionDecl * FD)2957 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2958 StringRef Name;
2959 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2960 // asm labels are a special kind of mangling we have to support.
2961 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2962 if (!Attr)
2963 return false;
2964 Name = Attr->getLabel();
2965 } else {
2966 Name = FD->getName();
2967 }
2968
2969 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2970 const Stmt *Body = FD->getBody();
2971 return Body ? Walker.Visit(Body) : false;
2972 }
2973
shouldEmitFunction(GlobalDecl GD)2974 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2975 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2976 return true;
2977 const auto *F = cast<FunctionDecl>(GD.getDecl());
2978 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2979 return false;
2980
2981 if (F->hasAttr<DLLImportAttr>()) {
2982 // Check whether it would be safe to inline this dllimport function.
2983 DLLImportFunctionVisitor Visitor;
2984 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2985 if (!Visitor.SafeToInline)
2986 return false;
2987
2988 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2989 // Implicit destructor invocations aren't captured in the AST, so the
2990 // check above can't see them. Check for them manually here.
2991 for (const Decl *Member : Dtor->getParent()->decls())
2992 if (isa<FieldDecl>(Member))
2993 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2994 return false;
2995 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2996 if (HasNonDllImportDtor(B.getType()))
2997 return false;
2998 }
2999 }
3000
3001 // PR9614. Avoid cases where the source code is lying to us. An available
3002 // externally function should have an equivalent function somewhere else,
3003 // but a function that calls itself through asm label/`__builtin_` trickery is
3004 // clearly not equivalent to the real implementation.
3005 // This happens in glibc's btowc and in some configure checks.
3006 return !isTriviallyRecursive(F);
3007 }
3008
shouldOpportunisticallyEmitVTables()3009 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3010 return CodeGenOpts.OptimizationLevel > 0;
3011 }
3012
EmitMultiVersionFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)3013 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3014 llvm::GlobalValue *GV) {
3015 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3016
3017 if (FD->isCPUSpecificMultiVersion()) {
3018 auto *Spec = FD->getAttr<CPUSpecificAttr>();
3019 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3020 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3021 // Requires multiple emits.
3022 } else
3023 EmitGlobalFunctionDefinition(GD, GV);
3024 }
3025
EmitGlobalDefinition(GlobalDecl GD,llvm::GlobalValue * GV)3026 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3027 const auto *D = cast<ValueDecl>(GD.getDecl());
3028
3029 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3030 Context.getSourceManager(),
3031 "Generating code for declaration");
3032
3033 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3034 // At -O0, don't generate IR for functions with available_externally
3035 // linkage.
3036 if (!shouldEmitFunction(GD))
3037 return;
3038
3039 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3040 std::string Name;
3041 llvm::raw_string_ostream OS(Name);
3042 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3043 /*Qualified=*/true);
3044 return Name;
3045 });
3046
3047 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3048 // Make sure to emit the definition(s) before we emit the thunks.
3049 // This is necessary for the generation of certain thunks.
3050 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3051 ABI->emitCXXStructor(GD);
3052 else if (FD->isMultiVersion())
3053 EmitMultiVersionFunctionDefinition(GD, GV);
3054 else
3055 EmitGlobalFunctionDefinition(GD, GV);
3056
3057 if (Method->isVirtual())
3058 getVTables().EmitThunks(GD);
3059
3060 return;
3061 }
3062
3063 if (FD->isMultiVersion())
3064 return EmitMultiVersionFunctionDefinition(GD, GV);
3065 return EmitGlobalFunctionDefinition(GD, GV);
3066 }
3067
3068 if (const auto *VD = dyn_cast<VarDecl>(D))
3069 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3070
3071 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3072 }
3073
3074 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3075 llvm::Function *NewFn);
3076
3077 static unsigned
TargetMVPriority(const TargetInfo & TI,const CodeGenFunction::MultiVersionResolverOption & RO)3078 TargetMVPriority(const TargetInfo &TI,
3079 const CodeGenFunction::MultiVersionResolverOption &RO) {
3080 unsigned Priority = 0;
3081 for (StringRef Feat : RO.Conditions.Features)
3082 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3083
3084 if (!RO.Conditions.Architecture.empty())
3085 Priority = std::max(
3086 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3087 return Priority;
3088 }
3089
emitMultiVersionFunctions()3090 void CodeGenModule::emitMultiVersionFunctions() {
3091 for (GlobalDecl GD : MultiVersionFuncs) {
3092 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3093 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3094 getContext().forEachMultiversionedFunctionVersion(
3095 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3096 GlobalDecl CurGD{
3097 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3098 StringRef MangledName = getMangledName(CurGD);
3099 llvm::Constant *Func = GetGlobalValue(MangledName);
3100 if (!Func) {
3101 if (CurFD->isDefined()) {
3102 EmitGlobalFunctionDefinition(CurGD, nullptr);
3103 Func = GetGlobalValue(MangledName);
3104 } else {
3105 const CGFunctionInfo &FI =
3106 getTypes().arrangeGlobalDeclaration(GD);
3107 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3108 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3109 /*DontDefer=*/false, ForDefinition);
3110 }
3111 assert(Func && "This should have just been created");
3112 }
3113
3114 const auto *TA = CurFD->getAttr<TargetAttr>();
3115 llvm::SmallVector<StringRef, 8> Feats;
3116 TA->getAddedFeatures(Feats);
3117
3118 Options.emplace_back(cast<llvm::Function>(Func),
3119 TA->getArchitecture(), Feats);
3120 });
3121
3122 llvm::Function *ResolverFunc;
3123 const TargetInfo &TI = getTarget();
3124
3125 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3126 ResolverFunc = cast<llvm::Function>(
3127 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3128 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3129 } else {
3130 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3131 }
3132
3133 if (supportsCOMDAT())
3134 ResolverFunc->setComdat(
3135 getModule().getOrInsertComdat(ResolverFunc->getName()));
3136
3137 llvm::stable_sort(
3138 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3139 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3140 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3141 });
3142 CodeGenFunction CGF(*this);
3143 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3144 }
3145 }
3146
emitCPUDispatchDefinition(GlobalDecl GD)3147 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3148 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3149 assert(FD && "Not a FunctionDecl?");
3150 const auto *DD = FD->getAttr<CPUDispatchAttr>();
3151 assert(DD && "Not a cpu_dispatch Function?");
3152 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3153
3154 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3155 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3156 DeclTy = getTypes().GetFunctionType(FInfo);
3157 }
3158
3159 StringRef ResolverName = getMangledName(GD);
3160
3161 llvm::Type *ResolverType;
3162 GlobalDecl ResolverGD;
3163 if (getTarget().supportsIFunc())
3164 ResolverType = llvm::FunctionType::get(
3165 llvm::PointerType::get(DeclTy,
3166 Context.getTargetAddressSpace(FD->getType())),
3167 false);
3168 else {
3169 ResolverType = DeclTy;
3170 ResolverGD = GD;
3171 }
3172
3173 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3174 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3175 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3176 if (supportsCOMDAT())
3177 ResolverFunc->setComdat(
3178 getModule().getOrInsertComdat(ResolverFunc->getName()));
3179
3180 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3181 const TargetInfo &Target = getTarget();
3182 unsigned Index = 0;
3183 for (const IdentifierInfo *II : DD->cpus()) {
3184 // Get the name of the target function so we can look it up/create it.
3185 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3186 getCPUSpecificMangling(*this, II->getName());
3187
3188 llvm::Constant *Func = GetGlobalValue(MangledName);
3189
3190 if (!Func) {
3191 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3192 if (ExistingDecl.getDecl() &&
3193 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3194 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3195 Func = GetGlobalValue(MangledName);
3196 } else {
3197 if (!ExistingDecl.getDecl())
3198 ExistingDecl = GD.getWithMultiVersionIndex(Index);
3199
3200 Func = GetOrCreateLLVMFunction(
3201 MangledName, DeclTy, ExistingDecl,
3202 /*ForVTable=*/false, /*DontDefer=*/true,
3203 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3204 }
3205 }
3206
3207 llvm::SmallVector<StringRef, 32> Features;
3208 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3209 llvm::transform(Features, Features.begin(),
3210 [](StringRef Str) { return Str.substr(1); });
3211 Features.erase(std::remove_if(
3212 Features.begin(), Features.end(), [&Target](StringRef Feat) {
3213 return !Target.validateCpuSupports(Feat);
3214 }), Features.end());
3215 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3216 ++Index;
3217 }
3218
3219 llvm::sort(
3220 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3221 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3222 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3223 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3224 });
3225
3226 // If the list contains multiple 'default' versions, such as when it contains
3227 // 'pentium' and 'generic', don't emit the call to the generic one (since we
3228 // always run on at least a 'pentium'). We do this by deleting the 'least
3229 // advanced' (read, lowest mangling letter).
3230 while (Options.size() > 1 &&
3231 CodeGenFunction::GetX86CpuSupportsMask(
3232 (Options.end() - 2)->Conditions.Features) == 0) {
3233 StringRef LHSName = (Options.end() - 2)->Function->getName();
3234 StringRef RHSName = (Options.end() - 1)->Function->getName();
3235 if (LHSName.compare(RHSName) < 0)
3236 Options.erase(Options.end() - 2);
3237 else
3238 Options.erase(Options.end() - 1);
3239 }
3240
3241 CodeGenFunction CGF(*this);
3242 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3243
3244 if (getTarget().supportsIFunc()) {
3245 std::string AliasName = getMangledNameImpl(
3246 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3247 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3248 if (!AliasFunc) {
3249 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3250 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3251 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3252 auto *GA = llvm::GlobalAlias::create(
3253 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3254 GA->setLinkage(llvm::Function::WeakODRLinkage);
3255 SetCommonAttributes(GD, GA);
3256 }
3257 }
3258 }
3259
3260 /// If a dispatcher for the specified mangled name is not in the module, create
3261 /// and return an llvm Function with the specified type.
GetOrCreateMultiVersionResolver(GlobalDecl GD,llvm::Type * DeclTy,const FunctionDecl * FD)3262 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3263 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3264 std::string MangledName =
3265 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3266
3267 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3268 // a separate resolver).
3269 std::string ResolverName = MangledName;
3270 if (getTarget().supportsIFunc())
3271 ResolverName += ".ifunc";
3272 else if (FD->isTargetMultiVersion())
3273 ResolverName += ".resolver";
3274
3275 // If this already exists, just return that one.
3276 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3277 return ResolverGV;
3278
3279 // Since this is the first time we've created this IFunc, make sure
3280 // that we put this multiversioned function into the list to be
3281 // replaced later if necessary (target multiversioning only).
3282 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3283 MultiVersionFuncs.push_back(GD);
3284
3285 if (getTarget().supportsIFunc()) {
3286 llvm::Type *ResolverType = llvm::FunctionType::get(
3287 llvm::PointerType::get(
3288 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3289 false);
3290 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3291 MangledName + ".resolver", ResolverType, GlobalDecl{},
3292 /*ForVTable=*/false);
3293 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3294 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3295 GIF->setName(ResolverName);
3296 SetCommonAttributes(FD, GIF);
3297
3298 return GIF;
3299 }
3300
3301 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3302 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3303 assert(isa<llvm::GlobalValue>(Resolver) &&
3304 "Resolver should be created for the first time");
3305 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3306 return Resolver;
3307 }
3308
3309 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3310 /// module, create and return an llvm Function with the specified type. If there
3311 /// is something in the module with the specified name, return it potentially
3312 /// bitcasted to the right type.
3313 ///
3314 /// If D is non-null, it specifies a decl that correspond to this. This is used
3315 /// to set the attributes on the function when it is first created.
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl GD,bool ForVTable,bool DontDefer,bool IsThunk,llvm::AttributeList ExtraAttrs,ForDefinition_t IsForDefinition)3316 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3317 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3318 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3319 ForDefinition_t IsForDefinition) {
3320 const Decl *D = GD.getDecl();
3321
3322 // Any attempts to use a MultiVersion function should result in retrieving
3323 // the iFunc instead. Name Mangling will handle the rest of the changes.
3324 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3325 // For the device mark the function as one that should be emitted.
3326 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3327 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3328 !DontDefer && !IsForDefinition) {
3329 if (const FunctionDecl *FDDef = FD->getDefinition()) {
3330 GlobalDecl GDDef;
3331 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3332 GDDef = GlobalDecl(CD, GD.getCtorType());
3333 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3334 GDDef = GlobalDecl(DD, GD.getDtorType());
3335 else
3336 GDDef = GlobalDecl(FDDef);
3337 EmitGlobal(GDDef);
3338 }
3339 }
3340
3341 if (FD->isMultiVersion()) {
3342 if (FD->hasAttr<TargetAttr>())
3343 UpdateMultiVersionNames(GD, FD);
3344 if (!IsForDefinition)
3345 return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3346 }
3347 }
3348
3349 // Lookup the entry, lazily creating it if necessary.
3350 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3351 if (Entry) {
3352 if (WeakRefReferences.erase(Entry)) {
3353 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3354 if (FD && !FD->hasAttr<WeakAttr>())
3355 Entry->setLinkage(llvm::Function::ExternalLinkage);
3356 }
3357
3358 // Handle dropped DLL attributes.
3359 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3360 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3361 setDSOLocal(Entry);
3362 }
3363
3364 // If there are two attempts to define the same mangled name, issue an
3365 // error.
3366 if (IsForDefinition && !Entry->isDeclaration()) {
3367 GlobalDecl OtherGD;
3368 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3369 // to make sure that we issue an error only once.
3370 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3371 (GD.getCanonicalDecl().getDecl() !=
3372 OtherGD.getCanonicalDecl().getDecl()) &&
3373 DiagnosedConflictingDefinitions.insert(GD).second) {
3374 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3375 << MangledName;
3376 getDiags().Report(OtherGD.getDecl()->getLocation(),
3377 diag::note_previous_definition);
3378 }
3379 }
3380
3381 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3382 (Entry->getValueType() == Ty)) {
3383 return Entry;
3384 }
3385
3386 // Make sure the result is of the correct type.
3387 // (If function is requested for a definition, we always need to create a new
3388 // function, not just return a bitcast.)
3389 if (!IsForDefinition)
3390 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3391 }
3392
3393 // This function doesn't have a complete type (for example, the return
3394 // type is an incomplete struct). Use a fake type instead, and make
3395 // sure not to try to set attributes.
3396 bool IsIncompleteFunction = false;
3397
3398 llvm::FunctionType *FTy;
3399 if (isa<llvm::FunctionType>(Ty)) {
3400 FTy = cast<llvm::FunctionType>(Ty);
3401 } else {
3402 FTy = llvm::FunctionType::get(VoidTy, false);
3403 IsIncompleteFunction = true;
3404 }
3405
3406 llvm::Function *F =
3407 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3408 Entry ? StringRef() : MangledName, &getModule());
3409
3410 // If we already created a function with the same mangled name (but different
3411 // type) before, take its name and add it to the list of functions to be
3412 // replaced with F at the end of CodeGen.
3413 //
3414 // This happens if there is a prototype for a function (e.g. "int f()") and
3415 // then a definition of a different type (e.g. "int f(int x)").
3416 if (Entry) {
3417 F->takeName(Entry);
3418
3419 // This might be an implementation of a function without a prototype, in
3420 // which case, try to do special replacement of calls which match the new
3421 // prototype. The really key thing here is that we also potentially drop
3422 // arguments from the call site so as to make a direct call, which makes the
3423 // inliner happier and suppresses a number of optimizer warnings (!) about
3424 // dropping arguments.
3425 if (!Entry->use_empty()) {
3426 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3427 Entry->removeDeadConstantUsers();
3428 }
3429
3430 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3431 F, Entry->getValueType()->getPointerTo());
3432 addGlobalValReplacement(Entry, BC);
3433 }
3434
3435 assert(F->getName() == MangledName && "name was uniqued!");
3436 if (D)
3437 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3438 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3439 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3440 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3441 }
3442
3443 if (!DontDefer) {
3444 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3445 // each other bottoming out with the base dtor. Therefore we emit non-base
3446 // dtors on usage, even if there is no dtor definition in the TU.
3447 if (D && isa<CXXDestructorDecl>(D) &&
3448 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3449 GD.getDtorType()))
3450 addDeferredDeclToEmit(GD);
3451
3452 // This is the first use or definition of a mangled name. If there is a
3453 // deferred decl with this name, remember that we need to emit it at the end
3454 // of the file.
3455 auto DDI = DeferredDecls.find(MangledName);
3456 if (DDI != DeferredDecls.end()) {
3457 // Move the potentially referenced deferred decl to the
3458 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3459 // don't need it anymore).
3460 addDeferredDeclToEmit(DDI->second);
3461 DeferredDecls.erase(DDI);
3462
3463 // Otherwise, there are cases we have to worry about where we're
3464 // using a declaration for which we must emit a definition but where
3465 // we might not find a top-level definition:
3466 // - member functions defined inline in their classes
3467 // - friend functions defined inline in some class
3468 // - special member functions with implicit definitions
3469 // If we ever change our AST traversal to walk into class methods,
3470 // this will be unnecessary.
3471 //
3472 // We also don't emit a definition for a function if it's going to be an
3473 // entry in a vtable, unless it's already marked as used.
3474 } else if (getLangOpts().CPlusPlus && D) {
3475 // Look for a declaration that's lexically in a record.
3476 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3477 FD = FD->getPreviousDecl()) {
3478 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3479 if (FD->doesThisDeclarationHaveABody()) {
3480 addDeferredDeclToEmit(GD.getWithDecl(FD));
3481 break;
3482 }
3483 }
3484 }
3485 }
3486 }
3487
3488 // Make sure the result is of the requested type.
3489 if (!IsIncompleteFunction) {
3490 assert(F->getFunctionType() == Ty);
3491 return F;
3492 }
3493
3494 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3495 return llvm::ConstantExpr::getBitCast(F, PTy);
3496 }
3497
3498 /// GetAddrOfFunction - Return the address of the given function. If Ty is
3499 /// non-null, then this function will use the specified type if it has to
3500 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable,bool DontDefer,ForDefinition_t IsForDefinition)3501 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3502 llvm::Type *Ty,
3503 bool ForVTable,
3504 bool DontDefer,
3505 ForDefinition_t IsForDefinition) {
3506 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3507 "consteval function should never be emitted");
3508 // If there was no specific requested type, just convert it now.
3509 if (!Ty) {
3510 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3511 Ty = getTypes().ConvertType(FD->getType());
3512 }
3513
3514 // Devirtualized destructor calls may come through here instead of via
3515 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3516 // of the complete destructor when necessary.
3517 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3518 if (getTarget().getCXXABI().isMicrosoft() &&
3519 GD.getDtorType() == Dtor_Complete &&
3520 DD->getParent()->getNumVBases() == 0)
3521 GD = GlobalDecl(DD, Dtor_Base);
3522 }
3523
3524 StringRef MangledName = getMangledName(GD);
3525 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3526 /*IsThunk=*/false, llvm::AttributeList(),
3527 IsForDefinition);
3528 }
3529
3530 static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext & C,StringRef Name)3531 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3532 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3533 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3534
3535 IdentifierInfo &CII = C.Idents.get(Name);
3536 for (const auto &Result : DC->lookup(&CII))
3537 if (const auto FD = dyn_cast<FunctionDecl>(Result))
3538 return FD;
3539
3540 if (!C.getLangOpts().CPlusPlus)
3541 return nullptr;
3542
3543 // Demangle the premangled name from getTerminateFn()
3544 IdentifierInfo &CXXII =
3545 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3546 ? C.Idents.get("terminate")
3547 : C.Idents.get(Name);
3548
3549 for (const auto &N : {"__cxxabiv1", "std"}) {
3550 IdentifierInfo &NS = C.Idents.get(N);
3551 for (const auto &Result : DC->lookup(&NS)) {
3552 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3553 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3554 for (const auto &Result : LSD->lookup(&NS))
3555 if ((ND = dyn_cast<NamespaceDecl>(Result)))
3556 break;
3557
3558 if (ND)
3559 for (const auto &Result : ND->lookup(&CXXII))
3560 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3561 return FD;
3562 }
3563 }
3564
3565 return nullptr;
3566 }
3567
3568 /// CreateRuntimeFunction - Create a new runtime function with the specified
3569 /// type and name.
3570 llvm::FunctionCallee
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeList ExtraAttrs,bool Local,bool AssumeConvergent)3571 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3572 llvm::AttributeList ExtraAttrs, bool Local,
3573 bool AssumeConvergent) {
3574 if (AssumeConvergent) {
3575 ExtraAttrs =
3576 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3577 llvm::Attribute::Convergent);
3578 }
3579
3580 llvm::Constant *C =
3581 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3582 /*DontDefer=*/false, /*IsThunk=*/false,
3583 ExtraAttrs);
3584
3585 if (auto *F = dyn_cast<llvm::Function>(C)) {
3586 if (F->empty()) {
3587 F->setCallingConv(getRuntimeCC());
3588
3589 // In Windows Itanium environments, try to mark runtime functions
3590 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3591 // will link their standard library statically or dynamically. Marking
3592 // functions imported when they are not imported can cause linker errors
3593 // and warnings.
3594 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3595 !getCodeGenOpts().LTOVisibilityPublicStd) {
3596 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3597 if (!FD || FD->hasAttr<DLLImportAttr>()) {
3598 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3599 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3600 }
3601 }
3602 setDSOLocal(F);
3603 }
3604 }
3605
3606 return {FTy, C};
3607 }
3608
3609 /// isTypeConstant - Determine whether an object of this type can be emitted
3610 /// as a constant.
3611 ///
3612 /// If ExcludeCtor is true, the duration when the object's constructor runs
3613 /// will not be considered. The caller will need to verify that the object is
3614 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)3615 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3616 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3617 return false;
3618
3619 if (Context.getLangOpts().CPlusPlus) {
3620 if (const CXXRecordDecl *Record
3621 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3622 return ExcludeCtor && !Record->hasMutableFields() &&
3623 Record->hasTrivialDestructor();
3624 }
3625
3626 return true;
3627 }
3628
3629 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3630 /// create and return an llvm GlobalVariable with the specified type. If there
3631 /// is something in the module with the specified name, return it potentially
3632 /// bitcasted to the right type.
3633 ///
3634 /// If D is non-null, it specifies a decl that correspond to this. This is used
3635 /// to set the attributes on the global when it is first created.
3636 ///
3637 /// If IsForDefinition is true, it is guaranteed that an actual global with
3638 /// type Ty will be returned, not conversion of a variable with the same
3639 /// mangled name but some other type.
3640 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::PointerType * Ty,const VarDecl * D,ForDefinition_t IsForDefinition)3641 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3642 llvm::PointerType *Ty,
3643 const VarDecl *D,
3644 ForDefinition_t IsForDefinition) {
3645 // Lookup the entry, lazily creating it if necessary.
3646 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3647 if (Entry) {
3648 if (WeakRefReferences.erase(Entry)) {
3649 if (D && !D->hasAttr<WeakAttr>())
3650 Entry->setLinkage(llvm::Function::ExternalLinkage);
3651 }
3652
3653 // Handle dropped DLL attributes.
3654 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3655 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3656
3657 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3658 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3659
3660 if (Entry->getType() == Ty)
3661 return Entry;
3662
3663 // If there are two attempts to define the same mangled name, issue an
3664 // error.
3665 if (IsForDefinition && !Entry->isDeclaration()) {
3666 GlobalDecl OtherGD;
3667 const VarDecl *OtherD;
3668
3669 // Check that D is not yet in DiagnosedConflictingDefinitions is required
3670 // to make sure that we issue an error only once.
3671 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3672 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3673 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3674 OtherD->hasInit() &&
3675 DiagnosedConflictingDefinitions.insert(D).second) {
3676 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3677 << MangledName;
3678 getDiags().Report(OtherGD.getDecl()->getLocation(),
3679 diag::note_previous_definition);
3680 }
3681 }
3682
3683 // Make sure the result is of the correct type.
3684 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3685 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3686
3687 // (If global is requested for a definition, we always need to create a new
3688 // global, not just return a bitcast.)
3689 if (!IsForDefinition)
3690 return llvm::ConstantExpr::getBitCast(Entry, Ty);
3691 }
3692
3693 auto AddrSpace = GetGlobalVarAddressSpace(D);
3694 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3695
3696 auto *GV = new llvm::GlobalVariable(
3697 getModule(), Ty->getElementType(), false,
3698 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3699 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3700
3701 // If we already created a global with the same mangled name (but different
3702 // type) before, take its name and remove it from its parent.
3703 if (Entry) {
3704 GV->takeName(Entry);
3705
3706 if (!Entry->use_empty()) {
3707 llvm::Constant *NewPtrForOldDecl =
3708 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3709 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3710 }
3711
3712 Entry->eraseFromParent();
3713 }
3714
3715 // This is the first use or definition of a mangled name. If there is a
3716 // deferred decl with this name, remember that we need to emit it at the end
3717 // of the file.
3718 auto DDI = DeferredDecls.find(MangledName);
3719 if (DDI != DeferredDecls.end()) {
3720 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3721 // list, and remove it from DeferredDecls (since we don't need it anymore).
3722 addDeferredDeclToEmit(DDI->second);
3723 DeferredDecls.erase(DDI);
3724 }
3725
3726 // Handle things which are present even on external declarations.
3727 if (D) {
3728 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3729 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3730
3731 // FIXME: This code is overly simple and should be merged with other global
3732 // handling.
3733 GV->setConstant(isTypeConstant(D->getType(), false));
3734
3735 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3736
3737 setLinkageForGV(GV, D);
3738
3739 if (D->getTLSKind()) {
3740 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3741 CXXThreadLocals.push_back(D);
3742 setTLSMode(GV, *D);
3743 }
3744
3745 setGVProperties(GV, D);
3746
3747 // If required by the ABI, treat declarations of static data members with
3748 // inline initializers as definitions.
3749 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3750 EmitGlobalVarDefinition(D);
3751 }
3752
3753 // Emit section information for extern variables.
3754 if (D->hasExternalStorage()) {
3755 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3756 GV->setSection(SA->getName());
3757 }
3758
3759 // Handle XCore specific ABI requirements.
3760 if (getTriple().getArch() == llvm::Triple::xcore &&
3761 D->getLanguageLinkage() == CLanguageLinkage &&
3762 D->getType().isConstant(Context) &&
3763 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3764 GV->setSection(".cp.rodata");
3765
3766 // Check if we a have a const declaration with an initializer, we may be
3767 // able to emit it as available_externally to expose it's value to the
3768 // optimizer.
3769 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3770 D->getType().isConstQualified() && !GV->hasInitializer() &&
3771 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3772 const auto *Record =
3773 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3774 bool HasMutableFields = Record && Record->hasMutableFields();
3775 if (!HasMutableFields) {
3776 const VarDecl *InitDecl;
3777 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3778 if (InitExpr) {
3779 ConstantEmitter emitter(*this);
3780 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3781 if (Init) {
3782 auto *InitType = Init->getType();
3783 if (GV->getValueType() != InitType) {
3784 // The type of the initializer does not match the definition.
3785 // This happens when an initializer has a different type from
3786 // the type of the global (because of padding at the end of a
3787 // structure for instance).
3788 GV->setName(StringRef());
3789 // Make a new global with the correct type, this is now guaranteed
3790 // to work.
3791 auto *NewGV = cast<llvm::GlobalVariable>(
3792 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3793 ->stripPointerCasts());
3794
3795 // Erase the old global, since it is no longer used.
3796 GV->eraseFromParent();
3797 GV = NewGV;
3798 } else {
3799 GV->setInitializer(Init);
3800 GV->setConstant(true);
3801 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3802 }
3803 emitter.finalize(GV);
3804 }
3805 }
3806 }
3807 }
3808 }
3809
3810 if (GV->isDeclaration())
3811 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3812
3813 LangAS ExpectedAS =
3814 D ? D->getType().getAddressSpace()
3815 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3816 assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3817 Ty->getPointerAddressSpace());
3818 if (AddrSpace != ExpectedAS)
3819 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3820 ExpectedAS, Ty);
3821
3822 return GV;
3823 }
3824
3825 llvm::Constant *
GetAddrOfGlobal(GlobalDecl GD,ForDefinition_t IsForDefinition)3826 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3827 const Decl *D = GD.getDecl();
3828
3829 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3830 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3831 /*DontDefer=*/false, IsForDefinition);
3832
3833 if (isa<CXXMethodDecl>(D)) {
3834 auto FInfo =
3835 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3836 auto Ty = getTypes().GetFunctionType(*FInfo);
3837 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3838 IsForDefinition);
3839 }
3840
3841 if (isa<FunctionDecl>(D)) {
3842 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3843 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3844 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3845 IsForDefinition);
3846 }
3847
3848 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3849 }
3850
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage,unsigned Alignment)3851 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3852 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3853 unsigned Alignment) {
3854 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3855 llvm::GlobalVariable *OldGV = nullptr;
3856
3857 if (GV) {
3858 // Check if the variable has the right type.
3859 if (GV->getValueType() == Ty)
3860 return GV;
3861
3862 // Because C++ name mangling, the only way we can end up with an already
3863 // existing global with the same name is if it has been declared extern "C".
3864 assert(GV->isDeclaration() && "Declaration has wrong type!");
3865 OldGV = GV;
3866 }
3867
3868 // Create a new variable.
3869 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3870 Linkage, nullptr, Name);
3871
3872 if (OldGV) {
3873 // Replace occurrences of the old variable if needed.
3874 GV->takeName(OldGV);
3875
3876 if (!OldGV->use_empty()) {
3877 llvm::Constant *NewPtrForOldDecl =
3878 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3879 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3880 }
3881
3882 OldGV->eraseFromParent();
3883 }
3884
3885 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3886 !GV->hasAvailableExternallyLinkage())
3887 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3888
3889 GV->setAlignment(llvm::MaybeAlign(Alignment));
3890
3891 return GV;
3892 }
3893
3894 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3895 /// given global variable. If Ty is non-null and if the global doesn't exist,
3896 /// then it will be created with the specified type instead of whatever the
3897 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3898 /// that an actual global with type Ty will be returned, not conversion of a
3899 /// variable with the same mangled name but some other type.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty,ForDefinition_t IsForDefinition)3900 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3901 llvm::Type *Ty,
3902 ForDefinition_t IsForDefinition) {
3903 assert(D->hasGlobalStorage() && "Not a global variable");
3904 QualType ASTTy = D->getType();
3905 if (!Ty)
3906 Ty = getTypes().ConvertTypeForMem(ASTTy);
3907
3908 llvm::PointerType *PTy =
3909 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3910
3911 StringRef MangledName = getMangledName(D);
3912 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3913 }
3914
3915 /// CreateRuntimeVariable - Create a new runtime global variable with the
3916 /// specified type and name.
3917 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)3918 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3919 StringRef Name) {
3920 auto PtrTy =
3921 getContext().getLangOpts().OpenCL
3922 ? llvm::PointerType::get(
3923 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3924 : llvm::PointerType::getUnqual(Ty);
3925 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3926 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3927 return Ret;
3928 }
3929
EmitTentativeDefinition(const VarDecl * D)3930 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3931 assert(!D->getInit() && "Cannot emit definite definitions here!");
3932
3933 StringRef MangledName = getMangledName(D);
3934 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3935
3936 // We already have a definition, not declaration, with the same mangled name.
3937 // Emitting of declaration is not required (and actually overwrites emitted
3938 // definition).
3939 if (GV && !GV->isDeclaration())
3940 return;
3941
3942 // If we have not seen a reference to this variable yet, place it into the
3943 // deferred declarations table to be emitted if needed later.
3944 if (!MustBeEmitted(D) && !GV) {
3945 DeferredDecls[MangledName] = D;
3946 return;
3947 }
3948
3949 // The tentative definition is the only definition.
3950 EmitGlobalVarDefinition(D);
3951 }
3952
EmitExternalDeclaration(const VarDecl * D)3953 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3954 EmitExternalVarDeclaration(D);
3955 }
3956
GetTargetTypeStoreSize(llvm::Type * Ty) const3957 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3958 return Context.toCharUnitsFromBits(
3959 getDataLayout().getTypeStoreSizeInBits(Ty));
3960 }
3961
GetGlobalVarAddressSpace(const VarDecl * D)3962 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3963 LangAS AddrSpace = LangAS::Default;
3964 if (LangOpts.OpenCL) {
3965 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3966 assert(AddrSpace == LangAS::opencl_global ||
3967 AddrSpace == LangAS::opencl_global_device ||
3968 AddrSpace == LangAS::opencl_global_host ||
3969 AddrSpace == LangAS::opencl_constant ||
3970 AddrSpace == LangAS::opencl_local ||
3971 AddrSpace >= LangAS::FirstTargetAddressSpace);
3972 return AddrSpace;
3973 }
3974
3975 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3976 if (D && D->hasAttr<CUDAConstantAttr>())
3977 return LangAS::cuda_constant;
3978 else if (D && D->hasAttr<CUDASharedAttr>())
3979 return LangAS::cuda_shared;
3980 else if (D && D->hasAttr<CUDADeviceAttr>())
3981 return LangAS::cuda_device;
3982 else if (D && D->getType().isConstQualified())
3983 return LangAS::cuda_constant;
3984 else
3985 return LangAS::cuda_device;
3986 }
3987
3988 if (LangOpts.OpenMP) {
3989 LangAS AS;
3990 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3991 return AS;
3992 }
3993 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3994 }
3995
getStringLiteralAddressSpace() const3996 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3997 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3998 if (LangOpts.OpenCL)
3999 return LangAS::opencl_constant;
4000 if (auto AS = getTarget().getConstantAddressSpace())
4001 return AS.getValue();
4002 return LangAS::Default;
4003 }
4004
4005 // In address space agnostic languages, string literals are in default address
4006 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4007 // emitted in constant address space in LLVM IR. To be consistent with other
4008 // parts of AST, string literal global variables in constant address space
4009 // need to be casted to default address space before being put into address
4010 // map and referenced by other part of CodeGen.
4011 // In OpenCL, string literals are in constant address space in AST, therefore
4012 // they should not be casted to default address space.
4013 static llvm::Constant *
castStringLiteralToDefaultAddressSpace(CodeGenModule & CGM,llvm::GlobalVariable * GV)4014 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4015 llvm::GlobalVariable *GV) {
4016 llvm::Constant *Cast = GV;
4017 if (!CGM.getLangOpts().OpenCL) {
4018 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4019 if (AS != LangAS::Default)
4020 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4021 CGM, GV, AS.getValue(), LangAS::Default,
4022 GV->getValueType()->getPointerTo(
4023 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4024 }
4025 }
4026 return Cast;
4027 }
4028
4029 template<typename SomeDecl>
MaybeHandleStaticInExternC(const SomeDecl * D,llvm::GlobalValue * GV)4030 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4031 llvm::GlobalValue *GV) {
4032 if (!getLangOpts().CPlusPlus)
4033 return;
4034
4035 // Must have 'used' attribute, or else inline assembly can't rely on
4036 // the name existing.
4037 if (!D->template hasAttr<UsedAttr>())
4038 return;
4039
4040 // Must have internal linkage and an ordinary name.
4041 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4042 return;
4043
4044 // Must be in an extern "C" context. Entities declared directly within
4045 // a record are not extern "C" even if the record is in such a context.
4046 const SomeDecl *First = D->getFirstDecl();
4047 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4048 return;
4049
4050 // OK, this is an internal linkage entity inside an extern "C" linkage
4051 // specification. Make a note of that so we can give it the "expected"
4052 // mangled name if nothing else is using that name.
4053 std::pair<StaticExternCMap::iterator, bool> R =
4054 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4055
4056 // If we have multiple internal linkage entities with the same name
4057 // in extern "C" regions, none of them gets that name.
4058 if (!R.second)
4059 R.first->second = nullptr;
4060 }
4061
shouldBeInCOMDAT(CodeGenModule & CGM,const Decl & D)4062 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4063 if (!CGM.supportsCOMDAT())
4064 return false;
4065
4066 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4067 // them being "merged" by the COMDAT Folding linker optimization.
4068 if (D.hasAttr<CUDAGlobalAttr>())
4069 return false;
4070
4071 if (D.hasAttr<SelectAnyAttr>())
4072 return true;
4073
4074 GVALinkage Linkage;
4075 if (auto *VD = dyn_cast<VarDecl>(&D))
4076 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4077 else
4078 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4079
4080 switch (Linkage) {
4081 case GVA_Internal:
4082 case GVA_AvailableExternally:
4083 case GVA_StrongExternal:
4084 return false;
4085 case GVA_DiscardableODR:
4086 case GVA_StrongODR:
4087 return true;
4088 }
4089 llvm_unreachable("No such linkage");
4090 }
4091
maybeSetTrivialComdat(const Decl & D,llvm::GlobalObject & GO)4092 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4093 llvm::GlobalObject &GO) {
4094 if (!shouldBeInCOMDAT(*this, D))
4095 return;
4096 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4097 }
4098
4099 /// Pass IsTentative as true if you want to create a tentative definition.
EmitGlobalVarDefinition(const VarDecl * D,bool IsTentative)4100 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4101 bool IsTentative) {
4102 // OpenCL global variables of sampler type are translated to function calls,
4103 // therefore no need to be translated.
4104 QualType ASTTy = D->getType();
4105 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4106 return;
4107
4108 // If this is OpenMP device, check if it is legal to emit this global
4109 // normally.
4110 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4111 OpenMPRuntime->emitTargetGlobalVariable(D))
4112 return;
4113
4114 llvm::Constant *Init = nullptr;
4115 bool NeedsGlobalCtor = false;
4116 bool NeedsGlobalDtor =
4117 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4118
4119 const VarDecl *InitDecl;
4120 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4121
4122 Optional<ConstantEmitter> emitter;
4123
4124 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4125 // as part of their declaration." Sema has already checked for
4126 // error cases, so we just need to set Init to UndefValue.
4127 bool IsCUDASharedVar =
4128 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4129 // Shadows of initialized device-side global variables are also left
4130 // undefined.
4131 bool IsCUDAShadowVar =
4132 !getLangOpts().CUDAIsDevice &&
4133 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4134 D->hasAttr<CUDASharedAttr>());
4135 bool IsCUDADeviceShadowVar =
4136 getLangOpts().CUDAIsDevice &&
4137 (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4138 D->getType()->isCUDADeviceBuiltinTextureType());
4139 // HIP pinned shadow of initialized host-side global variables are also
4140 // left undefined.
4141 if (getLangOpts().CUDA &&
4142 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4143 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4144 else if (D->hasAttr<LoaderUninitializedAttr>())
4145 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4146 else if (!InitExpr) {
4147 // This is a tentative definition; tentative definitions are
4148 // implicitly initialized with { 0 }.
4149 //
4150 // Note that tentative definitions are only emitted at the end of
4151 // a translation unit, so they should never have incomplete
4152 // type. In addition, EmitTentativeDefinition makes sure that we
4153 // never attempt to emit a tentative definition if a real one
4154 // exists. A use may still exists, however, so we still may need
4155 // to do a RAUW.
4156 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4157 Init = EmitNullConstant(D->getType());
4158 } else {
4159 initializedGlobalDecl = GlobalDecl(D);
4160 emitter.emplace(*this);
4161 Init = emitter->tryEmitForInitializer(*InitDecl);
4162
4163 if (!Init) {
4164 QualType T = InitExpr->getType();
4165 if (D->getType()->isReferenceType())
4166 T = D->getType();
4167
4168 if (getLangOpts().CPlusPlus) {
4169 Init = EmitNullConstant(T);
4170 NeedsGlobalCtor = true;
4171 } else {
4172 ErrorUnsupported(D, "static initializer");
4173 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4174 }
4175 } else {
4176 // We don't need an initializer, so remove the entry for the delayed
4177 // initializer position (just in case this entry was delayed) if we
4178 // also don't need to register a destructor.
4179 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4180 DelayedCXXInitPosition.erase(D);
4181 }
4182 }
4183
4184 llvm::Type* InitType = Init->getType();
4185 llvm::Constant *Entry =
4186 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4187
4188 // Strip off pointer casts if we got them.
4189 Entry = Entry->stripPointerCasts();
4190
4191 // Entry is now either a Function or GlobalVariable.
4192 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4193
4194 // We have a definition after a declaration with the wrong type.
4195 // We must make a new GlobalVariable* and update everything that used OldGV
4196 // (a declaration or tentative definition) with the new GlobalVariable*
4197 // (which will be a definition).
4198 //
4199 // This happens if there is a prototype for a global (e.g.
4200 // "extern int x[];") and then a definition of a different type (e.g.
4201 // "int x[10];"). This also happens when an initializer has a different type
4202 // from the type of the global (this happens with unions).
4203 if (!GV || GV->getValueType() != InitType ||
4204 GV->getType()->getAddressSpace() !=
4205 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4206
4207 // Move the old entry aside so that we'll create a new one.
4208 Entry->setName(StringRef());
4209
4210 // Make a new global with the correct type, this is now guaranteed to work.
4211 GV = cast<llvm::GlobalVariable>(
4212 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4213 ->stripPointerCasts());
4214
4215 // Replace all uses of the old global with the new global
4216 llvm::Constant *NewPtrForOldDecl =
4217 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4218 Entry->replaceAllUsesWith(NewPtrForOldDecl);
4219
4220 // Erase the old global, since it is no longer used.
4221 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4222 }
4223
4224 MaybeHandleStaticInExternC(D, GV);
4225
4226 if (D->hasAttr<AnnotateAttr>())
4227 AddGlobalAnnotations(D, GV);
4228
4229 // Set the llvm linkage type as appropriate.
4230 llvm::GlobalValue::LinkageTypes Linkage =
4231 getLLVMLinkageVarDefinition(D, GV->isConstant());
4232
4233 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4234 // the device. [...]"
4235 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4236 // __device__, declares a variable that: [...]
4237 // Is accessible from all the threads within the grid and from the host
4238 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4239 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4240 if (GV && LangOpts.CUDA) {
4241 if (LangOpts.CUDAIsDevice) {
4242 if (Linkage != llvm::GlobalValue::InternalLinkage &&
4243 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4244 GV->setExternallyInitialized(true);
4245 } else {
4246 // Host-side shadows of external declarations of device-side
4247 // global variables become internal definitions. These have to
4248 // be internal in order to prevent name conflicts with global
4249 // host variables with the same name in a different TUs.
4250 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4251 Linkage = llvm::GlobalValue::InternalLinkage;
4252 // Shadow variables and their properties must be registered with CUDA
4253 // runtime. Skip Extern global variables, which will be registered in
4254 // the TU where they are defined.
4255 //
4256 // Don't register a C++17 inline variable. The local symbol can be
4257 // discarded and referencing a discarded local symbol from outside the
4258 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4259 // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4260 if (!D->hasExternalStorage() && !D->isInline())
4261 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4262 D->hasAttr<CUDAConstantAttr>());
4263 } else if (D->hasAttr<CUDASharedAttr>()) {
4264 // __shared__ variables are odd. Shadows do get created, but
4265 // they are not registered with the CUDA runtime, so they
4266 // can't really be used to access their device-side
4267 // counterparts. It's not clear yet whether it's nvcc's bug or
4268 // a feature, but we've got to do the same for compatibility.
4269 Linkage = llvm::GlobalValue::InternalLinkage;
4270 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4271 D->getType()->isCUDADeviceBuiltinTextureType()) {
4272 // Builtin surfaces and textures and their template arguments are
4273 // also registered with CUDA runtime.
4274 Linkage = llvm::GlobalValue::InternalLinkage;
4275 const ClassTemplateSpecializationDecl *TD =
4276 cast<ClassTemplateSpecializationDecl>(
4277 D->getType()->getAs<RecordType>()->getDecl());
4278 const TemplateArgumentList &Args = TD->getTemplateArgs();
4279 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4280 assert(Args.size() == 2 &&
4281 "Unexpected number of template arguments of CUDA device "
4282 "builtin surface type.");
4283 auto SurfType = Args[1].getAsIntegral();
4284 if (!D->hasExternalStorage())
4285 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4286 SurfType.getSExtValue());
4287 } else {
4288 assert(Args.size() == 3 &&
4289 "Unexpected number of template arguments of CUDA device "
4290 "builtin texture type.");
4291 auto TexType = Args[1].getAsIntegral();
4292 auto Normalized = Args[2].getAsIntegral();
4293 if (!D->hasExternalStorage())
4294 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4295 TexType.getSExtValue(),
4296 Normalized.getZExtValue());
4297 }
4298 }
4299 }
4300 }
4301
4302 GV->setInitializer(Init);
4303 if (emitter)
4304 emitter->finalize(GV);
4305
4306 // If it is safe to mark the global 'constant', do so now.
4307 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4308 isTypeConstant(D->getType(), true));
4309
4310 // If it is in a read-only section, mark it 'constant'.
4311 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4312 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4313 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4314 GV->setConstant(true);
4315 }
4316
4317 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4318
4319 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4320 // function is only defined alongside the variable, not also alongside
4321 // callers. Normally, all accesses to a thread_local go through the
4322 // thread-wrapper in order to ensure initialization has occurred, underlying
4323 // variable will never be used other than the thread-wrapper, so it can be
4324 // converted to internal linkage.
4325 //
4326 // However, if the variable has the 'constinit' attribute, it _can_ be
4327 // referenced directly, without calling the thread-wrapper, so the linkage
4328 // must not be changed.
4329 //
4330 // Additionally, if the variable isn't plain external linkage, e.g. if it's
4331 // weak or linkonce, the de-duplication semantics are important to preserve,
4332 // so we don't change the linkage.
4333 if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4334 Linkage == llvm::GlobalValue::ExternalLinkage &&
4335 Context.getTargetInfo().getTriple().isOSDarwin() &&
4336 !D->hasAttr<ConstInitAttr>())
4337 Linkage = llvm::GlobalValue::InternalLinkage;
4338
4339 GV->setLinkage(Linkage);
4340 if (D->hasAttr<DLLImportAttr>())
4341 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4342 else if (D->hasAttr<DLLExportAttr>())
4343 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4344 else
4345 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4346
4347 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4348 // common vars aren't constant even if declared const.
4349 GV->setConstant(false);
4350 // Tentative definition of global variables may be initialized with
4351 // non-zero null pointers. In this case they should have weak linkage
4352 // since common linkage must have zero initializer and must not have
4353 // explicit section therefore cannot have non-zero initial value.
4354 if (!GV->getInitializer()->isNullValue())
4355 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4356 }
4357
4358 setNonAliasAttributes(D, GV);
4359
4360 if (D->getTLSKind() && !GV->isThreadLocal()) {
4361 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4362 CXXThreadLocals.push_back(D);
4363 setTLSMode(GV, *D);
4364 }
4365
4366 maybeSetTrivialComdat(*D, *GV);
4367
4368 // Emit the initializer function if necessary.
4369 if (NeedsGlobalCtor || NeedsGlobalDtor)
4370 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4371
4372 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4373
4374 // Emit global variable debug information.
4375 if (CGDebugInfo *DI = getModuleDebugInfo())
4376 if (getCodeGenOpts().hasReducedDebugInfo())
4377 DI->EmitGlobalVariable(GV, D);
4378 }
4379
EmitExternalVarDeclaration(const VarDecl * D)4380 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4381 if (CGDebugInfo *DI = getModuleDebugInfo())
4382 if (getCodeGenOpts().hasReducedDebugInfo()) {
4383 QualType ASTTy = D->getType();
4384 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4385 llvm::PointerType *PTy =
4386 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4387 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4388 DI->EmitExternalVariable(
4389 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4390 }
4391 }
4392
isVarDeclStrongDefinition(const ASTContext & Context,CodeGenModule & CGM,const VarDecl * D,bool NoCommon)4393 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4394 CodeGenModule &CGM, const VarDecl *D,
4395 bool NoCommon) {
4396 // Don't give variables common linkage if -fno-common was specified unless it
4397 // was overridden by a NoCommon attribute.
4398 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4399 return true;
4400
4401 // C11 6.9.2/2:
4402 // A declaration of an identifier for an object that has file scope without
4403 // an initializer, and without a storage-class specifier or with the
4404 // storage-class specifier static, constitutes a tentative definition.
4405 if (D->getInit() || D->hasExternalStorage())
4406 return true;
4407
4408 // A variable cannot be both common and exist in a section.
4409 if (D->hasAttr<SectionAttr>())
4410 return true;
4411
4412 // A variable cannot be both common and exist in a section.
4413 // We don't try to determine which is the right section in the front-end.
4414 // If no specialized section name is applicable, it will resort to default.
4415 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4416 D->hasAttr<PragmaClangDataSectionAttr>() ||
4417 D->hasAttr<PragmaClangRelroSectionAttr>() ||
4418 D->hasAttr<PragmaClangRodataSectionAttr>())
4419 return true;
4420
4421 // Thread local vars aren't considered common linkage.
4422 if (D->getTLSKind())
4423 return true;
4424
4425 // Tentative definitions marked with WeakImportAttr are true definitions.
4426 if (D->hasAttr<WeakImportAttr>())
4427 return true;
4428
4429 // A variable cannot be both common and exist in a comdat.
4430 if (shouldBeInCOMDAT(CGM, *D))
4431 return true;
4432
4433 // Declarations with a required alignment do not have common linkage in MSVC
4434 // mode.
4435 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4436 if (D->hasAttr<AlignedAttr>())
4437 return true;
4438 QualType VarType = D->getType();
4439 if (Context.isAlignmentRequired(VarType))
4440 return true;
4441
4442 if (const auto *RT = VarType->getAs<RecordType>()) {
4443 const RecordDecl *RD = RT->getDecl();
4444 for (const FieldDecl *FD : RD->fields()) {
4445 if (FD->isBitField())
4446 continue;
4447 if (FD->hasAttr<AlignedAttr>())
4448 return true;
4449 if (Context.isAlignmentRequired(FD->getType()))
4450 return true;
4451 }
4452 }
4453 }
4454
4455 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4456 // common symbols, so symbols with greater alignment requirements cannot be
4457 // common.
4458 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4459 // alignments for common symbols via the aligncomm directive, so this
4460 // restriction only applies to MSVC environments.
4461 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4462 Context.getTypeAlignIfKnown(D->getType()) >
4463 Context.toBits(CharUnits::fromQuantity(32)))
4464 return true;
4465
4466 return false;
4467 }
4468
getLLVMLinkageForDeclarator(const DeclaratorDecl * D,GVALinkage Linkage,bool IsConstantVariable)4469 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4470 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4471 if (Linkage == GVA_Internal)
4472 return llvm::Function::InternalLinkage;
4473
4474 if (D->hasAttr<WeakAttr>()) {
4475 if (IsConstantVariable)
4476 return llvm::GlobalVariable::WeakODRLinkage;
4477 else
4478 return llvm::GlobalVariable::WeakAnyLinkage;
4479 }
4480
4481 if (const auto *FD = D->getAsFunction())
4482 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4483 return llvm::GlobalVariable::LinkOnceAnyLinkage;
4484
4485 // We are guaranteed to have a strong definition somewhere else,
4486 // so we can use available_externally linkage.
4487 if (Linkage == GVA_AvailableExternally)
4488 return llvm::GlobalValue::AvailableExternallyLinkage;
4489
4490 // Note that Apple's kernel linker doesn't support symbol
4491 // coalescing, so we need to avoid linkonce and weak linkages there.
4492 // Normally, this means we just map to internal, but for explicit
4493 // instantiations we'll map to external.
4494
4495 // In C++, the compiler has to emit a definition in every translation unit
4496 // that references the function. We should use linkonce_odr because
4497 // a) if all references in this translation unit are optimized away, we
4498 // don't need to codegen it. b) if the function persists, it needs to be
4499 // merged with other definitions. c) C++ has the ODR, so we know the
4500 // definition is dependable.
4501 if (Linkage == GVA_DiscardableODR)
4502 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4503 : llvm::Function::InternalLinkage;
4504
4505 // An explicit instantiation of a template has weak linkage, since
4506 // explicit instantiations can occur in multiple translation units
4507 // and must all be equivalent. However, we are not allowed to
4508 // throw away these explicit instantiations.
4509 //
4510 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4511 // so say that CUDA templates are either external (for kernels) or internal.
4512 // This lets llvm perform aggressive inter-procedural optimizations. For
4513 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4514 // therefore we need to follow the normal linkage paradigm.
4515 if (Linkage == GVA_StrongODR) {
4516 if (getLangOpts().AppleKext)
4517 return llvm::Function::ExternalLinkage;
4518 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4519 !getLangOpts().GPURelocatableDeviceCode)
4520 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4521 : llvm::Function::InternalLinkage;
4522 return llvm::Function::WeakODRLinkage;
4523 }
4524
4525 // C++ doesn't have tentative definitions and thus cannot have common
4526 // linkage.
4527 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4528 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4529 CodeGenOpts.NoCommon))
4530 return llvm::GlobalVariable::CommonLinkage;
4531
4532 // selectany symbols are externally visible, so use weak instead of
4533 // linkonce. MSVC optimizes away references to const selectany globals, so
4534 // all definitions should be the same and ODR linkage should be used.
4535 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4536 if (D->hasAttr<SelectAnyAttr>())
4537 return llvm::GlobalVariable::WeakODRLinkage;
4538
4539 // Otherwise, we have strong external linkage.
4540 assert(Linkage == GVA_StrongExternal);
4541 return llvm::GlobalVariable::ExternalLinkage;
4542 }
4543
getLLVMLinkageVarDefinition(const VarDecl * VD,bool IsConstant)4544 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4545 const VarDecl *VD, bool IsConstant) {
4546 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4547 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4548 }
4549
4550 /// Replace the uses of a function that was declared with a non-proto type.
4551 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)4552 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4553 llvm::Function *newFn) {
4554 // Fast path.
4555 if (old->use_empty()) return;
4556
4557 llvm::Type *newRetTy = newFn->getReturnType();
4558 SmallVector<llvm::Value*, 4> newArgs;
4559 SmallVector<llvm::OperandBundleDef, 1> newBundles;
4560
4561 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4562 ui != ue; ) {
4563 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4564 llvm::User *user = use->getUser();
4565
4566 // Recognize and replace uses of bitcasts. Most calls to
4567 // unprototyped functions will use bitcasts.
4568 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4569 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4570 replaceUsesOfNonProtoConstant(bitcast, newFn);
4571 continue;
4572 }
4573
4574 // Recognize calls to the function.
4575 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4576 if (!callSite) continue;
4577 if (!callSite->isCallee(&*use))
4578 continue;
4579
4580 // If the return types don't match exactly, then we can't
4581 // transform this call unless it's dead.
4582 if (callSite->getType() != newRetTy && !callSite->use_empty())
4583 continue;
4584
4585 // Get the call site's attribute list.
4586 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4587 llvm::AttributeList oldAttrs = callSite->getAttributes();
4588
4589 // If the function was passed too few arguments, don't transform.
4590 unsigned newNumArgs = newFn->arg_size();
4591 if (callSite->arg_size() < newNumArgs)
4592 continue;
4593
4594 // If extra arguments were passed, we silently drop them.
4595 // If any of the types mismatch, we don't transform.
4596 unsigned argNo = 0;
4597 bool dontTransform = false;
4598 for (llvm::Argument &A : newFn->args()) {
4599 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4600 dontTransform = true;
4601 break;
4602 }
4603
4604 // Add any parameter attributes.
4605 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4606 argNo++;
4607 }
4608 if (dontTransform)
4609 continue;
4610
4611 // Okay, we can transform this. Create the new call instruction and copy
4612 // over the required information.
4613 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4614
4615 // Copy over any operand bundles.
4616 callSite->getOperandBundlesAsDefs(newBundles);
4617
4618 llvm::CallBase *newCall;
4619 if (dyn_cast<llvm::CallInst>(callSite)) {
4620 newCall =
4621 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4622 } else {
4623 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4624 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4625 oldInvoke->getUnwindDest(), newArgs,
4626 newBundles, "", callSite);
4627 }
4628 newArgs.clear(); // for the next iteration
4629
4630 if (!newCall->getType()->isVoidTy())
4631 newCall->takeName(callSite);
4632 newCall->setAttributes(llvm::AttributeList::get(
4633 newFn->getContext(), oldAttrs.getFnAttributes(),
4634 oldAttrs.getRetAttributes(), newArgAttrs));
4635 newCall->setCallingConv(callSite->getCallingConv());
4636
4637 // Finally, remove the old call, replacing any uses with the new one.
4638 if (!callSite->use_empty())
4639 callSite->replaceAllUsesWith(newCall);
4640
4641 // Copy debug location attached to CI.
4642 if (callSite->getDebugLoc())
4643 newCall->setDebugLoc(callSite->getDebugLoc());
4644
4645 callSite->eraseFromParent();
4646 }
4647 }
4648
4649 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4650 /// implement a function with no prototype, e.g. "int foo() {}". If there are
4651 /// existing call uses of the old function in the module, this adjusts them to
4652 /// call the new function directly.
4653 ///
4654 /// This is not just a cleanup: the always_inline pass requires direct calls to
4655 /// functions to be able to inline them. If there is a bitcast in the way, it
4656 /// won't inline them. Instcombine normally deletes these calls, but it isn't
4657 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)4658 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4659 llvm::Function *NewFn) {
4660 // If we're redefining a global as a function, don't transform it.
4661 if (!isa<llvm::Function>(Old)) return;
4662
4663 replaceUsesOfNonProtoConstant(Old, NewFn);
4664 }
4665
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)4666 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4667 auto DK = VD->isThisDeclarationADefinition();
4668 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4669 return;
4670
4671 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4672 // If we have a definition, this might be a deferred decl. If the
4673 // instantiation is explicit, make sure we emit it at the end.
4674 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4675 GetAddrOfGlobalVar(VD);
4676
4677 EmitTopLevelDecl(VD);
4678 }
4679
EmitGlobalFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)4680 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4681 llvm::GlobalValue *GV) {
4682 const auto *D = cast<FunctionDecl>(GD.getDecl());
4683
4684 // Compute the function info and LLVM type.
4685 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4686 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4687
4688 // Get or create the prototype for the function.
4689 if (!GV || (GV->getValueType() != Ty))
4690 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4691 /*DontDefer=*/true,
4692 ForDefinition));
4693
4694 // Already emitted.
4695 if (!GV->isDeclaration())
4696 return;
4697
4698 // We need to set linkage and visibility on the function before
4699 // generating code for it because various parts of IR generation
4700 // want to propagate this information down (e.g. to local static
4701 // declarations).
4702 auto *Fn = cast<llvm::Function>(GV);
4703 setFunctionLinkage(GD, Fn);
4704
4705 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4706 setGVProperties(Fn, GD);
4707
4708 MaybeHandleStaticInExternC(D, Fn);
4709
4710 maybeSetTrivialComdat(*D, *Fn);
4711
4712 // Set CodeGen attributes that represent floating point environment.
4713 setLLVMFunctionFEnvAttributes(D, Fn);
4714
4715 CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4716
4717 setNonAliasAttributes(GD, Fn);
4718 SetLLVMFunctionAttributesForDefinition(D, Fn);
4719
4720 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4721 AddGlobalCtor(Fn, CA->getPriority());
4722 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4723 AddGlobalDtor(Fn, DA->getPriority(), true);
4724 if (D->hasAttr<AnnotateAttr>())
4725 AddGlobalAnnotations(D, Fn);
4726 }
4727
EmitAliasDefinition(GlobalDecl GD)4728 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4729 const auto *D = cast<ValueDecl>(GD.getDecl());
4730 const AliasAttr *AA = D->getAttr<AliasAttr>();
4731 assert(AA && "Not an alias?");
4732
4733 StringRef MangledName = getMangledName(GD);
4734
4735 if (AA->getAliasee() == MangledName) {
4736 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4737 return;
4738 }
4739
4740 // If there is a definition in the module, then it wins over the alias.
4741 // This is dubious, but allow it to be safe. Just ignore the alias.
4742 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4743 if (Entry && !Entry->isDeclaration())
4744 return;
4745
4746 Aliases.push_back(GD);
4747
4748 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4749
4750 // Create a reference to the named value. This ensures that it is emitted
4751 // if a deferred decl.
4752 llvm::Constant *Aliasee;
4753 llvm::GlobalValue::LinkageTypes LT;
4754 if (isa<llvm::FunctionType>(DeclTy)) {
4755 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4756 /*ForVTable=*/false);
4757 LT = getFunctionLinkage(GD);
4758 } else {
4759 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4760 llvm::PointerType::getUnqual(DeclTy),
4761 /*D=*/nullptr);
4762 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4763 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4764 else
4765 LT = getFunctionLinkage(GD);
4766 }
4767
4768 // Create the new alias itself, but don't set a name yet.
4769 unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4770 auto *GA =
4771 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4772
4773 if (Entry) {
4774 if (GA->getAliasee() == Entry) {
4775 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4776 return;
4777 }
4778
4779 assert(Entry->isDeclaration());
4780
4781 // If there is a declaration in the module, then we had an extern followed
4782 // by the alias, as in:
4783 // extern int test6();
4784 // ...
4785 // int test6() __attribute__((alias("test7")));
4786 //
4787 // Remove it and replace uses of it with the alias.
4788 GA->takeName(Entry);
4789
4790 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4791 Entry->getType()));
4792 Entry->eraseFromParent();
4793 } else {
4794 GA->setName(MangledName);
4795 }
4796
4797 // Set attributes which are particular to an alias; this is a
4798 // specialization of the attributes which may be set on a global
4799 // variable/function.
4800 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4801 D->isWeakImported()) {
4802 GA->setLinkage(llvm::Function::WeakAnyLinkage);
4803 }
4804
4805 if (const auto *VD = dyn_cast<VarDecl>(D))
4806 if (VD->getTLSKind())
4807 setTLSMode(GA, *VD);
4808
4809 SetCommonAttributes(GD, GA);
4810 }
4811
emitIFuncDefinition(GlobalDecl GD)4812 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4813 const auto *D = cast<ValueDecl>(GD.getDecl());
4814 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4815 assert(IFA && "Not an ifunc?");
4816
4817 StringRef MangledName = getMangledName(GD);
4818
4819 if (IFA->getResolver() == MangledName) {
4820 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4821 return;
4822 }
4823
4824 // Report an error if some definition overrides ifunc.
4825 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4826 if (Entry && !Entry->isDeclaration()) {
4827 GlobalDecl OtherGD;
4828 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4829 DiagnosedConflictingDefinitions.insert(GD).second) {
4830 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4831 << MangledName;
4832 Diags.Report(OtherGD.getDecl()->getLocation(),
4833 diag::note_previous_definition);
4834 }
4835 return;
4836 }
4837
4838 Aliases.push_back(GD);
4839
4840 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4841 llvm::Constant *Resolver =
4842 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4843 /*ForVTable=*/false);
4844 llvm::GlobalIFunc *GIF =
4845 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4846 "", Resolver, &getModule());
4847 if (Entry) {
4848 if (GIF->getResolver() == Entry) {
4849 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4850 return;
4851 }
4852 assert(Entry->isDeclaration());
4853
4854 // If there is a declaration in the module, then we had an extern followed
4855 // by the ifunc, as in:
4856 // extern int test();
4857 // ...
4858 // int test() __attribute__((ifunc("resolver")));
4859 //
4860 // Remove it and replace uses of it with the ifunc.
4861 GIF->takeName(Entry);
4862
4863 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4864 Entry->getType()));
4865 Entry->eraseFromParent();
4866 } else
4867 GIF->setName(MangledName);
4868
4869 SetCommonAttributes(GD, GIF);
4870 }
4871
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)4872 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4873 ArrayRef<llvm::Type*> Tys) {
4874 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4875 Tys);
4876 }
4877
4878 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)4879 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4880 const StringLiteral *Literal, bool TargetIsLSB,
4881 bool &IsUTF16, unsigned &StringLength) {
4882 StringRef String = Literal->getString();
4883 unsigned NumBytes = String.size();
4884
4885 // Check for simple case.
4886 if (!Literal->containsNonAsciiOrNull()) {
4887 StringLength = NumBytes;
4888 return *Map.insert(std::make_pair(String, nullptr)).first;
4889 }
4890
4891 // Otherwise, convert the UTF8 literals into a string of shorts.
4892 IsUTF16 = true;
4893
4894 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4895 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4896 llvm::UTF16 *ToPtr = &ToBuf[0];
4897
4898 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4899 ToPtr + NumBytes, llvm::strictConversion);
4900
4901 // ConvertUTF8toUTF16 returns the length in ToPtr.
4902 StringLength = ToPtr - &ToBuf[0];
4903
4904 // Add an explicit null.
4905 *ToPtr = 0;
4906 return *Map.insert(std::make_pair(
4907 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4908 (StringLength + 1) * 2),
4909 nullptr)).first;
4910 }
4911
4912 ConstantAddress
GetAddrOfConstantCFString(const StringLiteral * Literal)4913 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4914 unsigned StringLength = 0;
4915 bool isUTF16 = false;
4916 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4917 GetConstantCFStringEntry(CFConstantStringMap, Literal,
4918 getDataLayout().isLittleEndian(), isUTF16,
4919 StringLength);
4920
4921 if (auto *C = Entry.second)
4922 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4923
4924 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4925 llvm::Constant *Zeros[] = { Zero, Zero };
4926
4927 const ASTContext &Context = getContext();
4928 const llvm::Triple &Triple = getTriple();
4929
4930 const auto CFRuntime = getLangOpts().CFRuntime;
4931 const bool IsSwiftABI =
4932 static_cast<unsigned>(CFRuntime) >=
4933 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4934 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4935
4936 // If we don't already have it, get __CFConstantStringClassReference.
4937 if (!CFConstantStringClassRef) {
4938 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4939 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4940 Ty = llvm::ArrayType::get(Ty, 0);
4941
4942 switch (CFRuntime) {
4943 default: break;
4944 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4945 case LangOptions::CoreFoundationABI::Swift5_0:
4946 CFConstantStringClassName =
4947 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4948 : "$s10Foundation19_NSCFConstantStringCN";
4949 Ty = IntPtrTy;
4950 break;
4951 case LangOptions::CoreFoundationABI::Swift4_2:
4952 CFConstantStringClassName =
4953 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4954 : "$S10Foundation19_NSCFConstantStringCN";
4955 Ty = IntPtrTy;
4956 break;
4957 case LangOptions::CoreFoundationABI::Swift4_1:
4958 CFConstantStringClassName =
4959 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4960 : "__T010Foundation19_NSCFConstantStringCN";
4961 Ty = IntPtrTy;
4962 break;
4963 }
4964
4965 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4966
4967 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4968 llvm::GlobalValue *GV = nullptr;
4969
4970 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4971 IdentifierInfo &II = Context.Idents.get(GV->getName());
4972 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4973 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4974
4975 const VarDecl *VD = nullptr;
4976 for (const auto &Result : DC->lookup(&II))
4977 if ((VD = dyn_cast<VarDecl>(Result)))
4978 break;
4979
4980 if (Triple.isOSBinFormatELF()) {
4981 if (!VD)
4982 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4983 } else {
4984 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4985 if (!VD || !VD->hasAttr<DLLExportAttr>())
4986 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4987 else
4988 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4989 }
4990
4991 setDSOLocal(GV);
4992 }
4993 }
4994
4995 // Decay array -> ptr
4996 CFConstantStringClassRef =
4997 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4998 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4999 }
5000
5001 QualType CFTy = Context.getCFConstantStringType();
5002
5003 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5004
5005 ConstantInitBuilder Builder(*this);
5006 auto Fields = Builder.beginStruct(STy);
5007
5008 // Class pointer.
5009 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5010
5011 // Flags.
5012 if (IsSwiftABI) {
5013 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5014 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5015 } else {
5016 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5017 }
5018
5019 // String pointer.
5020 llvm::Constant *C = nullptr;
5021 if (isUTF16) {
5022 auto Arr = llvm::makeArrayRef(
5023 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5024 Entry.first().size() / 2);
5025 C = llvm::ConstantDataArray::get(VMContext, Arr);
5026 } else {
5027 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5028 }
5029
5030 // Note: -fwritable-strings doesn't make the backing store strings of
5031 // CFStrings writable. (See <rdar://problem/10657500>)
5032 auto *GV =
5033 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5034 llvm::GlobalValue::PrivateLinkage, C, ".str");
5035 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5036 // Don't enforce the target's minimum global alignment, since the only use
5037 // of the string is via this class initializer.
5038 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5039 : Context.getTypeAlignInChars(Context.CharTy);
5040 GV->setAlignment(Align.getAsAlign());
5041
5042 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5043 // Without it LLVM can merge the string with a non unnamed_addr one during
5044 // LTO. Doing that changes the section it ends in, which surprises ld64.
5045 if (Triple.isOSBinFormatMachO())
5046 GV->setSection(isUTF16 ? "__TEXT,__ustring"
5047 : "__TEXT,__cstring,cstring_literals");
5048 // Make sure the literal ends up in .rodata to allow for safe ICF and for
5049 // the static linker to adjust permissions to read-only later on.
5050 else if (Triple.isOSBinFormatELF())
5051 GV->setSection(".rodata");
5052
5053 // String.
5054 llvm::Constant *Str =
5055 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5056
5057 if (isUTF16)
5058 // Cast the UTF16 string to the correct type.
5059 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5060 Fields.add(Str);
5061
5062 // String length.
5063 llvm::IntegerType *LengthTy =
5064 llvm::IntegerType::get(getModule().getContext(),
5065 Context.getTargetInfo().getLongWidth());
5066 if (IsSwiftABI) {
5067 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5068 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5069 LengthTy = Int32Ty;
5070 else
5071 LengthTy = IntPtrTy;
5072 }
5073 Fields.addInt(LengthTy, StringLength);
5074
5075 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5076 // properly aligned on 32-bit platforms.
5077 CharUnits Alignment =
5078 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5079
5080 // The struct.
5081 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5082 /*isConstant=*/false,
5083 llvm::GlobalVariable::PrivateLinkage);
5084 GV->addAttribute("objc_arc_inert");
5085 switch (Triple.getObjectFormat()) {
5086 case llvm::Triple::UnknownObjectFormat:
5087 llvm_unreachable("unknown file format");
5088 case llvm::Triple::GOFF:
5089 llvm_unreachable("GOFF is not yet implemented");
5090 case llvm::Triple::XCOFF:
5091 llvm_unreachable("XCOFF is not yet implemented");
5092 case llvm::Triple::COFF:
5093 case llvm::Triple::ELF:
5094 case llvm::Triple::Wasm:
5095 GV->setSection("cfstring");
5096 break;
5097 case llvm::Triple::MachO:
5098 GV->setSection("__DATA,__cfstring");
5099 break;
5100 }
5101 Entry.second = GV;
5102
5103 return ConstantAddress(GV, Alignment);
5104 }
5105
getExpressionLocationsEnabled() const5106 bool CodeGenModule::getExpressionLocationsEnabled() const {
5107 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5108 }
5109
getObjCFastEnumerationStateType()5110 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5111 if (ObjCFastEnumerationStateType.isNull()) {
5112 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5113 D->startDefinition();
5114
5115 QualType FieldTypes[] = {
5116 Context.UnsignedLongTy,
5117 Context.getPointerType(Context.getObjCIdType()),
5118 Context.getPointerType(Context.UnsignedLongTy),
5119 Context.getConstantArrayType(Context.UnsignedLongTy,
5120 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5121 };
5122
5123 for (size_t i = 0; i < 4; ++i) {
5124 FieldDecl *Field = FieldDecl::Create(Context,
5125 D,
5126 SourceLocation(),
5127 SourceLocation(), nullptr,
5128 FieldTypes[i], /*TInfo=*/nullptr,
5129 /*BitWidth=*/nullptr,
5130 /*Mutable=*/false,
5131 ICIS_NoInit);
5132 Field->setAccess(AS_public);
5133 D->addDecl(Field);
5134 }
5135
5136 D->completeDefinition();
5137 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5138 }
5139
5140 return ObjCFastEnumerationStateType;
5141 }
5142
5143 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)5144 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5145 assert(!E->getType()->isPointerType() && "Strings are always arrays");
5146
5147 // Don't emit it as the address of the string, emit the string data itself
5148 // as an inline array.
5149 if (E->getCharByteWidth() == 1) {
5150 SmallString<64> Str(E->getString());
5151
5152 // Resize the string to the right size, which is indicated by its type.
5153 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5154 Str.resize(CAT->getSize().getZExtValue());
5155 return llvm::ConstantDataArray::getString(VMContext, Str, false);
5156 }
5157
5158 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5159 llvm::Type *ElemTy = AType->getElementType();
5160 unsigned NumElements = AType->getNumElements();
5161
5162 // Wide strings have either 2-byte or 4-byte elements.
5163 if (ElemTy->getPrimitiveSizeInBits() == 16) {
5164 SmallVector<uint16_t, 32> Elements;
5165 Elements.reserve(NumElements);
5166
5167 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5168 Elements.push_back(E->getCodeUnit(i));
5169 Elements.resize(NumElements);
5170 return llvm::ConstantDataArray::get(VMContext, Elements);
5171 }
5172
5173 assert(ElemTy->getPrimitiveSizeInBits() == 32);
5174 SmallVector<uint32_t, 32> Elements;
5175 Elements.reserve(NumElements);
5176
5177 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5178 Elements.push_back(E->getCodeUnit(i));
5179 Elements.resize(NumElements);
5180 return llvm::ConstantDataArray::get(VMContext, Elements);
5181 }
5182
5183 static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant * C,llvm::GlobalValue::LinkageTypes LT,CodeGenModule & CGM,StringRef GlobalName,CharUnits Alignment)5184 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5185 CodeGenModule &CGM, StringRef GlobalName,
5186 CharUnits Alignment) {
5187 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5188 CGM.getStringLiteralAddressSpace());
5189
5190 llvm::Module &M = CGM.getModule();
5191 // Create a global variable for this string
5192 auto *GV = new llvm::GlobalVariable(
5193 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5194 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5195 GV->setAlignment(Alignment.getAsAlign());
5196 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5197 if (GV->isWeakForLinker()) {
5198 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5199 GV->setComdat(M.getOrInsertComdat(GV->getName()));
5200 }
5201 CGM.setDSOLocal(GV);
5202
5203 return GV;
5204 }
5205
5206 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5207 /// constant array for the given string literal.
5208 ConstantAddress
GetAddrOfConstantStringFromLiteral(const StringLiteral * S,StringRef Name)5209 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5210 StringRef Name) {
5211 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5212
5213 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5214 llvm::GlobalVariable **Entry = nullptr;
5215 if (!LangOpts.WritableStrings) {
5216 Entry = &ConstantStringMap[C];
5217 if (auto GV = *Entry) {
5218 if (Alignment.getQuantity() > GV->getAlignment())
5219 GV->setAlignment(Alignment.getAsAlign());
5220 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5221 Alignment);
5222 }
5223 }
5224
5225 SmallString<256> MangledNameBuffer;
5226 StringRef GlobalVariableName;
5227 llvm::GlobalValue::LinkageTypes LT;
5228
5229 // Mangle the string literal if that's how the ABI merges duplicate strings.
5230 // Don't do it if they are writable, since we don't want writes in one TU to
5231 // affect strings in another.
5232 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5233 !LangOpts.WritableStrings) {
5234 llvm::raw_svector_ostream Out(MangledNameBuffer);
5235 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5236 LT = llvm::GlobalValue::LinkOnceODRLinkage;
5237 GlobalVariableName = MangledNameBuffer;
5238 } else {
5239 LT = llvm::GlobalValue::PrivateLinkage;
5240 GlobalVariableName = Name;
5241 }
5242
5243 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5244 if (Entry)
5245 *Entry = GV;
5246
5247 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5248 QualType());
5249
5250 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5251 Alignment);
5252 }
5253
5254 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5255 /// array for the given ObjCEncodeExpr node.
5256 ConstantAddress
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)5257 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5258 std::string Str;
5259 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5260
5261 return GetAddrOfConstantCString(Str);
5262 }
5263
5264 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5265 /// the literal and a terminating '\0' character.
5266 /// The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName)5267 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5268 const std::string &Str, const char *GlobalName) {
5269 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5270 CharUnits Alignment =
5271 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5272
5273 llvm::Constant *C =
5274 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5275
5276 // Don't share any string literals if strings aren't constant.
5277 llvm::GlobalVariable **Entry = nullptr;
5278 if (!LangOpts.WritableStrings) {
5279 Entry = &ConstantStringMap[C];
5280 if (auto GV = *Entry) {
5281 if (Alignment.getQuantity() > GV->getAlignment())
5282 GV->setAlignment(Alignment.getAsAlign());
5283 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5284 Alignment);
5285 }
5286 }
5287
5288 // Get the default prefix if a name wasn't specified.
5289 if (!GlobalName)
5290 GlobalName = ".str";
5291 // Create a global variable for this.
5292 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5293 GlobalName, Alignment);
5294 if (Entry)
5295 *Entry = GV;
5296
5297 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5298 Alignment);
5299 }
5300
GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr * E,const Expr * Init)5301 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5302 const MaterializeTemporaryExpr *E, const Expr *Init) {
5303 assert((E->getStorageDuration() == SD_Static ||
5304 E->getStorageDuration() == SD_Thread) && "not a global temporary");
5305 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5306
5307 // If we're not materializing a subobject of the temporary, keep the
5308 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5309 QualType MaterializedType = Init->getType();
5310 if (Init == E->getSubExpr())
5311 MaterializedType = E->getType();
5312
5313 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5314
5315 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5316 return ConstantAddress(Slot, Align);
5317
5318 // FIXME: If an externally-visible declaration extends multiple temporaries,
5319 // we need to give each temporary the same name in every translation unit (and
5320 // we also need to make the temporaries externally-visible).
5321 SmallString<256> Name;
5322 llvm::raw_svector_ostream Out(Name);
5323 getCXXABI().getMangleContext().mangleReferenceTemporary(
5324 VD, E->getManglingNumber(), Out);
5325
5326 APValue *Value = nullptr;
5327 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5328 // If the initializer of the extending declaration is a constant
5329 // initializer, we should have a cached constant initializer for this
5330 // temporary. Note that this might have a different value from the value
5331 // computed by evaluating the initializer if the surrounding constant
5332 // expression modifies the temporary.
5333 Value = E->getOrCreateValue(false);
5334 }
5335
5336 // Try evaluating it now, it might have a constant initializer.
5337 Expr::EvalResult EvalResult;
5338 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5339 !EvalResult.hasSideEffects())
5340 Value = &EvalResult.Val;
5341
5342 LangAS AddrSpace =
5343 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5344
5345 Optional<ConstantEmitter> emitter;
5346 llvm::Constant *InitialValue = nullptr;
5347 bool Constant = false;
5348 llvm::Type *Type;
5349 if (Value) {
5350 // The temporary has a constant initializer, use it.
5351 emitter.emplace(*this);
5352 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5353 MaterializedType);
5354 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5355 Type = InitialValue->getType();
5356 } else {
5357 // No initializer, the initialization will be provided when we
5358 // initialize the declaration which performed lifetime extension.
5359 Type = getTypes().ConvertTypeForMem(MaterializedType);
5360 }
5361
5362 // Create a global variable for this lifetime-extended temporary.
5363 llvm::GlobalValue::LinkageTypes Linkage =
5364 getLLVMLinkageVarDefinition(VD, Constant);
5365 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5366 const VarDecl *InitVD;
5367 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5368 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5369 // Temporaries defined inside a class get linkonce_odr linkage because the
5370 // class can be defined in multiple translation units.
5371 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5372 } else {
5373 // There is no need for this temporary to have external linkage if the
5374 // VarDecl has external linkage.
5375 Linkage = llvm::GlobalVariable::InternalLinkage;
5376 }
5377 }
5378 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5379 auto *GV = new llvm::GlobalVariable(
5380 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5381 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5382 if (emitter) emitter->finalize(GV);
5383 setGVProperties(GV, VD);
5384 GV->setAlignment(Align.getAsAlign());
5385 if (supportsCOMDAT() && GV->isWeakForLinker())
5386 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5387 if (VD->getTLSKind())
5388 setTLSMode(GV, *VD);
5389 llvm::Constant *CV = GV;
5390 if (AddrSpace != LangAS::Default)
5391 CV = getTargetCodeGenInfo().performAddrSpaceCast(
5392 *this, GV, AddrSpace, LangAS::Default,
5393 Type->getPointerTo(
5394 getContext().getTargetAddressSpace(LangAS::Default)));
5395 MaterializedGlobalTemporaryMap[E] = CV;
5396 return ConstantAddress(CV, Align);
5397 }
5398
5399 /// EmitObjCPropertyImplementations - Emit information for synthesized
5400 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)5401 void CodeGenModule::EmitObjCPropertyImplementations(const
5402 ObjCImplementationDecl *D) {
5403 for (const auto *PID : D->property_impls()) {
5404 // Dynamic is just for type-checking.
5405 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5406 ObjCPropertyDecl *PD = PID->getPropertyDecl();
5407
5408 // Determine which methods need to be implemented, some may have
5409 // been overridden. Note that ::isPropertyAccessor is not the method
5410 // we want, that just indicates if the decl came from a
5411 // property. What we want to know is if the method is defined in
5412 // this implementation.
5413 auto *Getter = PID->getGetterMethodDecl();
5414 if (!Getter || Getter->isSynthesizedAccessorStub())
5415 CodeGenFunction(*this).GenerateObjCGetter(
5416 const_cast<ObjCImplementationDecl *>(D), PID);
5417 auto *Setter = PID->getSetterMethodDecl();
5418 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5419 CodeGenFunction(*this).GenerateObjCSetter(
5420 const_cast<ObjCImplementationDecl *>(D), PID);
5421 }
5422 }
5423 }
5424
needsDestructMethod(ObjCImplementationDecl * impl)5425 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5426 const ObjCInterfaceDecl *iface = impl->getClassInterface();
5427 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5428 ivar; ivar = ivar->getNextIvar())
5429 if (ivar->getType().isDestructedType())
5430 return true;
5431
5432 return false;
5433 }
5434
AllTrivialInitializers(CodeGenModule & CGM,ObjCImplementationDecl * D)5435 static bool AllTrivialInitializers(CodeGenModule &CGM,
5436 ObjCImplementationDecl *D) {
5437 CodeGenFunction CGF(CGM);
5438 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5439 E = D->init_end(); B != E; ++B) {
5440 CXXCtorInitializer *CtorInitExp = *B;
5441 Expr *Init = CtorInitExp->getInit();
5442 if (!CGF.isTrivialInitializer(Init))
5443 return false;
5444 }
5445 return true;
5446 }
5447
5448 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5449 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)5450 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5451 // We might need a .cxx_destruct even if we don't have any ivar initializers.
5452 if (needsDestructMethod(D)) {
5453 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5454 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5455 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5456 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5457 getContext().VoidTy, nullptr, D,
5458 /*isInstance=*/true, /*isVariadic=*/false,
5459 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5460 /*isImplicitlyDeclared=*/true,
5461 /*isDefined=*/false, ObjCMethodDecl::Required);
5462 D->addInstanceMethod(DTORMethod);
5463 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5464 D->setHasDestructors(true);
5465 }
5466
5467 // If the implementation doesn't have any ivar initializers, we don't need
5468 // a .cxx_construct.
5469 if (D->getNumIvarInitializers() == 0 ||
5470 AllTrivialInitializers(*this, D))
5471 return;
5472
5473 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5474 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5475 // The constructor returns 'self'.
5476 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5477 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5478 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5479 /*isVariadic=*/false,
5480 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5481 /*isImplicitlyDeclared=*/true,
5482 /*isDefined=*/false, ObjCMethodDecl::Required);
5483 D->addInstanceMethod(CTORMethod);
5484 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5485 D->setHasNonZeroConstructors(true);
5486 }
5487
5488 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)5489 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5490 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5491 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5492 ErrorUnsupported(LSD, "linkage spec");
5493 return;
5494 }
5495
5496 EmitDeclContext(LSD);
5497 }
5498
EmitDeclContext(const DeclContext * DC)5499 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5500 for (auto *I : DC->decls()) {
5501 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5502 // are themselves considered "top-level", so EmitTopLevelDecl on an
5503 // ObjCImplDecl does not recursively visit them. We need to do that in
5504 // case they're nested inside another construct (LinkageSpecDecl /
5505 // ExportDecl) that does stop them from being considered "top-level".
5506 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5507 for (auto *M : OID->methods())
5508 EmitTopLevelDecl(M);
5509 }
5510
5511 EmitTopLevelDecl(I);
5512 }
5513 }
5514
5515 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)5516 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5517 // Ignore dependent declarations.
5518 if (D->isTemplated())
5519 return;
5520
5521 // Consteval function shouldn't be emitted.
5522 if (auto *FD = dyn_cast<FunctionDecl>(D))
5523 if (FD->isConsteval())
5524 return;
5525
5526 switch (D->getKind()) {
5527 case Decl::CXXConversion:
5528 case Decl::CXXMethod:
5529 case Decl::Function:
5530 EmitGlobal(cast<FunctionDecl>(D));
5531 // Always provide some coverage mapping
5532 // even for the functions that aren't emitted.
5533 AddDeferredUnusedCoverageMapping(D);
5534 break;
5535
5536 case Decl::CXXDeductionGuide:
5537 // Function-like, but does not result in code emission.
5538 break;
5539
5540 case Decl::Var:
5541 case Decl::Decomposition:
5542 case Decl::VarTemplateSpecialization:
5543 EmitGlobal(cast<VarDecl>(D));
5544 if (auto *DD = dyn_cast<DecompositionDecl>(D))
5545 for (auto *B : DD->bindings())
5546 if (auto *HD = B->getHoldingVar())
5547 EmitGlobal(HD);
5548 break;
5549
5550 // Indirect fields from global anonymous structs and unions can be
5551 // ignored; only the actual variable requires IR gen support.
5552 case Decl::IndirectField:
5553 break;
5554
5555 // C++ Decls
5556 case Decl::Namespace:
5557 EmitDeclContext(cast<NamespaceDecl>(D));
5558 break;
5559 case Decl::ClassTemplateSpecialization: {
5560 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5561 if (CGDebugInfo *DI = getModuleDebugInfo())
5562 if (Spec->getSpecializationKind() ==
5563 TSK_ExplicitInstantiationDefinition &&
5564 Spec->hasDefinition())
5565 DI->completeTemplateDefinition(*Spec);
5566 } LLVM_FALLTHROUGH;
5567 case Decl::CXXRecord: {
5568 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5569 if (CGDebugInfo *DI = getModuleDebugInfo()) {
5570 if (CRD->hasDefinition())
5571 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5572 if (auto *ES = D->getASTContext().getExternalSource())
5573 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5574 DI->completeUnusedClass(*CRD);
5575 }
5576 // Emit any static data members, they may be definitions.
5577 for (auto *I : CRD->decls())
5578 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5579 EmitTopLevelDecl(I);
5580 break;
5581 }
5582 // No code generation needed.
5583 case Decl::UsingShadow:
5584 case Decl::ClassTemplate:
5585 case Decl::VarTemplate:
5586 case Decl::Concept:
5587 case Decl::VarTemplatePartialSpecialization:
5588 case Decl::FunctionTemplate:
5589 case Decl::TypeAliasTemplate:
5590 case Decl::Block:
5591 case Decl::Empty:
5592 case Decl::Binding:
5593 break;
5594 case Decl::Using: // using X; [C++]
5595 if (CGDebugInfo *DI = getModuleDebugInfo())
5596 DI->EmitUsingDecl(cast<UsingDecl>(*D));
5597 break;
5598 case Decl::NamespaceAlias:
5599 if (CGDebugInfo *DI = getModuleDebugInfo())
5600 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5601 break;
5602 case Decl::UsingDirective: // using namespace X; [C++]
5603 if (CGDebugInfo *DI = getModuleDebugInfo())
5604 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5605 break;
5606 case Decl::CXXConstructor:
5607 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5608 break;
5609 case Decl::CXXDestructor:
5610 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5611 break;
5612
5613 case Decl::StaticAssert:
5614 // Nothing to do.
5615 break;
5616
5617 // Objective-C Decls
5618
5619 // Forward declarations, no (immediate) code generation.
5620 case Decl::ObjCInterface:
5621 case Decl::ObjCCategory:
5622 break;
5623
5624 case Decl::ObjCProtocol: {
5625 auto *Proto = cast<ObjCProtocolDecl>(D);
5626 if (Proto->isThisDeclarationADefinition())
5627 ObjCRuntime->GenerateProtocol(Proto);
5628 break;
5629 }
5630
5631 case Decl::ObjCCategoryImpl:
5632 // Categories have properties but don't support synthesize so we
5633 // can ignore them here.
5634 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5635 break;
5636
5637 case Decl::ObjCImplementation: {
5638 auto *OMD = cast<ObjCImplementationDecl>(D);
5639 EmitObjCPropertyImplementations(OMD);
5640 EmitObjCIvarInitializations(OMD);
5641 ObjCRuntime->GenerateClass(OMD);
5642 // Emit global variable debug information.
5643 if (CGDebugInfo *DI = getModuleDebugInfo())
5644 if (getCodeGenOpts().hasReducedDebugInfo())
5645 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5646 OMD->getClassInterface()), OMD->getLocation());
5647 break;
5648 }
5649 case Decl::ObjCMethod: {
5650 auto *OMD = cast<ObjCMethodDecl>(D);
5651 // If this is not a prototype, emit the body.
5652 if (OMD->getBody())
5653 CodeGenFunction(*this).GenerateObjCMethod(OMD);
5654 break;
5655 }
5656 case Decl::ObjCCompatibleAlias:
5657 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5658 break;
5659
5660 case Decl::PragmaComment: {
5661 const auto *PCD = cast<PragmaCommentDecl>(D);
5662 switch (PCD->getCommentKind()) {
5663 case PCK_Unknown:
5664 llvm_unreachable("unexpected pragma comment kind");
5665 case PCK_Linker:
5666 AppendLinkerOptions(PCD->getArg());
5667 break;
5668 case PCK_Lib:
5669 AddDependentLib(PCD->getArg());
5670 break;
5671 case PCK_Compiler:
5672 case PCK_ExeStr:
5673 case PCK_User:
5674 break; // We ignore all of these.
5675 }
5676 break;
5677 }
5678
5679 case Decl::PragmaDetectMismatch: {
5680 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5681 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5682 break;
5683 }
5684
5685 case Decl::LinkageSpec:
5686 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5687 break;
5688
5689 case Decl::FileScopeAsm: {
5690 // File-scope asm is ignored during device-side CUDA compilation.
5691 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5692 break;
5693 // File-scope asm is ignored during device-side OpenMP compilation.
5694 if (LangOpts.OpenMPIsDevice)
5695 break;
5696 auto *AD = cast<FileScopeAsmDecl>(D);
5697 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5698 break;
5699 }
5700
5701 case Decl::Import: {
5702 auto *Import = cast<ImportDecl>(D);
5703
5704 // If we've already imported this module, we're done.
5705 if (!ImportedModules.insert(Import->getImportedModule()))
5706 break;
5707
5708 // Emit debug information for direct imports.
5709 if (!Import->getImportedOwningModule()) {
5710 if (CGDebugInfo *DI = getModuleDebugInfo())
5711 DI->EmitImportDecl(*Import);
5712 }
5713
5714 // Find all of the submodules and emit the module initializers.
5715 llvm::SmallPtrSet<clang::Module *, 16> Visited;
5716 SmallVector<clang::Module *, 16> Stack;
5717 Visited.insert(Import->getImportedModule());
5718 Stack.push_back(Import->getImportedModule());
5719
5720 while (!Stack.empty()) {
5721 clang::Module *Mod = Stack.pop_back_val();
5722 if (!EmittedModuleInitializers.insert(Mod).second)
5723 continue;
5724
5725 for (auto *D : Context.getModuleInitializers(Mod))
5726 EmitTopLevelDecl(D);
5727
5728 // Visit the submodules of this module.
5729 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5730 SubEnd = Mod->submodule_end();
5731 Sub != SubEnd; ++Sub) {
5732 // Skip explicit children; they need to be explicitly imported to emit
5733 // the initializers.
5734 if ((*Sub)->IsExplicit)
5735 continue;
5736
5737 if (Visited.insert(*Sub).second)
5738 Stack.push_back(*Sub);
5739 }
5740 }
5741 break;
5742 }
5743
5744 case Decl::Export:
5745 EmitDeclContext(cast<ExportDecl>(D));
5746 break;
5747
5748 case Decl::OMPThreadPrivate:
5749 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5750 break;
5751
5752 case Decl::OMPAllocate:
5753 break;
5754
5755 case Decl::OMPDeclareReduction:
5756 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5757 break;
5758
5759 case Decl::OMPDeclareMapper:
5760 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5761 break;
5762
5763 case Decl::OMPRequires:
5764 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5765 break;
5766
5767 case Decl::Typedef:
5768 case Decl::TypeAlias: // using foo = bar; [C++11]
5769 if (CGDebugInfo *DI = getModuleDebugInfo())
5770 DI->EmitAndRetainType(
5771 getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5772 break;
5773
5774 case Decl::Record:
5775 if (CGDebugInfo *DI = getModuleDebugInfo())
5776 if (cast<RecordDecl>(D)->getDefinition())
5777 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5778 break;
5779
5780 case Decl::Enum:
5781 if (CGDebugInfo *DI = getModuleDebugInfo())
5782 if (cast<EnumDecl>(D)->getDefinition())
5783 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5784 break;
5785
5786 default:
5787 // Make sure we handled everything we should, every other kind is a
5788 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
5789 // function. Need to recode Decl::Kind to do that easily.
5790 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5791 break;
5792 }
5793 }
5794
AddDeferredUnusedCoverageMapping(Decl * D)5795 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5796 // Do we need to generate coverage mapping?
5797 if (!CodeGenOpts.CoverageMapping)
5798 return;
5799 switch (D->getKind()) {
5800 case Decl::CXXConversion:
5801 case Decl::CXXMethod:
5802 case Decl::Function:
5803 case Decl::ObjCMethod:
5804 case Decl::CXXConstructor:
5805 case Decl::CXXDestructor: {
5806 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5807 break;
5808 SourceManager &SM = getContext().getSourceManager();
5809 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5810 break;
5811 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5812 if (I == DeferredEmptyCoverageMappingDecls.end())
5813 DeferredEmptyCoverageMappingDecls[D] = true;
5814 break;
5815 }
5816 default:
5817 break;
5818 };
5819 }
5820
ClearUnusedCoverageMapping(const Decl * D)5821 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5822 // Do we need to generate coverage mapping?
5823 if (!CodeGenOpts.CoverageMapping)
5824 return;
5825 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5826 if (Fn->isTemplateInstantiation())
5827 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5828 }
5829 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5830 if (I == DeferredEmptyCoverageMappingDecls.end())
5831 DeferredEmptyCoverageMappingDecls[D] = false;
5832 else
5833 I->second = false;
5834 }
5835
EmitDeferredUnusedCoverageMappings()5836 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5837 // We call takeVector() here to avoid use-after-free.
5838 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5839 // we deserialize function bodies to emit coverage info for them, and that
5840 // deserializes more declarations. How should we handle that case?
5841 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5842 if (!Entry.second)
5843 continue;
5844 const Decl *D = Entry.first;
5845 switch (D->getKind()) {
5846 case Decl::CXXConversion:
5847 case Decl::CXXMethod:
5848 case Decl::Function:
5849 case Decl::ObjCMethod: {
5850 CodeGenPGO PGO(*this);
5851 GlobalDecl GD(cast<FunctionDecl>(D));
5852 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5853 getFunctionLinkage(GD));
5854 break;
5855 }
5856 case Decl::CXXConstructor: {
5857 CodeGenPGO PGO(*this);
5858 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5859 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5860 getFunctionLinkage(GD));
5861 break;
5862 }
5863 case Decl::CXXDestructor: {
5864 CodeGenPGO PGO(*this);
5865 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5866 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5867 getFunctionLinkage(GD));
5868 break;
5869 }
5870 default:
5871 break;
5872 };
5873 }
5874 }
5875
EmitMainVoidAlias()5876 void CodeGenModule::EmitMainVoidAlias() {
5877 // In order to transition away from "__original_main" gracefully, emit an
5878 // alias for "main" in the no-argument case so that libc can detect when
5879 // new-style no-argument main is in used.
5880 if (llvm::Function *F = getModule().getFunction("main")) {
5881 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5882 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5883 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5884 }
5885 }
5886
5887 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)5888 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5889 const void *Ptr) {
5890 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5891 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5892 return llvm::ConstantInt::get(i64, PtrInt);
5893 }
5894
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)5895 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5896 llvm::NamedMDNode *&GlobalMetadata,
5897 GlobalDecl D,
5898 llvm::GlobalValue *Addr) {
5899 if (!GlobalMetadata)
5900 GlobalMetadata =
5901 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5902
5903 // TODO: should we report variant information for ctors/dtors?
5904 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5905 llvm::ConstantAsMetadata::get(GetPointerConstant(
5906 CGM.getLLVMContext(), D.getDecl()))};
5907 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5908 }
5909
5910 /// For each function which is declared within an extern "C" region and marked
5911 /// as 'used', but has internal linkage, create an alias from the unmangled
5912 /// name to the mangled name if possible. People expect to be able to refer
5913 /// to such functions with an unmangled name from inline assembly within the
5914 /// same translation unit.
EmitStaticExternCAliases()5915 void CodeGenModule::EmitStaticExternCAliases() {
5916 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5917 return;
5918 for (auto &I : StaticExternCValues) {
5919 IdentifierInfo *Name = I.first;
5920 llvm::GlobalValue *Val = I.second;
5921 if (Val && !getModule().getNamedValue(Name->getName()))
5922 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5923 }
5924 }
5925
lookupRepresentativeDecl(StringRef MangledName,GlobalDecl & Result) const5926 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5927 GlobalDecl &Result) const {
5928 auto Res = Manglings.find(MangledName);
5929 if (Res == Manglings.end())
5930 return false;
5931 Result = Res->getValue();
5932 return true;
5933 }
5934
5935 /// Emits metadata nodes associating all the global values in the
5936 /// current module with the Decls they came from. This is useful for
5937 /// projects using IR gen as a subroutine.
5938 ///
5939 /// Since there's currently no way to associate an MDNode directly
5940 /// with an llvm::GlobalValue, we create a global named metadata
5941 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()5942 void CodeGenModule::EmitDeclMetadata() {
5943 llvm::NamedMDNode *GlobalMetadata = nullptr;
5944
5945 for (auto &I : MangledDeclNames) {
5946 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5947 // Some mangled names don't necessarily have an associated GlobalValue
5948 // in this module, e.g. if we mangled it for DebugInfo.
5949 if (Addr)
5950 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5951 }
5952 }
5953
5954 /// Emits metadata nodes for all the local variables in the current
5955 /// function.
EmitDeclMetadata()5956 void CodeGenFunction::EmitDeclMetadata() {
5957 if (LocalDeclMap.empty()) return;
5958
5959 llvm::LLVMContext &Context = getLLVMContext();
5960
5961 // Find the unique metadata ID for this name.
5962 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5963
5964 llvm::NamedMDNode *GlobalMetadata = nullptr;
5965
5966 for (auto &I : LocalDeclMap) {
5967 const Decl *D = I.first;
5968 llvm::Value *Addr = I.second.getPointer();
5969 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5970 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5971 Alloca->setMetadata(
5972 DeclPtrKind, llvm::MDNode::get(
5973 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5974 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5975 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5976 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5977 }
5978 }
5979 }
5980
EmitVersionIdentMetadata()5981 void CodeGenModule::EmitVersionIdentMetadata() {
5982 llvm::NamedMDNode *IdentMetadata =
5983 TheModule.getOrInsertNamedMetadata("llvm.ident");
5984 std::string Version = getClangFullVersion();
5985 llvm::LLVMContext &Ctx = TheModule.getContext();
5986
5987 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5988 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5989 }
5990
EmitCommandLineMetadata()5991 void CodeGenModule::EmitCommandLineMetadata() {
5992 llvm::NamedMDNode *CommandLineMetadata =
5993 TheModule.getOrInsertNamedMetadata("llvm.commandline");
5994 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5995 llvm::LLVMContext &Ctx = TheModule.getContext();
5996
5997 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5998 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5999 }
6000
EmitCoverageFile()6001 void CodeGenModule::EmitCoverageFile() {
6002 if (getCodeGenOpts().CoverageDataFile.empty() &&
6003 getCodeGenOpts().CoverageNotesFile.empty())
6004 return;
6005
6006 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6007 if (!CUNode)
6008 return;
6009
6010 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6011 llvm::LLVMContext &Ctx = TheModule.getContext();
6012 auto *CoverageDataFile =
6013 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6014 auto *CoverageNotesFile =
6015 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6016 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6017 llvm::MDNode *CU = CUNode->getOperand(i);
6018 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6019 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6020 }
6021 }
6022
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)6023 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6024 bool ForEH) {
6025 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6026 // FIXME: should we even be calling this method if RTTI is disabled
6027 // and it's not for EH?
6028 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6029 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6030 getTriple().isNVPTX()))
6031 return llvm::Constant::getNullValue(Int8PtrTy);
6032
6033 if (ForEH && Ty->isObjCObjectPointerType() &&
6034 LangOpts.ObjCRuntime.isGNUFamily())
6035 return ObjCRuntime->GetEHType(Ty);
6036
6037 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6038 }
6039
EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl * D)6040 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6041 // Do not emit threadprivates in simd-only mode.
6042 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6043 return;
6044 for (auto RefExpr : D->varlists()) {
6045 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6046 bool PerformInit =
6047 VD->getAnyInitializer() &&
6048 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6049 /*ForRef=*/false);
6050
6051 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6052 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6053 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6054 CXXGlobalInits.push_back(InitFunction);
6055 }
6056 }
6057
6058 llvm::Metadata *
CreateMetadataIdentifierImpl(QualType T,MetadataTypeMap & Map,StringRef Suffix)6059 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6060 StringRef Suffix) {
6061 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6062 if (InternalId)
6063 return InternalId;
6064
6065 if (isExternallyVisible(T->getLinkage())) {
6066 std::string OutName;
6067 llvm::raw_string_ostream Out(OutName);
6068 getCXXABI().getMangleContext().mangleTypeName(T, Out);
6069 Out << Suffix;
6070
6071 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6072 } else {
6073 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6074 llvm::ArrayRef<llvm::Metadata *>());
6075 }
6076
6077 return InternalId;
6078 }
6079
CreateMetadataIdentifierForType(QualType T)6080 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6081 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6082 }
6083
6084 llvm::Metadata *
CreateMetadataIdentifierForVirtualMemPtrType(QualType T)6085 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6086 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6087 }
6088
6089 // Generalize pointer types to a void pointer with the qualifiers of the
6090 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6091 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6092 // 'void *'.
GeneralizeType(ASTContext & Ctx,QualType Ty)6093 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6094 if (!Ty->isPointerType())
6095 return Ty;
6096
6097 return Ctx.getPointerType(
6098 QualType(Ctx.VoidTy).withCVRQualifiers(
6099 Ty->getPointeeType().getCVRQualifiers()));
6100 }
6101
6102 // Apply type generalization to a FunctionType's return and argument types
GeneralizeFunctionType(ASTContext & Ctx,QualType Ty)6103 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6104 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6105 SmallVector<QualType, 8> GeneralizedParams;
6106 for (auto &Param : FnType->param_types())
6107 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6108
6109 return Ctx.getFunctionType(
6110 GeneralizeType(Ctx, FnType->getReturnType()),
6111 GeneralizedParams, FnType->getExtProtoInfo());
6112 }
6113
6114 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6115 return Ctx.getFunctionNoProtoType(
6116 GeneralizeType(Ctx, FnType->getReturnType()));
6117
6118 llvm_unreachable("Encountered unknown FunctionType");
6119 }
6120
CreateMetadataIdentifierGeneralized(QualType T)6121 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6122 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6123 GeneralizedMetadataIdMap, ".generalized");
6124 }
6125
6126 /// Returns whether this module needs the "all-vtables" type identifier.
NeedAllVtablesTypeId() const6127 bool CodeGenModule::NeedAllVtablesTypeId() const {
6128 // Returns true if at least one of vtable-based CFI checkers is enabled and
6129 // is not in the trapping mode.
6130 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6131 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6132 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6133 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6134 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6135 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6136 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6137 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6138 }
6139
AddVTableTypeMetadata(llvm::GlobalVariable * VTable,CharUnits Offset,const CXXRecordDecl * RD)6140 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6141 CharUnits Offset,
6142 const CXXRecordDecl *RD) {
6143 llvm::Metadata *MD =
6144 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6145 VTable->addTypeMetadata(Offset.getQuantity(), MD);
6146
6147 if (CodeGenOpts.SanitizeCfiCrossDso)
6148 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6149 VTable->addTypeMetadata(Offset.getQuantity(),
6150 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6151
6152 if (NeedAllVtablesTypeId()) {
6153 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6154 VTable->addTypeMetadata(Offset.getQuantity(), MD);
6155 }
6156 }
6157
getSanStats()6158 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6159 if (!SanStats)
6160 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6161
6162 return *SanStats;
6163 }
6164 llvm::Value *
createOpenCLIntToSamplerConversion(const Expr * E,CodeGenFunction & CGF)6165 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6166 CodeGenFunction &CGF) {
6167 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6168 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6169 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6170 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6171 "__translate_sampler_initializer"),
6172 {C});
6173 }
6174
getNaturalPointeeTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)6175 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6176 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6177 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6178 /* forPointeeType= */ true);
6179 }
6180
getNaturalTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo,bool forPointeeType)6181 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6182 LValueBaseInfo *BaseInfo,
6183 TBAAAccessInfo *TBAAInfo,
6184 bool forPointeeType) {
6185 if (TBAAInfo)
6186 *TBAAInfo = getTBAAAccessInfo(T);
6187
6188 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6189 // that doesn't return the information we need to compute BaseInfo.
6190
6191 // Honor alignment typedef attributes even on incomplete types.
6192 // We also honor them straight for C++ class types, even as pointees;
6193 // there's an expressivity gap here.
6194 if (auto TT = T->getAs<TypedefType>()) {
6195 if (auto Align = TT->getDecl()->getMaxAlignment()) {
6196 if (BaseInfo)
6197 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6198 return getContext().toCharUnitsFromBits(Align);
6199 }
6200 }
6201
6202 bool AlignForArray = T->isArrayType();
6203
6204 // Analyze the base element type, so we don't get confused by incomplete
6205 // array types.
6206 T = getContext().getBaseElementType(T);
6207
6208 if (T->isIncompleteType()) {
6209 // We could try to replicate the logic from
6210 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6211 // type is incomplete, so it's impossible to test. We could try to reuse
6212 // getTypeAlignIfKnown, but that doesn't return the information we need
6213 // to set BaseInfo. So just ignore the possibility that the alignment is
6214 // greater than one.
6215 if (BaseInfo)
6216 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6217 return CharUnits::One();
6218 }
6219
6220 if (BaseInfo)
6221 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6222
6223 CharUnits Alignment;
6224 const CXXRecordDecl *RD;
6225 if (T.getQualifiers().hasUnaligned()) {
6226 Alignment = CharUnits::One();
6227 } else if (forPointeeType && !AlignForArray &&
6228 (RD = T->getAsCXXRecordDecl())) {
6229 // For C++ class pointees, we don't know whether we're pointing at a
6230 // base or a complete object, so we generally need to use the
6231 // non-virtual alignment.
6232 Alignment = getClassPointerAlignment(RD);
6233 } else {
6234 Alignment = getContext().getTypeAlignInChars(T);
6235 }
6236
6237 // Cap to the global maximum type alignment unless the alignment
6238 // was somehow explicit on the type.
6239 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6240 if (Alignment.getQuantity() > MaxAlign &&
6241 !getContext().isAlignmentRequired(T))
6242 Alignment = CharUnits::fromQuantity(MaxAlign);
6243 }
6244 return Alignment;
6245 }
6246
stopAutoInit()6247 bool CodeGenModule::stopAutoInit() {
6248 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6249 if (StopAfter) {
6250 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6251 // used
6252 if (NumAutoVarInit >= StopAfter) {
6253 return true;
6254 }
6255 if (!NumAutoVarInit) {
6256 unsigned DiagID = getDiags().getCustomDiagID(
6257 DiagnosticsEngine::Warning,
6258 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6259 "number of times ftrivial-auto-var-init=%1 gets applied.");
6260 getDiags().Report(DiagID)
6261 << StopAfter
6262 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6263 LangOptions::TrivialAutoVarInitKind::Zero
6264 ? "zero"
6265 : "pattern");
6266 }
6267 ++NumAutoVarInit;
6268 }
6269 return false;
6270 }
6271