1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10 #include "modules/video_coding/jitter_buffer.h"
11
12 #include <assert.h>
13
14 #include <algorithm>
15 #include <limits>
16 #include <utility>
17
18 #include "modules/video_coding/frame_buffer.h"
19 #include "modules/video_coding/include/video_coding.h"
20 #include "modules/video_coding/inter_frame_delay.h"
21 #include "modules/video_coding/internal_defines.h"
22 #include "modules/video_coding/jitter_buffer_common.h"
23 #include "modules/video_coding/jitter_estimator.h"
24 #include "modules/video_coding/packet.h"
25 #include "rtc_base/checks.h"
26 #include "rtc_base/logging.h"
27 #include "system_wrappers/include/clock.h"
28
29 namespace webrtc {
30 // Use this rtt if no value has been reported.
31 static const int64_t kDefaultRtt = 200;
32
33 typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
34
IsKeyFrame(FrameListPair pair)35 bool IsKeyFrame(FrameListPair pair) {
36 return pair.second->FrameType() == VideoFrameType::kVideoFrameKey;
37 }
38
HasNonEmptyState(FrameListPair pair)39 bool HasNonEmptyState(FrameListPair pair) {
40 return pair.second->GetState() != kStateEmpty;
41 }
42
InsertFrame(VCMFrameBuffer * frame)43 void FrameList::InsertFrame(VCMFrameBuffer* frame) {
44 insert(rbegin().base(), FrameListPair(frame->Timestamp(), frame));
45 }
46
PopFrame(uint32_t timestamp)47 VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
48 FrameList::iterator it = find(timestamp);
49 if (it == end())
50 return NULL;
51 VCMFrameBuffer* frame = it->second;
52 erase(it);
53 return frame;
54 }
55
Front() const56 VCMFrameBuffer* FrameList::Front() const {
57 return begin()->second;
58 }
59
Back() const60 VCMFrameBuffer* FrameList::Back() const {
61 return rbegin()->second;
62 }
63
RecycleFramesUntilKeyFrame(FrameList::iterator * key_frame_it,UnorderedFrameList * free_frames)64 int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
65 UnorderedFrameList* free_frames) {
66 int drop_count = 0;
67 FrameList::iterator it = begin();
68 while (!empty()) {
69 // Throw at least one frame.
70 it->second->Reset();
71 free_frames->push_back(it->second);
72 erase(it++);
73 ++drop_count;
74 if (it != end() &&
75 it->second->FrameType() == VideoFrameType::kVideoFrameKey) {
76 *key_frame_it = it;
77 return drop_count;
78 }
79 }
80 *key_frame_it = end();
81 return drop_count;
82 }
83
CleanUpOldOrEmptyFrames(VCMDecodingState * decoding_state,UnorderedFrameList * free_frames)84 void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
85 UnorderedFrameList* free_frames) {
86 while (!empty()) {
87 VCMFrameBuffer* oldest_frame = Front();
88 bool remove_frame = false;
89 if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
90 // This frame is empty, try to update the last decoded state and drop it
91 // if successful.
92 remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
93 } else {
94 remove_frame = decoding_state->IsOldFrame(oldest_frame);
95 }
96 if (!remove_frame) {
97 break;
98 }
99 free_frames->push_back(oldest_frame);
100 erase(begin());
101 }
102 }
103
Reset(UnorderedFrameList * free_frames)104 void FrameList::Reset(UnorderedFrameList* free_frames) {
105 while (!empty()) {
106 begin()->second->Reset();
107 free_frames->push_back(begin()->second);
108 erase(begin());
109 }
110 }
111
VCMJitterBuffer(Clock * clock,std::unique_ptr<EventWrapper> event)112 VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
113 std::unique_ptr<EventWrapper> event)
114 : clock_(clock),
115 running_(false),
116 frame_event_(std::move(event)),
117 max_number_of_frames_(kStartNumberOfFrames),
118 free_frames_(),
119 decodable_frames_(),
120 incomplete_frames_(),
121 last_decoded_state_(),
122 first_packet_since_reset_(true),
123 num_consecutive_old_packets_(0),
124 num_packets_(0),
125 num_duplicated_packets_(0),
126 jitter_estimate_(clock),
127 inter_frame_delay_(clock_->TimeInMilliseconds()),
128 missing_sequence_numbers_(SequenceNumberLessThan()),
129 latest_received_sequence_number_(0),
130 max_nack_list_size_(0),
131 max_packet_age_to_nack_(0),
132 max_incomplete_time_ms_(0),
133 average_packets_per_frame_(0.0f),
134 frame_counter_(0) {
135 for (int i = 0; i < kStartNumberOfFrames; i++)
136 free_frames_.push_back(new VCMFrameBuffer());
137 }
138
~VCMJitterBuffer()139 VCMJitterBuffer::~VCMJitterBuffer() {
140 Stop();
141 for (UnorderedFrameList::iterator it = free_frames_.begin();
142 it != free_frames_.end(); ++it) {
143 delete *it;
144 }
145 for (FrameList::iterator it = incomplete_frames_.begin();
146 it != incomplete_frames_.end(); ++it) {
147 delete it->second;
148 }
149 for (FrameList::iterator it = decodable_frames_.begin();
150 it != decodable_frames_.end(); ++it) {
151 delete it->second;
152 }
153 }
154
Start()155 void VCMJitterBuffer::Start() {
156 MutexLock lock(&mutex_);
157 running_ = true;
158
159 num_consecutive_old_packets_ = 0;
160 num_packets_ = 0;
161 num_duplicated_packets_ = 0;
162
163 // Start in a non-signaled state.
164 waiting_for_completion_.frame_size = 0;
165 waiting_for_completion_.timestamp = 0;
166 waiting_for_completion_.latest_packet_time = -1;
167 first_packet_since_reset_ = true;
168 last_decoded_state_.Reset();
169
170 decodable_frames_.Reset(&free_frames_);
171 incomplete_frames_.Reset(&free_frames_);
172 }
173
Stop()174 void VCMJitterBuffer::Stop() {
175 MutexLock lock(&mutex_);
176 running_ = false;
177 last_decoded_state_.Reset();
178
179 // Make sure we wake up any threads waiting on these events.
180 frame_event_->Set();
181 }
182
Running() const183 bool VCMJitterBuffer::Running() const {
184 MutexLock lock(&mutex_);
185 return running_;
186 }
187
Flush()188 void VCMJitterBuffer::Flush() {
189 MutexLock lock(&mutex_);
190 decodable_frames_.Reset(&free_frames_);
191 incomplete_frames_.Reset(&free_frames_);
192 last_decoded_state_.Reset(); // TODO(mikhal): sync reset.
193 num_consecutive_old_packets_ = 0;
194 // Also reset the jitter and delay estimates
195 jitter_estimate_.Reset();
196 inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
197 waiting_for_completion_.frame_size = 0;
198 waiting_for_completion_.timestamp = 0;
199 waiting_for_completion_.latest_packet_time = -1;
200 first_packet_since_reset_ = true;
201 missing_sequence_numbers_.clear();
202 }
203
num_packets() const204 int VCMJitterBuffer::num_packets() const {
205 MutexLock lock(&mutex_);
206 return num_packets_;
207 }
208
num_duplicated_packets() const209 int VCMJitterBuffer::num_duplicated_packets() const {
210 MutexLock lock(&mutex_);
211 return num_duplicated_packets_;
212 }
213
214 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
215 // complete frame, |max_wait_time_ms| decided by caller.
NextCompleteFrame(uint32_t max_wait_time_ms)216 VCMEncodedFrame* VCMJitterBuffer::NextCompleteFrame(uint32_t max_wait_time_ms) {
217 MutexLock lock(&mutex_);
218 if (!running_) {
219 return nullptr;
220 }
221 CleanUpOldOrEmptyFrames();
222
223 if (decodable_frames_.empty() ||
224 decodable_frames_.Front()->GetState() != kStateComplete) {
225 const int64_t end_wait_time_ms =
226 clock_->TimeInMilliseconds() + max_wait_time_ms;
227 int64_t wait_time_ms = max_wait_time_ms;
228 while (wait_time_ms > 0) {
229 mutex_.Unlock();
230 const EventTypeWrapper ret =
231 frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
232 mutex_.Lock();
233 if (ret == kEventSignaled) {
234 // Are we shutting down the jitter buffer?
235 if (!running_) {
236 return nullptr;
237 }
238 // Finding oldest frame ready for decoder.
239 CleanUpOldOrEmptyFrames();
240 if (decodable_frames_.empty() ||
241 decodable_frames_.Front()->GetState() != kStateComplete) {
242 wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
243 } else {
244 break;
245 }
246 } else {
247 break;
248 }
249 }
250 }
251 if (decodable_frames_.empty() ||
252 decodable_frames_.Front()->GetState() != kStateComplete) {
253 return nullptr;
254 }
255 return decodable_frames_.Front();
256 }
257
ExtractAndSetDecode(uint32_t timestamp)258 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
259 MutexLock lock(&mutex_);
260 if (!running_) {
261 return NULL;
262 }
263 // Extract the frame with the desired timestamp.
264 VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
265 bool continuous = true;
266 if (!frame) {
267 frame = incomplete_frames_.PopFrame(timestamp);
268 if (frame)
269 continuous = last_decoded_state_.ContinuousFrame(frame);
270 else
271 return NULL;
272 }
273 // Frame pulled out from jitter buffer, update the jitter estimate.
274 const bool retransmitted = (frame->GetNackCount() > 0);
275 if (retransmitted) {
276 jitter_estimate_.FrameNacked();
277 } else if (frame->size() > 0) {
278 // Ignore retransmitted and empty frames.
279 if (waiting_for_completion_.latest_packet_time >= 0) {
280 UpdateJitterEstimate(waiting_for_completion_, true);
281 }
282 if (frame->GetState() == kStateComplete) {
283 UpdateJitterEstimate(*frame, false);
284 } else {
285 // Wait for this one to get complete.
286 waiting_for_completion_.frame_size = frame->size();
287 waiting_for_completion_.latest_packet_time = frame->LatestPacketTimeMs();
288 waiting_for_completion_.timestamp = frame->Timestamp();
289 }
290 }
291
292 // The state must be changed to decoding before cleaning up zero sized
293 // frames to avoid empty frames being cleaned up and then given to the
294 // decoder. Propagates the missing_frame bit.
295 frame->PrepareForDecode(continuous);
296
297 // We have a frame - update the last decoded state and nack list.
298 last_decoded_state_.SetState(frame);
299 DropPacketsFromNackList(last_decoded_state_.sequence_num());
300
301 if ((*frame).IsSessionComplete())
302 UpdateAveragePacketsPerFrame(frame->NumPackets());
303
304 return frame;
305 }
306
307 // Release frame when done with decoding. Should never be used to release
308 // frames from within the jitter buffer.
ReleaseFrame(VCMEncodedFrame * frame)309 void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
310 RTC_CHECK(frame != nullptr);
311 MutexLock lock(&mutex_);
312 VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
313 RecycleFrameBuffer(frame_buffer);
314 }
315
316 // Gets frame to use for this timestamp. If no match, get empty frame.
GetFrame(const VCMPacket & packet,VCMFrameBuffer ** frame,FrameList ** frame_list)317 VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
318 VCMFrameBuffer** frame,
319 FrameList** frame_list) {
320 *frame = incomplete_frames_.PopFrame(packet.timestamp);
321 if (*frame != NULL) {
322 *frame_list = &incomplete_frames_;
323 return kNoError;
324 }
325 *frame = decodable_frames_.PopFrame(packet.timestamp);
326 if (*frame != NULL) {
327 *frame_list = &decodable_frames_;
328 return kNoError;
329 }
330
331 *frame_list = NULL;
332 // No match, return empty frame.
333 *frame = GetEmptyFrame();
334 if (*frame == NULL) {
335 // No free frame! Try to reclaim some...
336 RTC_LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
337 bool found_key_frame = RecycleFramesUntilKeyFrame();
338 *frame = GetEmptyFrame();
339 RTC_CHECK(*frame);
340 if (!found_key_frame) {
341 RecycleFrameBuffer(*frame);
342 return kFlushIndicator;
343 }
344 }
345 (*frame)->Reset();
346 return kNoError;
347 }
348
LastPacketTime(const VCMEncodedFrame * frame,bool * retransmitted) const349 int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
350 bool* retransmitted) const {
351 assert(retransmitted);
352 MutexLock lock(&mutex_);
353 const VCMFrameBuffer* frame_buffer =
354 static_cast<const VCMFrameBuffer*>(frame);
355 *retransmitted = (frame_buffer->GetNackCount() > 0);
356 return frame_buffer->LatestPacketTimeMs();
357 }
358
InsertPacket(const VCMPacket & packet,bool * retransmitted)359 VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
360 bool* retransmitted) {
361 MutexLock lock(&mutex_);
362
363 ++num_packets_;
364 // Does this packet belong to an old frame?
365 if (last_decoded_state_.IsOldPacket(&packet)) {
366 // Account only for media packets.
367 if (packet.sizeBytes > 0) {
368 num_consecutive_old_packets_++;
369 }
370 // Update last decoded sequence number if the packet arrived late and
371 // belongs to a frame with a timestamp equal to the last decoded
372 // timestamp.
373 last_decoded_state_.UpdateOldPacket(&packet);
374 DropPacketsFromNackList(last_decoded_state_.sequence_num());
375
376 // Also see if this old packet made more incomplete frames continuous.
377 FindAndInsertContinuousFramesWithState(last_decoded_state_);
378
379 if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
380 RTC_LOG(LS_WARNING)
381 << num_consecutive_old_packets_
382 << " consecutive old packets received. Flushing the jitter buffer.";
383 Flush();
384 return kFlushIndicator;
385 }
386 return kOldPacket;
387 }
388
389 num_consecutive_old_packets_ = 0;
390
391 VCMFrameBuffer* frame;
392 FrameList* frame_list;
393 const VCMFrameBufferEnum error = GetFrame(packet, &frame, &frame_list);
394 if (error != kNoError)
395 return error;
396
397 int64_t now_ms = clock_->TimeInMilliseconds();
398 // We are keeping track of the first and latest seq numbers, and
399 // the number of wraps to be able to calculate how many packets we expect.
400 if (first_packet_since_reset_) {
401 // Now it's time to start estimating jitter
402 // reset the delay estimate.
403 inter_frame_delay_.Reset(now_ms);
404 }
405
406 // Empty packets may bias the jitter estimate (lacking size component),
407 // therefore don't let empty packet trigger the following updates:
408 if (packet.video_header.frame_type != VideoFrameType::kEmptyFrame) {
409 if (waiting_for_completion_.timestamp == packet.timestamp) {
410 // This can get bad if we have a lot of duplicate packets,
411 // we will then count some packet multiple times.
412 waiting_for_completion_.frame_size += packet.sizeBytes;
413 waiting_for_completion_.latest_packet_time = now_ms;
414 } else if (waiting_for_completion_.latest_packet_time >= 0 &&
415 waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
416 // A packet should never be more than two seconds late
417 UpdateJitterEstimate(waiting_for_completion_, true);
418 waiting_for_completion_.latest_packet_time = -1;
419 waiting_for_completion_.frame_size = 0;
420 waiting_for_completion_.timestamp = 0;
421 }
422 }
423
424 VCMFrameBufferStateEnum previous_state = frame->GetState();
425 // Insert packet.
426 FrameData frame_data;
427 frame_data.rtt_ms = kDefaultRtt;
428 frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
429 VCMFrameBufferEnum buffer_state =
430 frame->InsertPacket(packet, now_ms, frame_data);
431
432 if (buffer_state > 0) {
433 if (first_packet_since_reset_) {
434 latest_received_sequence_number_ = packet.seqNum;
435 first_packet_since_reset_ = false;
436 } else {
437 if (IsPacketRetransmitted(packet)) {
438 frame->IncrementNackCount();
439 }
440 if (!UpdateNackList(packet.seqNum) &&
441 packet.video_header.frame_type != VideoFrameType::kVideoFrameKey) {
442 buffer_state = kFlushIndicator;
443 }
444
445 latest_received_sequence_number_ =
446 LatestSequenceNumber(latest_received_sequence_number_, packet.seqNum);
447 }
448 }
449
450 // Is the frame already in the decodable list?
451 bool continuous = IsContinuous(*frame);
452 switch (buffer_state) {
453 case kGeneralError:
454 case kTimeStampError:
455 case kSizeError: {
456 RecycleFrameBuffer(frame);
457 break;
458 }
459 case kCompleteSession: {
460 if (previous_state != kStateComplete) {
461 if (continuous) {
462 // Signal that we have a complete session.
463 frame_event_->Set();
464 }
465 }
466
467 *retransmitted = (frame->GetNackCount() > 0);
468 if (continuous) {
469 decodable_frames_.InsertFrame(frame);
470 FindAndInsertContinuousFrames(*frame);
471 } else {
472 incomplete_frames_.InsertFrame(frame);
473 }
474 break;
475 }
476 case kIncomplete: {
477 if (frame->GetState() == kStateEmpty &&
478 last_decoded_state_.UpdateEmptyFrame(frame)) {
479 RecycleFrameBuffer(frame);
480 return kNoError;
481 } else {
482 incomplete_frames_.InsertFrame(frame);
483 }
484 break;
485 }
486 case kNoError:
487 case kOutOfBoundsPacket:
488 case kDuplicatePacket: {
489 // Put back the frame where it came from.
490 if (frame_list != NULL) {
491 frame_list->InsertFrame(frame);
492 } else {
493 RecycleFrameBuffer(frame);
494 }
495 ++num_duplicated_packets_;
496 break;
497 }
498 case kFlushIndicator:
499 RecycleFrameBuffer(frame);
500 return kFlushIndicator;
501 default:
502 assert(false);
503 }
504 return buffer_state;
505 }
506
IsContinuousInState(const VCMFrameBuffer & frame,const VCMDecodingState & decoding_state) const507 bool VCMJitterBuffer::IsContinuousInState(
508 const VCMFrameBuffer& frame,
509 const VCMDecodingState& decoding_state) const {
510 // Is this frame complete and continuous?
511 return (frame.GetState() == kStateComplete) &&
512 decoding_state.ContinuousFrame(&frame);
513 }
514
IsContinuous(const VCMFrameBuffer & frame) const515 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
516 if (IsContinuousInState(frame, last_decoded_state_)) {
517 return true;
518 }
519 VCMDecodingState decoding_state;
520 decoding_state.CopyFrom(last_decoded_state_);
521 for (FrameList::const_iterator it = decodable_frames_.begin();
522 it != decodable_frames_.end(); ++it) {
523 VCMFrameBuffer* decodable_frame = it->second;
524 if (IsNewerTimestamp(decodable_frame->Timestamp(), frame.Timestamp())) {
525 break;
526 }
527 decoding_state.SetState(decodable_frame);
528 if (IsContinuousInState(frame, decoding_state)) {
529 return true;
530 }
531 }
532 return false;
533 }
534
FindAndInsertContinuousFrames(const VCMFrameBuffer & new_frame)535 void VCMJitterBuffer::FindAndInsertContinuousFrames(
536 const VCMFrameBuffer& new_frame) {
537 VCMDecodingState decoding_state;
538 decoding_state.CopyFrom(last_decoded_state_);
539 decoding_state.SetState(&new_frame);
540 FindAndInsertContinuousFramesWithState(decoding_state);
541 }
542
FindAndInsertContinuousFramesWithState(const VCMDecodingState & original_decoded_state)543 void VCMJitterBuffer::FindAndInsertContinuousFramesWithState(
544 const VCMDecodingState& original_decoded_state) {
545 // Copy original_decoded_state so we can move the state forward with each
546 // decodable frame we find.
547 VCMDecodingState decoding_state;
548 decoding_state.CopyFrom(original_decoded_state);
549
550 // When temporal layers are available, we search for a complete or decodable
551 // frame until we hit one of the following:
552 // 1. Continuous base or sync layer.
553 // 2. The end of the list was reached.
554 for (FrameList::iterator it = incomplete_frames_.begin();
555 it != incomplete_frames_.end();) {
556 VCMFrameBuffer* frame = it->second;
557 if (IsNewerTimestamp(original_decoded_state.time_stamp(),
558 frame->Timestamp())) {
559 ++it;
560 continue;
561 }
562 if (IsContinuousInState(*frame, decoding_state)) {
563 decodable_frames_.InsertFrame(frame);
564 incomplete_frames_.erase(it++);
565 decoding_state.SetState(frame);
566 } else if (frame->TemporalId() <= 0) {
567 break;
568 } else {
569 ++it;
570 }
571 }
572 }
573
EstimatedJitterMs()574 uint32_t VCMJitterBuffer::EstimatedJitterMs() {
575 MutexLock lock(&mutex_);
576 const double rtt_mult = 1.0f;
577 return jitter_estimate_.GetJitterEstimate(rtt_mult, absl::nullopt);
578 }
579
SetNackSettings(size_t max_nack_list_size,int max_packet_age_to_nack,int max_incomplete_time_ms)580 void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
581 int max_packet_age_to_nack,
582 int max_incomplete_time_ms) {
583 MutexLock lock(&mutex_);
584 assert(max_packet_age_to_nack >= 0);
585 assert(max_incomplete_time_ms_ >= 0);
586 max_nack_list_size_ = max_nack_list_size;
587 max_packet_age_to_nack_ = max_packet_age_to_nack;
588 max_incomplete_time_ms_ = max_incomplete_time_ms;
589 }
590
NonContinuousOrIncompleteDuration()591 int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
592 if (incomplete_frames_.empty()) {
593 return 0;
594 }
595 uint32_t start_timestamp = incomplete_frames_.Front()->Timestamp();
596 if (!decodable_frames_.empty()) {
597 start_timestamp = decodable_frames_.Back()->Timestamp();
598 }
599 return incomplete_frames_.Back()->Timestamp() - start_timestamp;
600 }
601
EstimatedLowSequenceNumber(const VCMFrameBuffer & frame) const602 uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
603 const VCMFrameBuffer& frame) const {
604 assert(frame.GetLowSeqNum() >= 0);
605 if (frame.HaveFirstPacket())
606 return frame.GetLowSeqNum();
607
608 // This estimate is not accurate if more than one packet with lower sequence
609 // number is lost.
610 return frame.GetLowSeqNum() - 1;
611 }
612
GetNackList(bool * request_key_frame)613 std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) {
614 MutexLock lock(&mutex_);
615 *request_key_frame = false;
616 if (last_decoded_state_.in_initial_state()) {
617 VCMFrameBuffer* next_frame = NextFrame();
618 const bool first_frame_is_key =
619 next_frame &&
620 next_frame->FrameType() == VideoFrameType::kVideoFrameKey &&
621 next_frame->HaveFirstPacket();
622 if (!first_frame_is_key) {
623 bool have_non_empty_frame =
624 decodable_frames_.end() != find_if(decodable_frames_.begin(),
625 decodable_frames_.end(),
626 HasNonEmptyState);
627 if (!have_non_empty_frame) {
628 have_non_empty_frame =
629 incomplete_frames_.end() != find_if(incomplete_frames_.begin(),
630 incomplete_frames_.end(),
631 HasNonEmptyState);
632 }
633 bool found_key_frame = RecycleFramesUntilKeyFrame();
634 if (!found_key_frame) {
635 *request_key_frame = have_non_empty_frame;
636 return std::vector<uint16_t>();
637 }
638 }
639 }
640 if (TooLargeNackList()) {
641 *request_key_frame = !HandleTooLargeNackList();
642 }
643 if (max_incomplete_time_ms_ > 0) {
644 int non_continuous_incomplete_duration =
645 NonContinuousOrIncompleteDuration();
646 if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
647 RTC_LOG_F(LS_WARNING) << "Too long non-decodable duration: "
648 << non_continuous_incomplete_duration << " > "
649 << 90 * max_incomplete_time_ms_;
650 FrameList::reverse_iterator rit = find_if(
651 incomplete_frames_.rbegin(), incomplete_frames_.rend(), IsKeyFrame);
652 if (rit == incomplete_frames_.rend()) {
653 // Request a key frame if we don't have one already.
654 *request_key_frame = true;
655 return std::vector<uint16_t>();
656 } else {
657 // Skip to the last key frame. If it's incomplete we will start
658 // NACKing it.
659 // Note that the estimated low sequence number is correct for VP8
660 // streams because only the first packet of a key frame is marked.
661 last_decoded_state_.Reset();
662 DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
663 }
664 }
665 }
666 std::vector<uint16_t> nack_list(missing_sequence_numbers_.begin(),
667 missing_sequence_numbers_.end());
668 return nack_list;
669 }
670
NextFrame() const671 VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
672 if (!decodable_frames_.empty())
673 return decodable_frames_.Front();
674 if (!incomplete_frames_.empty())
675 return incomplete_frames_.Front();
676 return NULL;
677 }
678
UpdateNackList(uint16_t sequence_number)679 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
680 // Make sure we don't add packets which are already too old to be decoded.
681 if (!last_decoded_state_.in_initial_state()) {
682 latest_received_sequence_number_ = LatestSequenceNumber(
683 latest_received_sequence_number_, last_decoded_state_.sequence_num());
684 }
685 if (IsNewerSequenceNumber(sequence_number,
686 latest_received_sequence_number_)) {
687 // Push any missing sequence numbers to the NACK list.
688 for (uint16_t i = latest_received_sequence_number_ + 1;
689 IsNewerSequenceNumber(sequence_number, i); ++i) {
690 missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
691 }
692 if (TooLargeNackList() && !HandleTooLargeNackList()) {
693 RTC_LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
694 return false;
695 }
696 if (MissingTooOldPacket(sequence_number) &&
697 !HandleTooOldPackets(sequence_number)) {
698 RTC_LOG(LS_WARNING)
699 << "Requesting key frame due to missing too old packets";
700 return false;
701 }
702 } else {
703 missing_sequence_numbers_.erase(sequence_number);
704 }
705 return true;
706 }
707
TooLargeNackList() const708 bool VCMJitterBuffer::TooLargeNackList() const {
709 return missing_sequence_numbers_.size() > max_nack_list_size_;
710 }
711
HandleTooLargeNackList()712 bool VCMJitterBuffer::HandleTooLargeNackList() {
713 // Recycle frames until the NACK list is small enough. It is likely cheaper to
714 // request a key frame than to retransmit this many missing packets.
715 RTC_LOG_F(LS_WARNING) << "NACK list has grown too large: "
716 << missing_sequence_numbers_.size() << " > "
717 << max_nack_list_size_;
718 bool key_frame_found = false;
719 while (TooLargeNackList()) {
720 key_frame_found = RecycleFramesUntilKeyFrame();
721 }
722 return key_frame_found;
723 }
724
MissingTooOldPacket(uint16_t latest_sequence_number) const725 bool VCMJitterBuffer::MissingTooOldPacket(
726 uint16_t latest_sequence_number) const {
727 if (missing_sequence_numbers_.empty()) {
728 return false;
729 }
730 const uint16_t age_of_oldest_missing_packet =
731 latest_sequence_number - *missing_sequence_numbers_.begin();
732 // Recycle frames if the NACK list contains too old sequence numbers as
733 // the packets may have already been dropped by the sender.
734 return age_of_oldest_missing_packet > max_packet_age_to_nack_;
735 }
736
HandleTooOldPackets(uint16_t latest_sequence_number)737 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
738 bool key_frame_found = false;
739 const uint16_t age_of_oldest_missing_packet =
740 latest_sequence_number - *missing_sequence_numbers_.begin();
741 RTC_LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
742 << age_of_oldest_missing_packet << " > "
743 << max_packet_age_to_nack_;
744 while (MissingTooOldPacket(latest_sequence_number)) {
745 key_frame_found = RecycleFramesUntilKeyFrame();
746 }
747 return key_frame_found;
748 }
749
DropPacketsFromNackList(uint16_t last_decoded_sequence_number)750 void VCMJitterBuffer::DropPacketsFromNackList(
751 uint16_t last_decoded_sequence_number) {
752 // Erase all sequence numbers from the NACK list which we won't need any
753 // longer.
754 missing_sequence_numbers_.erase(
755 missing_sequence_numbers_.begin(),
756 missing_sequence_numbers_.upper_bound(last_decoded_sequence_number));
757 }
758
GetEmptyFrame()759 VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
760 if (free_frames_.empty()) {
761 if (!TryToIncreaseJitterBufferSize()) {
762 return NULL;
763 }
764 }
765 VCMFrameBuffer* frame = free_frames_.front();
766 free_frames_.pop_front();
767 return frame;
768 }
769
TryToIncreaseJitterBufferSize()770 bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
771 if (max_number_of_frames_ >= kMaxNumberOfFrames)
772 return false;
773 free_frames_.push_back(new VCMFrameBuffer());
774 ++max_number_of_frames_;
775 return true;
776 }
777
778 // Recycle oldest frames up to a key frame, used if jitter buffer is completely
779 // full.
RecycleFramesUntilKeyFrame()780 bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
781 // First release incomplete frames, and only release decodable frames if there
782 // are no incomplete ones.
783 FrameList::iterator key_frame_it;
784 bool key_frame_found = false;
785 int dropped_frames = 0;
786 dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
787 &key_frame_it, &free_frames_);
788 key_frame_found = key_frame_it != incomplete_frames_.end();
789 if (dropped_frames == 0) {
790 dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
791 &key_frame_it, &free_frames_);
792 key_frame_found = key_frame_it != decodable_frames_.end();
793 }
794 if (key_frame_found) {
795 RTC_LOG(LS_INFO) << "Found key frame while dropping frames.";
796 // Reset last decoded state to make sure the next frame decoded is a key
797 // frame, and start NACKing from here.
798 last_decoded_state_.Reset();
799 DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
800 } else if (decodable_frames_.empty()) {
801 // All frames dropped. Reset the decoding state and clear missing sequence
802 // numbers as we're starting fresh.
803 last_decoded_state_.Reset();
804 missing_sequence_numbers_.clear();
805 }
806 return key_frame_found;
807 }
808
UpdateAveragePacketsPerFrame(int current_number_packets)809 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
810 if (frame_counter_ > kFastConvergeThreshold) {
811 average_packets_per_frame_ =
812 average_packets_per_frame_ * (1 - kNormalConvergeMultiplier) +
813 current_number_packets * kNormalConvergeMultiplier;
814 } else if (frame_counter_ > 0) {
815 average_packets_per_frame_ =
816 average_packets_per_frame_ * (1 - kFastConvergeMultiplier) +
817 current_number_packets * kFastConvergeMultiplier;
818 frame_counter_++;
819 } else {
820 average_packets_per_frame_ = current_number_packets;
821 frame_counter_++;
822 }
823 }
824
825 // Must be called under the critical section |mutex_|.
CleanUpOldOrEmptyFrames()826 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
827 decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
828 &free_frames_);
829 incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
830 &free_frames_);
831 if (!last_decoded_state_.in_initial_state()) {
832 DropPacketsFromNackList(last_decoded_state_.sequence_num());
833 }
834 }
835
836 // Must be called from within |mutex_|.
IsPacketRetransmitted(const VCMPacket & packet) const837 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
838 return missing_sequence_numbers_.find(packet.seqNum) !=
839 missing_sequence_numbers_.end();
840 }
841
842 // Must be called under the critical section |mutex_|. Should never be
843 // called with retransmitted frames, they must be filtered out before this
844 // function is called.
UpdateJitterEstimate(const VCMJitterSample & sample,bool incomplete_frame)845 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
846 bool incomplete_frame) {
847 if (sample.latest_packet_time == -1) {
848 return;
849 }
850 UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
851 sample.frame_size, incomplete_frame);
852 }
853
854 // Must be called under the critical section mutex_. Should never be
855 // called with retransmitted frames, they must be filtered out before this
856 // function is called.
UpdateJitterEstimate(const VCMFrameBuffer & frame,bool incomplete_frame)857 void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
858 bool incomplete_frame) {
859 if (frame.LatestPacketTimeMs() == -1) {
860 return;
861 }
862 // No retransmitted frames should be a part of the jitter
863 // estimate.
864 UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.Timestamp(),
865 frame.size(), incomplete_frame);
866 }
867
868 // Must be called under the critical section |mutex_|. Should never be
869 // called with retransmitted frames, they must be filtered out before this
870 // function is called.
UpdateJitterEstimate(int64_t latest_packet_time_ms,uint32_t timestamp,unsigned int frame_size,bool incomplete_frame)871 void VCMJitterBuffer::UpdateJitterEstimate(int64_t latest_packet_time_ms,
872 uint32_t timestamp,
873 unsigned int frame_size,
874 bool incomplete_frame) {
875 if (latest_packet_time_ms == -1) {
876 return;
877 }
878 int64_t frame_delay;
879 bool not_reordered = inter_frame_delay_.CalculateDelay(
880 timestamp, &frame_delay, latest_packet_time_ms);
881 // Filter out frames which have been reordered in time by the network
882 if (not_reordered) {
883 // Update the jitter estimate with the new samples
884 jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
885 }
886 }
887
RecycleFrameBuffer(VCMFrameBuffer * frame)888 void VCMJitterBuffer::RecycleFrameBuffer(VCMFrameBuffer* frame) {
889 frame->Reset();
890 free_frames_.push_back(frame);
891 }
892
893 } // namespace webrtc
894