1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Type class.  For more "Type"
10 // stuff, look in DerivedTypes.h.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_TYPE_H
15 #define LLVM_IR_TYPE_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/TypeSize.h"
25 #include <cassert>
26 #include <cstdint>
27 #include <iterator>
28 
29 namespace llvm {
30 
31 template<class GraphType> struct GraphTraits;
32 class IntegerType;
33 class LLVMContext;
34 class PointerType;
35 class raw_ostream;
36 class StringRef;
37 
38 /// The instances of the Type class are immutable: once they are created,
39 /// they are never changed.  Also note that only one instance of a particular
40 /// type is ever created.  Thus seeing if two types are equal is a matter of
41 /// doing a trivial pointer comparison. To enforce that no two equal instances
42 /// are created, Type instances can only be created via static factory methods
43 /// in class Type and in derived classes.  Once allocated, Types are never
44 /// free'd.
45 ///
46 class Type {
47 public:
48   //===--------------------------------------------------------------------===//
49   /// Definitions of all of the base types for the Type system.  Based on this
50   /// value, you can cast to a class defined in DerivedTypes.h.
51   /// Note: If you add an element to this, you need to add an element to the
52   /// Type::getPrimitiveType function, or else things will break!
53   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
54   ///
55   enum TypeID {
56     // PrimitiveTypes
57     HalfTyID = 0,  ///< 16-bit floating point type
58     BFloatTyID,    ///< 16-bit floating point type (7-bit significand)
59     FloatTyID,     ///< 32-bit floating point type
60     DoubleTyID,    ///< 64-bit floating point type
61     X86_FP80TyID,  ///< 80-bit floating point type (X87)
62     FP128TyID,     ///< 128-bit floating point type (112-bit significand)
63     PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
64     VoidTyID,      ///< type with no size
65     LabelTyID,     ///< Labels
66     MetadataTyID,  ///< Metadata
67     X86_MMXTyID,   ///< MMX vectors (64 bits, X86 specific)
68     TokenTyID,     ///< Tokens
69 
70     // Derived types... see DerivedTypes.h file.
71     IntegerTyID,       ///< Arbitrary bit width integers
72     FunctionTyID,      ///< Functions
73     PointerTyID,       ///< Pointers
74     StructTyID,        ///< Structures
75     ArrayTyID,         ///< Arrays
76     FixedVectorTyID,   ///< Fixed width SIMD vector type
77     ScalableVectorTyID ///< Scalable SIMD vector type
78   };
79 
80 private:
81   /// This refers to the LLVMContext in which this type was uniqued.
82   LLVMContext &Context;
83 
84   TypeID   ID : 8;            // The current base type of this type.
85   unsigned SubclassData : 24; // Space for subclasses to store data.
86                               // Note that this should be synchronized with
87                               // MAX_INT_BITS value in IntegerType class.
88 
89 protected:
90   friend class LLVMContextImpl;
91 
Type(LLVMContext & C,TypeID tid)92   explicit Type(LLVMContext &C, TypeID tid)
93     : Context(C), ID(tid), SubclassData(0) {}
94   ~Type() = default;
95 
getSubclassData()96   unsigned getSubclassData() const { return SubclassData; }
97 
setSubclassData(unsigned val)98   void setSubclassData(unsigned val) {
99     SubclassData = val;
100     // Ensure we don't have any accidental truncation.
101     assert(getSubclassData() == val && "Subclass data too large for field");
102   }
103 
104   /// Keeps track of how many Type*'s there are in the ContainedTys list.
105   unsigned NumContainedTys = 0;
106 
107   /// A pointer to the array of Types contained by this Type. For example, this
108   /// includes the arguments of a function type, the elements of a structure,
109   /// the pointee of a pointer, the element type of an array, etc. This pointer
110   /// may be 0 for types that don't contain other types (Integer, Double,
111   /// Float).
112   Type * const *ContainedTys = nullptr;
113 
114 public:
115   /// Print the current type.
116   /// Omit the type details if \p NoDetails == true.
117   /// E.g., let %st = type { i32, i16 }
118   /// When \p NoDetails is true, we only print %st.
119   /// Put differently, \p NoDetails prints the type as if
120   /// inlined with the operands when printing an instruction.
121   void print(raw_ostream &O, bool IsForDebug = false,
122              bool NoDetails = false) const;
123 
124   void dump() const;
125 
126   /// Return the LLVMContext in which this type was uniqued.
getContext()127   LLVMContext &getContext() const { return Context; }
128 
129   //===--------------------------------------------------------------------===//
130   // Accessors for working with types.
131   //
132 
133   /// Return the type id for the type. This will return one of the TypeID enum
134   /// elements defined above.
getTypeID()135   TypeID getTypeID() const { return ID; }
136 
137   /// Return true if this is 'void'.
isVoidTy()138   bool isVoidTy() const { return getTypeID() == VoidTyID; }
139 
140   /// Return true if this is 'half', a 16-bit IEEE fp type.
isHalfTy()141   bool isHalfTy() const { return getTypeID() == HalfTyID; }
142 
143   /// Return true if this is 'bfloat', a 16-bit bfloat type.
isBFloatTy()144   bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
145 
146   /// Return true if this is 'float', a 32-bit IEEE fp type.
isFloatTy()147   bool isFloatTy() const { return getTypeID() == FloatTyID; }
148 
149   /// Return true if this is 'double', a 64-bit IEEE fp type.
isDoubleTy()150   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
151 
152   /// Return true if this is x86 long double.
isX86_FP80Ty()153   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
154 
155   /// Return true if this is 'fp128'.
isFP128Ty()156   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
157 
158   /// Return true if this is powerpc long double.
isPPC_FP128Ty()159   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
160 
161   /// Return true if this is one of the six floating-point types
isFloatingPointTy()162   bool isFloatingPointTy() const {
163     return getTypeID() == HalfTyID || getTypeID() == BFloatTyID ||
164            getTypeID() == FloatTyID || getTypeID() == DoubleTyID ||
165            getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
166            getTypeID() == PPC_FP128TyID;
167   }
168 
getFltSemantics()169   const fltSemantics &getFltSemantics() const {
170     switch (getTypeID()) {
171     case HalfTyID: return APFloat::IEEEhalf();
172     case BFloatTyID: return APFloat::BFloat();
173     case FloatTyID: return APFloat::IEEEsingle();
174     case DoubleTyID: return APFloat::IEEEdouble();
175     case X86_FP80TyID: return APFloat::x87DoubleExtended();
176     case FP128TyID: return APFloat::IEEEquad();
177     case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
178     default: llvm_unreachable("Invalid floating type");
179     }
180   }
181 
182   /// Return true if this is X86 MMX.
isX86_MMXTy()183   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
184 
185   /// Return true if this is a FP type or a vector of FP.
isFPOrFPVectorTy()186   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
187 
188   /// Return true if this is 'label'.
isLabelTy()189   bool isLabelTy() const { return getTypeID() == LabelTyID; }
190 
191   /// Return true if this is 'metadata'.
isMetadataTy()192   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
193 
194   /// Return true if this is 'token'.
isTokenTy()195   bool isTokenTy() const { return getTypeID() == TokenTyID; }
196 
197   /// True if this is an instance of IntegerType.
isIntegerTy()198   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
199 
200   /// Return true if this is an IntegerType of the given width.
201   bool isIntegerTy(unsigned Bitwidth) const;
202 
203   /// Return true if this is an integer type or a vector of integer types.
isIntOrIntVectorTy()204   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
205 
206   /// Return true if this is an integer type or a vector of integer types of
207   /// the given width.
isIntOrIntVectorTy(unsigned BitWidth)208   bool isIntOrIntVectorTy(unsigned BitWidth) const {
209     return getScalarType()->isIntegerTy(BitWidth);
210   }
211 
212   /// Return true if this is an integer type or a pointer type.
isIntOrPtrTy()213   bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
214 
215   /// True if this is an instance of FunctionType.
isFunctionTy()216   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
217 
218   /// True if this is an instance of StructType.
isStructTy()219   bool isStructTy() const { return getTypeID() == StructTyID; }
220 
221   /// True if this is an instance of ArrayType.
isArrayTy()222   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
223 
224   /// True if this is an instance of PointerType.
isPointerTy()225   bool isPointerTy() const { return getTypeID() == PointerTyID; }
226 
227   /// Return true if this is a pointer type or a vector of pointer types.
isPtrOrPtrVectorTy()228   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
229 
230   /// True if this is an instance of VectorType.
isVectorTy()231   inline bool isVectorTy() const {
232     return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
233   }
234 
235   /// Return true if this type could be converted with a lossless BitCast to
236   /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
237   /// same size only where no re-interpretation of the bits is done.
238   /// Determine if this type could be losslessly bitcast to Ty
239   bool canLosslesslyBitCastTo(Type *Ty) const;
240 
241   /// Return true if this type is empty, that is, it has no elements or all of
242   /// its elements are empty.
243   bool isEmptyTy() const;
244 
245   /// Return true if the type is "first class", meaning it is a valid type for a
246   /// Value.
isFirstClassType()247   bool isFirstClassType() const {
248     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
249   }
250 
251   /// Return true if the type is a valid type for a register in codegen. This
252   /// includes all first-class types except struct and array types.
isSingleValueType()253   bool isSingleValueType() const {
254     return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
255            isPointerTy() || isVectorTy();
256   }
257 
258   /// Return true if the type is an aggregate type. This means it is valid as
259   /// the first operand of an insertvalue or extractvalue instruction. This
260   /// includes struct and array types, but does not include vector types.
isAggregateType()261   bool isAggregateType() const {
262     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
263   }
264 
265   /// Return true if it makes sense to take the size of this type. To get the
266   /// actual size for a particular target, it is reasonable to use the
267   /// DataLayout subsystem to do this.
268   bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
269     // If it's a primitive, it is always sized.
270     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
271         getTypeID() == PointerTyID ||
272         getTypeID() == X86_MMXTyID)
273       return true;
274     // If it is not something that can have a size (e.g. a function or label),
275     // it doesn't have a size.
276     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy())
277       return false;
278     // Otherwise we have to try harder to decide.
279     return isSizedDerivedType(Visited);
280   }
281 
282   /// Return the basic size of this type if it is a primitive type. These are
283   /// fixed by LLVM and are not target-dependent.
284   /// This will return zero if the type does not have a size or is not a
285   /// primitive type.
286   ///
287   /// If this is a scalable vector type, the scalable property will be set and
288   /// the runtime size will be a positive integer multiple of the base size.
289   ///
290   /// Note that this may not reflect the size of memory allocated for an
291   /// instance of the type or the number of bytes that are written when an
292   /// instance of the type is stored to memory. The DataLayout class provides
293   /// additional query functions to provide this information.
294   ///
295   TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;
296 
297   /// If this is a vector type, return the getPrimitiveSizeInBits value for the
298   /// element type. Otherwise return the getPrimitiveSizeInBits value for this
299   /// type.
300   unsigned getScalarSizeInBits() const LLVM_READONLY;
301 
302   /// Return the width of the mantissa of this type. This is only valid on
303   /// floating-point types. If the FP type does not have a stable mantissa (e.g.
304   /// ppc long double), this method returns -1.
305   int getFPMantissaWidth() const;
306 
307   /// If this is a vector type, return the element type, otherwise return
308   /// 'this'.
getScalarType()309   inline Type *getScalarType() const {
310     if (isVectorTy())
311       return getContainedType(0);
312     return const_cast<Type *>(this);
313   }
314 
315   //===--------------------------------------------------------------------===//
316   // Type Iteration support.
317   //
318   using subtype_iterator = Type * const *;
319 
subtype_begin()320   subtype_iterator subtype_begin() const { return ContainedTys; }
subtype_end()321   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
subtypes()322   ArrayRef<Type*> subtypes() const {
323     return makeArrayRef(subtype_begin(), subtype_end());
324   }
325 
326   using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
327 
subtype_rbegin()328   subtype_reverse_iterator subtype_rbegin() const {
329     return subtype_reverse_iterator(subtype_end());
330   }
subtype_rend()331   subtype_reverse_iterator subtype_rend() const {
332     return subtype_reverse_iterator(subtype_begin());
333   }
334 
335   /// This method is used to implement the type iterator (defined at the end of
336   /// the file). For derived types, this returns the types 'contained' in the
337   /// derived type.
getContainedType(unsigned i)338   Type *getContainedType(unsigned i) const {
339     assert(i < NumContainedTys && "Index out of range!");
340     return ContainedTys[i];
341   }
342 
343   /// Return the number of types in the derived type.
getNumContainedTypes()344   unsigned getNumContainedTypes() const { return NumContainedTys; }
345 
346   //===--------------------------------------------------------------------===//
347   // Helper methods corresponding to subclass methods.  This forces a cast to
348   // the specified subclass and calls its accessor.  "getArrayNumElements" (for
349   // example) is shorthand for cast<ArrayType>(Ty)->getNumElements().  This is
350   // only intended to cover the core methods that are frequently used, helper
351   // methods should not be added here.
352 
353   inline unsigned getIntegerBitWidth() const;
354 
355   inline Type *getFunctionParamType(unsigned i) const;
356   inline unsigned getFunctionNumParams() const;
357   inline bool isFunctionVarArg() const;
358 
359   inline StringRef getStructName() const;
360   inline unsigned getStructNumElements() const;
361   inline Type *getStructElementType(unsigned N) const;
362 
363   inline uint64_t getArrayNumElements() const;
364 
getArrayElementType()365   Type *getArrayElementType() const {
366     assert(getTypeID() == ArrayTyID);
367     return ContainedTys[0];
368   }
369 
getPointerElementType()370   Type *getPointerElementType() const {
371     assert(getTypeID() == PointerTyID);
372     return ContainedTys[0];
373   }
374 
375   /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
376   /// whilst keeping the old number of lanes.
377   inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
378 
379   /// Given scalar/vector integer type, returns a type with elements twice as
380   /// wide as in the original type. For vectors, preserves element count.
381   inline Type *getExtendedType() const;
382 
383   /// Get the address space of this pointer or pointer vector type.
384   inline unsigned getPointerAddressSpace() const;
385 
386   //===--------------------------------------------------------------------===//
387   // Static members exported by the Type class itself.  Useful for getting
388   // instances of Type.
389   //
390 
391   /// Return a type based on an identifier.
392   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
393 
394   //===--------------------------------------------------------------------===//
395   // These are the builtin types that are always available.
396   //
397   static Type *getVoidTy(LLVMContext &C);
398   static Type *getLabelTy(LLVMContext &C);
399   static Type *getHalfTy(LLVMContext &C);
400   static Type *getBFloatTy(LLVMContext &C);
401   static Type *getFloatTy(LLVMContext &C);
402   static Type *getDoubleTy(LLVMContext &C);
403   static Type *getMetadataTy(LLVMContext &C);
404   static Type *getX86_FP80Ty(LLVMContext &C);
405   static Type *getFP128Ty(LLVMContext &C);
406   static Type *getPPC_FP128Ty(LLVMContext &C);
407   static Type *getX86_MMXTy(LLVMContext &C);
408   static Type *getTokenTy(LLVMContext &C);
409   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
410   static IntegerType *getInt1Ty(LLVMContext &C);
411   static IntegerType *getInt8Ty(LLVMContext &C);
412   static IntegerType *getInt16Ty(LLVMContext &C);
413   static IntegerType *getInt32Ty(LLVMContext &C);
414   static IntegerType *getInt64Ty(LLVMContext &C);
415   static IntegerType *getInt128Ty(LLVMContext &C);
getScalarTy(LLVMContext & C)416   template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
417     int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
418     if (std::is_integral<ScalarTy>::value) {
419       return (Type*) Type::getIntNTy(C, noOfBits);
420     } else if (std::is_floating_point<ScalarTy>::value) {
421       switch (noOfBits) {
422       case 32:
423         return Type::getFloatTy(C);
424       case 64:
425         return Type::getDoubleTy(C);
426       }
427     }
428     llvm_unreachable("Unsupported type in Type::getScalarTy");
429   }
getFloatingPointTy(LLVMContext & C,const fltSemantics & S)430   static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S) {
431     Type *Ty;
432     if (&S == &APFloat::IEEEhalf())
433       Ty = Type::getHalfTy(C);
434     else if (&S == &APFloat::BFloat())
435       Ty = Type::getBFloatTy(C);
436     else if (&S == &APFloat::IEEEsingle())
437       Ty = Type::getFloatTy(C);
438     else if (&S == &APFloat::IEEEdouble())
439       Ty = Type::getDoubleTy(C);
440     else if (&S == &APFloat::x87DoubleExtended())
441       Ty = Type::getX86_FP80Ty(C);
442     else if (&S == &APFloat::IEEEquad())
443       Ty = Type::getFP128Ty(C);
444     else {
445       assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format");
446       Ty = Type::getPPC_FP128Ty(C);
447     }
448     return Ty;
449   }
450 
451   //===--------------------------------------------------------------------===//
452   // Convenience methods for getting pointer types with one of the above builtin
453   // types as pointee.
454   //
455   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
456   static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0);
457   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
458   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
459   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
460   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
461   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
462   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
463   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
464   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
465   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
466   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
467   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
468   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
469 
470   /// Return a pointer to the current type. This is equivalent to
471   /// PointerType::get(Foo, AddrSpace).
472   PointerType *getPointerTo(unsigned AddrSpace = 0) const;
473 
474 private:
475   /// Derived types like structures and arrays are sized iff all of the members
476   /// of the type are sized as well. Since asking for their size is relatively
477   /// uncommon, move this operation out-of-line.
478   bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
479 };
480 
481 // Printing of types.
482 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
483   T.print(OS);
484   return OS;
485 }
486 
487 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
488 template <> struct isa_impl<PointerType, Type> {
489   static inline bool doit(const Type &Ty) {
490     return Ty.getTypeID() == Type::PointerTyID;
491   }
492 };
493 
494 // Create wrappers for C Binding types (see CBindingWrapping.h).
495 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
496 
497 /* Specialized opaque type conversions.
498  */
499 inline Type **unwrap(LLVMTypeRef* Tys) {
500   return reinterpret_cast<Type**>(Tys);
501 }
502 
503 inline LLVMTypeRef *wrap(Type **Tys) {
504   return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
505 }
506 
507 } // end namespace llvm
508 
509 #endif // LLVM_IR_TYPE_H
510