1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <general_test/heap_exhaustion_stability_test.h>
18
19 #include <cinttypes>
20 #include <cstddef>
21
22 #include <shared/send_message.h>
23 #include <shared/time_util.h>
24
25 #include <chre.h>
26
27 using nanoapp_testing::kOneMillisecondInNanoseconds;
28 using nanoapp_testing::kOneSecondInNanoseconds;
29 using nanoapp_testing::sendFailureToHost;
30 using nanoapp_testing::sendFatalFailureToHost;
31 using nanoapp_testing::sendSuccessToHost;
32
33 /*
34 * We set an "exhaustion timer" to go off when we're ready for the test to
35 * be over. Then we exhaust the heap.
36 *
37 * We try a series of chre*() calls with the heap exhausted. For many of
38 * these calls, we're less interested in them succeeding than in the system
39 * just not crashing. However, for things which claim success, we require
40 * they succeed.
41 *
42 * To track the things which claim success, we have two "stages", kTimerStage
43 * and kEventStage.
44 *
45 * When the "exhaustion timer" fires, we free our memory, and make sure our
46 * stages have all succeeded.
47 */
48
49 namespace general_test {
50
51 // Note: We use pointers to the 'duration' to serve as our timer event data.
52 // Thus we make this "static const" instead of "constexpr", as we expect
53 // them to have backing memory.
54
55 static const uint64_t kExhaustionDuration = 5 * kOneSecondInNanoseconds;
56 static const uint64_t kShortDuration = 10 * kOneMillisecondInNanoseconds;
57
58 constexpr uint16_t kEventType = CHRE_EVENT_FIRST_USER_VALUE;
59
60 constexpr uint32_t kTimerStage = 0;
61 constexpr uint32_t kEventStage = 1;
62
exhaustHeap()63 void HeapExhaustionStabilityTest::exhaustHeap() {
64 constexpr size_t kNumPtrs = 256;
65 mExhaustionPtrs = reinterpret_cast<void **>(
66 chreHeapAlloc(kNumPtrs * sizeof(*mExhaustionPtrs)));
67 if (mExhaustionPtrs == nullptr) {
68 // Oh, the irony.
69 sendFatalFailureToHost("Insufficient free heap to exhaust the heap.");
70 }
71
72 // We start by trying to allocate massive sizes (256MB to start).
73 // When we're not able to allocate massive sizes, we cut the size in
74 // half. We repeat until we've either done kNumPtrs allocations,
75 // or reduced our allocation size below 16 bytes.
76 uint32_t allocSize = 1024 * 1024 * 256;
77 for (mExhaustionPtrCount = 0; mExhaustionPtrCount < kNumPtrs;
78 mExhaustionPtrCount++) {
79 void *ptr = chreHeapAlloc(allocSize);
80 while (ptr == nullptr) {
81 allocSize /= 2;
82 if (allocSize < 4) {
83 break;
84 }
85 ptr = chreHeapAlloc(allocSize);
86 }
87 if (ptr == nullptr) {
88 break;
89 }
90 mExhaustionPtrs[mExhaustionPtrCount] = ptr;
91 }
92 if (mExhaustionPtrCount == 0) {
93 sendFatalFailureToHost("Failed to allocate anything for heap exhaustion");
94 }
95 }
96
freeMemory()97 void HeapExhaustionStabilityTest::freeMemory() {
98 for (size_t i = 0; i < mExhaustionPtrCount; i++) {
99 chreHeapFree(mExhaustionPtrs[i]);
100 }
101 chreHeapFree(mExhaustionPtrs);
102 }
103
HeapExhaustionStabilityTest()104 HeapExhaustionStabilityTest::HeapExhaustionStabilityTest()
105 : Test(CHRE_API_VERSION_1_0) {}
106
setUp(uint32_t messageSize,const void *)107 void HeapExhaustionStabilityTest::setUp(uint32_t messageSize,
108 const void * /* message */) {
109 mInMethod = true;
110 if (messageSize != 0) {
111 sendFatalFailureToHost(
112 "HeapExhaustionStability message expects 0 additional bytes, got ",
113 &messageSize);
114 }
115
116 if (chreTimerSet(kExhaustionDuration, &kExhaustionDuration, true) ==
117 CHRE_TIMER_INVALID) {
118 sendFatalFailureToHost("Unable to set initial timer");
119 }
120
121 exhaustHeap();
122
123 testLog(messageSize);
124 testSetTimer();
125 testSendEvent();
126 testSensor();
127 // TODO(b/32114261): This method currently doesn't test anything.
128 testMessageToHost();
129
130 // Some of the above 'test' methods might trigger events. Even if they
131 // don't, the kExhaustionDuration timer we set earlier should trigger
132 // eventually, and that's when we'll conclude the test.
133 mInMethod = false;
134 }
135
testLog(uint32_t zero)136 void HeapExhaustionStabilityTest::testLog(uint32_t zero) {
137 // This doesn't need to land in the log (and indeed we have no automated
138 // means of checking that right now anyway), but it shouldn't crash.
139 chreLog(CHRE_LOG_INFO, "Test log %s, zero: %" PRId32, "message", zero);
140 }
141
testSetTimer()142 void HeapExhaustionStabilityTest::testSetTimer() {
143 if (chreTimerSet(kShortDuration, &kShortDuration, true) !=
144 CHRE_TIMER_INVALID) {
145 // CHRE claims we were able to set this timer. We'll
146 // mark this stage a success when the timer fires.
147 } else {
148 // CHRE was not able to set this timer. That's okay, since we're
149 // out of heap. We'll mark this stage as a success.
150 markSuccess(kTimerStage);
151 }
152 }
153
testSendEvent()154 void HeapExhaustionStabilityTest::testSendEvent() {
155 if (chreSendEvent(kEventType, nullptr, nullptr, chreGetInstanceId())) {
156 // CHRE claims we were able to send this event. We'll make
157 // this stage a success when the event is received.
158 } else {
159 // CHRE was not able to send this event. That's okay, since we're
160 // out of heap. We'll mark this stage as a success.
161 markSuccess(kEventStage);
162 }
163 }
164
testSensor()165 void HeapExhaustionStabilityTest::testSensor() {
166 static constexpr uint8_t kSensorType = CHRE_SENSOR_TYPE_ACCELEROMETER;
167 uint32_t handle;
168 if (!chreSensorFindDefault(kSensorType, &handle)) {
169 // We still expect this to succeed without any heap left.
170 sendFatalFailureToHost("chreSensorFindDefault failed");
171 }
172 chreSensorInfo info;
173 if (!chreGetSensorInfo(handle, &info)) {
174 // We still expect this to succeed, since we're supplying the memory.
175 sendFatalFailureToHost("chreGetSensorInfo failed");
176 }
177 if (info.sensorType != kSensorType) {
178 sendFatalFailureToHost("Invalid sensor info provided");
179 }
180
181 chreSensorSamplingStatus samplingStatus;
182 if (!chreGetSensorSamplingStatus(handle, &samplingStatus)) {
183 // We still expect this to succeed, since we're supplying the memory.
184 sendFatalFailureToHost("chreGetSensorSamplingStatus failed");
185 }
186
187 // TODO: We might want to consider calling chreSensorConfigure() for a
188 // more robust test of this. However, we don't expect sensor events to
189 // necessarily get delivered under heap exhaustion, so it's unclear
190 // how we'd make sure we eventually tell the system we're DONE with
191 // the sensor (setting a timer isn't assured to work at this point).
192 }
193
testMessageToHost()194 void HeapExhaustionStabilityTest::testMessageToHost() {
195 // TODO(b/32114261): We should invoke sendMessageToHost() here.
196 // Unfortunately, this is a real pain due to this bug, as we need to
197 // duplicate much of the contents of shared/send_message.cc to
198 // add the hack-around bytes (the method itself will internally
199 // fail if the send attempt fails, but we're in a state where
200 // we'll allow a failed send attempt). Or we need to take this
201 // off of the General test infrastructure to allow raw byte sending.
202 // That seems not worth the effort for NYC, and just easier to wait
203 // until OMC when this is much easier to implement.
204 // OMC Note: When we've fixed this bug, and added a send here, we'll
205 // need to make this no longer Simple protocol, since this nanoapp
206 // might send a message.
207 }
208
handleEvent(uint32_t senderInstanceId,uint16_t eventType,const void * eventData)209 void HeapExhaustionStabilityTest::handleEvent(uint32_t senderInstanceId,
210 uint16_t eventType,
211 const void *eventData) {
212 if (mInMethod) {
213 sendFatalFailureToHost(
214 "handleEvent invoked while another nanoapp method is running");
215 }
216 mInMethod = true;
217
218 if (eventType == CHRE_EVENT_TIMER) {
219 handleTimer(senderInstanceId, eventData);
220 } else if (eventType == kEventType) {
221 handleSelfEvent(senderInstanceId, eventData);
222 } else {
223 unexpectedEvent(eventType);
224 }
225 mInMethod = false;
226 }
227
handleTimer(uint32_t senderInstanceId,const void * eventData)228 void HeapExhaustionStabilityTest::handleTimer(uint32_t senderInstanceId,
229 const void *eventData) {
230 if (senderInstanceId != CHRE_INSTANCE_ID) {
231 sendFatalFailureToHost("handleTimer with unexpected sender:",
232 &senderInstanceId);
233 }
234 if (eventData == &kShortDuration) {
235 // This was the timer we triggered while the heap was exhausted.
236 markSuccess(kTimerStage);
237
238 } else if (eventData == &kExhaustionDuration) {
239 // Our test is done.
240 freeMemory();
241 if (mFinishedBitmask != kAllFinished) {
242 sendFatalFailureToHost("Done with test, but not all stages done.",
243 &mFinishedBitmask);
244 }
245 sendSuccessToHost();
246
247 } else {
248 sendFatalFailureToHost("Unexpected timer eventData");
249 }
250 }
251
handleSelfEvent(uint32_t senderInstanceId,const void * eventData)252 void HeapExhaustionStabilityTest::handleSelfEvent(uint32_t senderInstanceId,
253 const void *eventData) {
254 if (senderInstanceId != chreGetInstanceId()) {
255 sendFatalFailureToHost("handleSelfEvent with unexpected sender:",
256 &senderInstanceId);
257 }
258 if (eventData != nullptr) {
259 sendFatalFailureToHost("Unexpected data for event to self");
260 }
261 markSuccess(kEventStage);
262 }
263
markSuccess(uint32_t stage)264 void HeapExhaustionStabilityTest::markSuccess(uint32_t stage) {
265 chreLog(CHRE_LOG_DEBUG, "Stage %" PRIu32 " succeeded", stage);
266 uint32_t finishedBit = (1 << stage);
267 if ((kAllFinished & finishedBit) == 0) {
268 sendFatalFailureToHost("markSuccess bad stage", &stage);
269 }
270 if ((mFinishedBitmask & finishedBit) != 0) {
271 // This could be when a timer/event method returned 'false', but
272 // actually did end up triggering an event.
273 sendFatalFailureToHost("markSuccess stage triggered twice", &stage);
274 }
275 mFinishedBitmask |= finishedBit;
276 // Note that unlike many markSuccess() implementations, we do not
277 // check against kAllFinished here. That happens when the
278 // timer for kExhaustionDuration fires.
279 }
280
281 } // namespace general_test
282