1 /*
2  * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #ifndef IR3_H_
25 #define IR3_H_
26 
27 #include <stdint.h>
28 #include <stdbool.h>
29 
30 #include "compiler/shader_enums.h"
31 
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36 
37 #include "instr-a3xx.h"
38 
39 /* low level intermediate representation of an adreno shader program */
40 
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45 
46 struct ir3_info {
47 	void *data;              /* used internally in ir3 assembler */
48 	uint16_t sizedwords;
49 	uint16_t instrs_count;   /* expanded to account for rpt's */
50 	uint16_t nops_count;     /* # of nop instructions, including nopN */
51 	uint16_t mov_count;
52 	uint16_t cov_count;
53 	/* NOTE: max_reg, etc, does not include registers not touched
54 	 * by the shader (ie. vertex fetched via VFD_DECODE but not
55 	 * touched by shader)
56 	 */
57 	int8_t   max_reg;   /* highest GPR # used by shader */
58 	int8_t   max_half_reg;
59 	int16_t  max_const;
60 
61 	/* number of sync bits: */
62 	uint16_t ss, sy;
63 
64 	/* estimate of number of cycles stalled on (ss) */
65 	uint16_t sstall;
66 
67 	uint16_t last_baryf;     /* instruction # of last varying fetch */
68 
69 	/* Number of instructions of a given category: */
70 	uint16_t instrs_per_cat[8];
71 };
72 
73 struct ir3_register {
74 	enum {
75 		IR3_REG_CONST  = 0x001,
76 		IR3_REG_IMMED  = 0x002,
77 		IR3_REG_HALF   = 0x004,
78 		/* high registers are used for some things in compute shaders,
79 		 * for example.  Seems to be for things that are global to all
80 		 * threads in a wave, so possibly these are global/shared by
81 		 * all the threads in the wave?
82 		 */
83 		IR3_REG_HIGH   = 0x008,
84 		IR3_REG_RELATIV= 0x010,
85 		IR3_REG_R      = 0x020,
86 		/* Most instructions, it seems, can do float abs/neg but not
87 		 * integer.  The CP pass needs to know what is intended (int or
88 		 * float) in order to do the right thing.  For this reason the
89 		 * abs/neg flags are split out into float and int variants.  In
90 		 * addition, .b (bitwise) operations, the negate is actually a
91 		 * bitwise not, so split that out into a new flag to make it
92 		 * more clear.
93 		 */
94 		IR3_REG_FNEG   = 0x040,
95 		IR3_REG_FABS   = 0x080,
96 		IR3_REG_SNEG   = 0x100,
97 		IR3_REG_SABS   = 0x200,
98 		IR3_REG_BNOT   = 0x400,
99 		IR3_REG_EVEN   = 0x800,
100 		IR3_REG_POS_INF= 0x1000,
101 		/* (ei) flag, end-input?  Set on last bary, presumably to signal
102 		 * that the shader needs no more input:
103 		 */
104 		IR3_REG_EI     = 0x2000,
105 		/* meta-flags, for intermediate stages of IR, ie.
106 		 * before register assignment is done:
107 		 */
108 		IR3_REG_SSA    = 0x4000,   /* 'instr' is ptr to assigning instr */
109 		IR3_REG_ARRAY  = 0x8000,
110 
111 	} flags;
112 
113 	/* used for cat5 instructions, but also for internal/IR level
114 	 * tracking of what registers are read/written by an instruction.
115 	 * wrmask may be a bad name since it is used to represent both
116 	 * src and dst that touch multiple adjacent registers.
117 	 */
118 	unsigned wrmask : 16;  /* up to vec16 */
119 
120 	/* for relative addressing, 32bits for array size is too small,
121 	 * but otoh we don't need to deal with disjoint sets, so instead
122 	 * use a simple size field (number of scalar components).
123 	 *
124 	 * Note the size field isn't important for relative const (since
125 	 * we don't have to do register allocation for constants).
126 	 */
127 	unsigned size : 16;
128 
129 	/* normal registers:
130 	 * the component is in the low two bits of the reg #, so
131 	 * rN.x becomes: (N << 2) | x
132 	 */
133 	uint16_t num;
134 	union {
135 		/* immediate: */
136 		int32_t  iim_val;
137 		uint32_t uim_val;
138 		float    fim_val;
139 		/* relative: */
140 		struct {
141 			uint16_t id;
142 			int16_t offset;
143 		} array;
144 	};
145 
146 	/* For IR3_REG_SSA, src registers contain ptr back to assigning
147 	 * instruction.
148 	 *
149 	 * For IR3_REG_ARRAY, the pointer is back to the last dependent
150 	 * array access (although the net effect is the same, it points
151 	 * back to a previous instruction that we depend on).
152 	 */
153 	struct ir3_instruction *instr;
154 };
155 
156 /*
157  * Stupid/simple growable array implementation:
158  */
159 #define DECLARE_ARRAY(type, name) \
160 	unsigned name ## _count, name ## _sz; \
161 	type * name;
162 
163 #define array_insert(ctx, arr, val) do { \
164 		if (arr ## _count == arr ## _sz) { \
165 			arr ## _sz = MAX2(2 * arr ## _sz, 16); \
166 			arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
167 		} \
168 		arr[arr ##_count++] = val; \
169 	} while (0)
170 
171 struct ir3_instruction {
172 	struct ir3_block *block;
173 	opc_t opc;
174 	enum {
175 		/* (sy) flag is set on first instruction, and after sample
176 		 * instructions (probably just on RAW hazard).
177 		 */
178 		IR3_INSTR_SY    = 0x001,
179 		/* (ss) flag is set on first instruction, and first instruction
180 		 * to depend on the result of "long" instructions (RAW hazard):
181 		 *
182 		 *   rcp, rsq, log2, exp2, sin, cos, sqrt
183 		 *
184 		 * It seems to synchronize until all in-flight instructions are
185 		 * completed, for example:
186 		 *
187 		 *   rsq hr1.w, hr1.w
188 		 *   add.f hr2.z, (neg)hr2.z, hc0.y
189 		 *   mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
190 		 *   rsq hr2.x, hr2.x
191 		 *   (rpt1)nop
192 		 *   mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
193 		 *   nop
194 		 *   mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
195 		 *   (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
196 		 *   (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
197 		 *
198 		 * The last mul.f does not have (ss) set, presumably because the
199 		 * (ss) on the previous instruction does the job.
200 		 *
201 		 * The blob driver also seems to set it on WAR hazards, although
202 		 * not really clear if this is needed or just blob compiler being
203 		 * sloppy.  So far I haven't found a case where removing the (ss)
204 		 * causes problems for WAR hazard, but I could just be getting
205 		 * lucky:
206 		 *
207 		 *   rcp r1.y, r3.y
208 		 *   (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
209 		 *
210 		 */
211 		IR3_INSTR_SS    = 0x002,
212 		/* (jp) flag is set on jump targets:
213 		 */
214 		IR3_INSTR_JP    = 0x004,
215 		IR3_INSTR_UL    = 0x008,
216 		IR3_INSTR_3D    = 0x010,
217 		IR3_INSTR_A     = 0x020,
218 		IR3_INSTR_O     = 0x040,
219 		IR3_INSTR_P     = 0x080,
220 		IR3_INSTR_S     = 0x100,
221 		IR3_INSTR_S2EN  = 0x200,
222 		IR3_INSTR_G     = 0x400,
223 		IR3_INSTR_SAT   = 0x800,
224 		/* (cat5/cat6) Bindless */
225 		IR3_INSTR_B     = 0x1000,
226 		/* (cat5-only) Get some parts of the encoding from a1.x */
227 		IR3_INSTR_A1EN  = 0x2000,
228 		/* meta-flags, for intermediate stages of IR, ie.
229 		 * before register assignment is done:
230 		 */
231 		IR3_INSTR_MARK  = 0x4000,
232 		IR3_INSTR_UNUSED= 0x8000,
233 	} flags;
234 	uint8_t repeat;
235 	uint8_t nop;
236 #ifdef DEBUG
237 	unsigned regs_max;
238 #endif
239 	unsigned regs_count;
240 	struct ir3_register **regs;
241 	union {
242 		struct {
243 			char inv;
244 			char comp;
245 			int  immed;
246 			struct ir3_block *target;
247 		} cat0;
248 		struct {
249 			type_t src_type, dst_type;
250 		} cat1;
251 		struct {
252 			enum {
253 				IR3_COND_LT = 0,
254 				IR3_COND_LE = 1,
255 				IR3_COND_GT = 2,
256 				IR3_COND_GE = 3,
257 				IR3_COND_EQ = 4,
258 				IR3_COND_NE = 5,
259 			} condition;
260 		} cat2;
261 		struct {
262 			unsigned samp, tex;
263 			unsigned tex_base : 3;
264 			type_t type;
265 		} cat5;
266 		struct {
267 			type_t type;
268 			int src_offset;
269 			int dst_offset;
270 			int iim_val : 3;      /* for ldgb/stgb, # of components */
271 			unsigned d : 3;       /* for ldc, component offset */
272 			bool typed : 1;
273 			unsigned base : 3;
274 		} cat6;
275 		struct {
276 			unsigned w : 1;       /* write */
277 			unsigned r : 1;       /* read */
278 			unsigned l : 1;       /* local */
279 			unsigned g : 1;       /* global */
280 		} cat7;
281 		/* for meta-instructions, just used to hold extra data
282 		 * before instruction scheduling, etc
283 		 */
284 		struct {
285 			int off;              /* component/offset */
286 		} split;
287 		struct {
288 			/* for output collects, this maps back to the entry in the
289 			 * ir3_shader_variant::outputs table.
290 			 */
291 			int outidx;
292 		} collect;
293 		struct {
294 			unsigned samp, tex;
295 			unsigned input_offset;
296 			unsigned samp_base : 3;
297 			unsigned tex_base : 3;
298 		} prefetch;
299 		struct {
300 			/* maps back to entry in ir3_shader_variant::inputs table: */
301 			int inidx;
302 			/* for sysvals, identifies the sysval type.  Mostly so we can
303 			 * identify the special cases where a sysval should not be DCE'd
304 			 * (currently, just pre-fs texture fetch)
305 			 */
306 			gl_system_value sysval;
307 		} input;
308 	};
309 
310 	/* When we get to the RA stage, we need instruction's position/name: */
311 	uint16_t ip;
312 	uint16_t name;
313 
314 	/* used for per-pass extra instruction data.
315 	 *
316 	 * TODO we should remove the per-pass data like this and 'use_count'
317 	 * and do something similar to what RA does w/ ir3_ra_instr_data..
318 	 * ie. use the ir3_count_instructions pass, and then use instr->ip
319 	 * to index into a table of pass-private data.
320 	 */
321 	void *data;
322 
323 	/**
324 	 * Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use()
325 	 */
326 	struct set *uses;
327 
328 	int use_count;      /* currently just updated/used by cp */
329 
330 	/* Used during CP and RA stages.  For collect and shader inputs/
331 	 * outputs where we need a sequence of consecutive registers,
332 	 * keep track of each src instructions left (ie 'n-1') and right
333 	 * (ie 'n+1') neighbor.  The front-end must insert enough mov's
334 	 * to ensure that each instruction has at most one left and at
335 	 * most one right neighbor.  During the copy-propagation pass,
336 	 * we only remove mov's when we can preserve this constraint.
337 	 * And during the RA stage, we use the neighbor information to
338 	 * allocate a block of registers in one shot.
339 	 *
340 	 * TODO: maybe just add something like:
341 	 *   struct ir3_instruction_ref {
342 	 *       struct ir3_instruction *instr;
343 	 *       unsigned cnt;
344 	 *   }
345 	 *
346 	 * Or can we get away without the refcnt stuff?  It seems like
347 	 * it should be overkill..  the problem is if, potentially after
348 	 * already eliminating some mov's, if you have a single mov that
349 	 * needs to be grouped with it's neighbors in two different
350 	 * places (ex. shader output and a collect).
351 	 */
352 	struct {
353 		struct ir3_instruction *left, *right;
354 		uint16_t left_cnt, right_cnt;
355 	} cp;
356 
357 	/* an instruction can reference at most one address register amongst
358 	 * it's src/dst registers.  Beyond that, you need to insert mov's.
359 	 *
360 	 * NOTE: do not write this directly, use ir3_instr_set_address()
361 	 */
362 	struct ir3_instruction *address;
363 
364 	/* Tracking for additional dependent instructions.  Used to handle
365 	 * barriers, WAR hazards for arrays/SSBOs/etc.
366 	 */
367 	DECLARE_ARRAY(struct ir3_instruction *, deps);
368 
369 	/*
370 	 * From PoV of instruction scheduling, not execution (ie. ignores global/
371 	 * local distinction):
372 	 *                            shared  image  atomic  SSBO  everything
373 	 *   barrier()/            -   R/W     R/W    R/W     R/W       X
374 	 *     groupMemoryBarrier()
375 	 *   memoryBarrier()       -           R/W    R/W
376 	 *     (but only images declared coherent?)
377 	 *   memoryBarrierAtomic() -                  R/W
378 	 *   memoryBarrierBuffer() -                          R/W
379 	 *   memoryBarrierImage()  -           R/W
380 	 *   memoryBarrierShared() -   R/W
381 	 *
382 	 * TODO I think for SSBO/image/shared, in cases where we can determine
383 	 * which variable is accessed, we don't need to care about accesses to
384 	 * different variables (unless declared coherent??)
385 	 */
386 	enum {
387 		IR3_BARRIER_EVERYTHING = 1 << 0,
388 		IR3_BARRIER_SHARED_R   = 1 << 1,
389 		IR3_BARRIER_SHARED_W   = 1 << 2,
390 		IR3_BARRIER_IMAGE_R    = 1 << 3,
391 		IR3_BARRIER_IMAGE_W    = 1 << 4,
392 		IR3_BARRIER_BUFFER_R   = 1 << 5,
393 		IR3_BARRIER_BUFFER_W   = 1 << 6,
394 		IR3_BARRIER_ARRAY_R    = 1 << 7,
395 		IR3_BARRIER_ARRAY_W    = 1 << 8,
396 	} barrier_class, barrier_conflict;
397 
398 	/* Entry in ir3_block's instruction list: */
399 	struct list_head node;
400 
401 #ifdef DEBUG
402 	uint32_t serialno;
403 #endif
404 
405 	// TODO only computerator/assembler:
406 	int line;
407 };
408 
409 static inline struct ir3_instruction *
ir3_neighbor_first(struct ir3_instruction * instr)410 ir3_neighbor_first(struct ir3_instruction *instr)
411 {
412 	int cnt = 0;
413 	while (instr->cp.left) {
414 		instr = instr->cp.left;
415 		if (++cnt > 0xffff) {
416 			debug_assert(0);
417 			break;
418 		}
419 	}
420 	return instr;
421 }
422 
ir3_neighbor_count(struct ir3_instruction * instr)423 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
424 {
425 	int num = 1;
426 
427 	debug_assert(!instr->cp.left);
428 
429 	while (instr->cp.right) {
430 		num++;
431 		instr = instr->cp.right;
432 		if (num > 0xffff) {
433 			debug_assert(0);
434 			break;
435 		}
436 	}
437 
438 	return num;
439 }
440 
441 struct ir3 {
442 	struct ir3_compiler *compiler;
443 	gl_shader_stage type;
444 
445 	DECLARE_ARRAY(struct ir3_instruction *, inputs);
446 	DECLARE_ARRAY(struct ir3_instruction *, outputs);
447 
448 	/* Track bary.f (and ldlv) instructions.. this is needed in
449 	 * scheduling to ensure that all varying fetches happen before
450 	 * any potential kill instructions.  The hw gets grumpy if all
451 	 * threads in a group are killed before the last bary.f gets
452 	 * a chance to signal end of input (ei).
453 	 */
454 	DECLARE_ARRAY(struct ir3_instruction *, baryfs);
455 
456 	/* Track all indirect instructions (read and write).  To avoid
457 	 * deadlock scenario where an address register gets scheduled,
458 	 * but other dependent src instructions cannot be scheduled due
459 	 * to dependency on a *different* address register value, the
460 	 * scheduler needs to ensure that all dependencies other than
461 	 * the instruction other than the address register are scheduled
462 	 * before the one that writes the address register.  Having a
463 	 * convenient list of instructions that reference some address
464 	 * register simplifies this.
465 	 */
466 	DECLARE_ARRAY(struct ir3_instruction *, a0_users);
467 
468 	/* same for a1.x: */
469 	DECLARE_ARRAY(struct ir3_instruction *, a1_users);
470 
471 	/* and same for instructions that consume predicate register: */
472 	DECLARE_ARRAY(struct ir3_instruction *, predicates);
473 
474 	/* Track texture sample instructions which need texture state
475 	 * patched in (for astc-srgb workaround):
476 	 */
477 	DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
478 
479 	/* List of blocks: */
480 	struct list_head block_list;
481 
482 	/* List of ir3_array's: */
483 	struct list_head array_list;
484 
485 #ifdef DEBUG
486 	unsigned block_count, instr_count;
487 #endif
488 };
489 
490 struct ir3_array {
491 	struct list_head node;
492 	unsigned length;
493 	unsigned id;
494 
495 	struct nir_register *r;
496 
497 	/* To avoid array write's from getting DCE'd, keep track of the
498 	 * most recent write.  Any array access depends on the most
499 	 * recent write.  This way, nothing depends on writes after the
500 	 * last read.  But all the writes that happen before that have
501 	 * something depending on them
502 	 */
503 	struct ir3_instruction *last_write;
504 
505 	/* extra stuff used in RA pass: */
506 	unsigned base;      /* base vreg name */
507 	unsigned reg;       /* base physical reg */
508 	uint16_t start_ip, end_ip;
509 
510 	/* Indicates if half-precision */
511 	bool half;
512 
513 	bool unused;
514 };
515 
516 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
517 
518 struct ir3_block {
519 	struct list_head node;
520 	struct ir3 *shader;
521 
522 	const struct nir_block *nblock;
523 
524 	struct list_head instr_list;  /* list of ir3_instruction */
525 
526 	/* each block has either one or two successors.. in case of
527 	 * two successors, 'condition' decides which one to follow.
528 	 * A block preceding an if/else has two successors.
529 	 */
530 	struct ir3_instruction *condition;
531 	struct ir3_block *successors[2];
532 
533 	struct set *predecessors;     /* set of ir3_block */
534 
535 	uint16_t start_ip, end_ip;
536 
537 	/* Track instructions which do not write a register but other-
538 	 * wise must not be discarded (such as kill, stg, etc)
539 	 */
540 	DECLARE_ARRAY(struct ir3_instruction *, keeps);
541 
542 	/* used for per-pass extra block data.  Mainly used right
543 	 * now in RA step to track livein/liveout.
544 	 */
545 	void *data;
546 
547 #ifdef DEBUG
548 	uint32_t serialno;
549 #endif
550 };
551 
552 static inline uint32_t
block_id(struct ir3_block * block)553 block_id(struct ir3_block *block)
554 {
555 #ifdef DEBUG
556 	return block->serialno;
557 #else
558 	return (uint32_t)(unsigned long)block;
559 #endif
560 }
561 
562 struct ir3_shader_variant;
563 
564 struct ir3 * ir3_create(struct ir3_compiler *compiler, struct ir3_shader_variant *v);
565 void ir3_destroy(struct ir3 *shader);
566 
567 void * ir3_assemble(struct ir3_shader_variant *v);
568 void * ir3_alloc(struct ir3 *shader, int sz);
569 
570 struct ir3_block * ir3_block_create(struct ir3 *shader);
571 
572 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
573 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
574 		opc_t opc, int nreg);
575 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
576 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
577 const char *ir3_instr_name(struct ir3_instruction *instr);
578 
579 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
580 		int num, int flags);
581 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
582 		struct ir3_register *reg);
583 
584 void ir3_instr_set_address(struct ir3_instruction *instr,
585 		struct ir3_instruction *addr);
586 
ir3_instr_check_mark(struct ir3_instruction * instr)587 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
588 {
589 	if (instr->flags & IR3_INSTR_MARK)
590 		return true;  /* already visited */
591 	instr->flags |= IR3_INSTR_MARK;
592 	return false;
593 }
594 
595 void ir3_block_clear_mark(struct ir3_block *block);
596 void ir3_clear_mark(struct ir3 *shader);
597 
598 unsigned ir3_count_instructions(struct ir3 *ir);
599 unsigned ir3_count_instructions_ra(struct ir3 *ir);
600 
601 /**
602  * Move 'instr' to just before 'after'
603  */
604 static inline void
ir3_instr_move_before(struct ir3_instruction * instr,struct ir3_instruction * after)605 ir3_instr_move_before(struct ir3_instruction *instr,
606 		struct ir3_instruction *after)
607 {
608 	list_delinit(&instr->node);
609 	list_addtail(&instr->node, &after->node);
610 }
611 
612 /**
613  * Move 'instr' to just after 'before':
614  */
615 static inline void
ir3_instr_move_after(struct ir3_instruction * instr,struct ir3_instruction * before)616 ir3_instr_move_after(struct ir3_instruction *instr,
617 		struct ir3_instruction *before)
618 {
619 	list_delinit(&instr->node);
620 	list_add(&instr->node, &before->node);
621 }
622 
623 void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps);
624 
625 void ir3_set_dst_type(struct ir3_instruction *instr, bool half);
626 void ir3_fixup_src_type(struct ir3_instruction *instr);
627 
628 bool ir3_valid_flags(struct ir3_instruction *instr, unsigned n, unsigned flags);
629 
630 #include "util/set.h"
631 #define foreach_ssa_use(__use, __instr) \
632 	for (struct ir3_instruction *__use = (void *)~0; \
633 	     __use && (__instr)->uses; __use = NULL) \
634 		set_foreach ((__instr)->uses, __entry) \
635 			if ((__use = (void *)__entry->key))
636 
reg_num(struct ir3_register * reg)637 static inline uint32_t reg_num(struct ir3_register *reg)
638 {
639 	return reg->num >> 2;
640 }
641 
reg_comp(struct ir3_register * reg)642 static inline uint32_t reg_comp(struct ir3_register *reg)
643 {
644 	return reg->num & 0x3;
645 }
646 
is_flow(struct ir3_instruction * instr)647 static inline bool is_flow(struct ir3_instruction *instr)
648 {
649 	return (opc_cat(instr->opc) == 0);
650 }
651 
is_kill(struct ir3_instruction * instr)652 static inline bool is_kill(struct ir3_instruction *instr)
653 {
654 	return instr->opc == OPC_KILL;
655 }
656 
is_nop(struct ir3_instruction * instr)657 static inline bool is_nop(struct ir3_instruction *instr)
658 {
659 	return instr->opc == OPC_NOP;
660 }
661 
is_same_type_reg(struct ir3_register * reg1,struct ir3_register * reg2)662 static inline bool is_same_type_reg(struct ir3_register *reg1,
663 		struct ir3_register *reg2)
664 {
665 	unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
666 	unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
667 
668 	if (type_reg1 ^ type_reg2)
669 		return false;
670 	else
671 		return true;
672 }
673 
674 /* Is it a non-transformative (ie. not type changing) mov?  This can
675  * also include absneg.s/absneg.f, which for the most part can be
676  * treated as a mov (single src argument).
677  */
is_same_type_mov(struct ir3_instruction * instr)678 static inline bool is_same_type_mov(struct ir3_instruction *instr)
679 {
680 	struct ir3_register *dst;
681 
682 	switch (instr->opc) {
683 	case OPC_MOV:
684 		if (instr->cat1.src_type != instr->cat1.dst_type)
685 			return false;
686 		/* If the type of dest reg and src reg are different,
687 		 * it shouldn't be considered as same type mov
688 		 */
689 		if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
690 			return false;
691 		break;
692 	case OPC_ABSNEG_F:
693 	case OPC_ABSNEG_S:
694 		if (instr->flags & IR3_INSTR_SAT)
695 			return false;
696 		/* If the type of dest reg and src reg are different,
697 		 * it shouldn't be considered as same type mov
698 		 */
699 		if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
700 			return false;
701 		break;
702 	default:
703 		return false;
704 	}
705 
706 	dst = instr->regs[0];
707 
708 	/* mov's that write to a0 or p0.x are special: */
709 	if (dst->num == regid(REG_P0, 0))
710 		return false;
711 	if (reg_num(dst) == REG_A0)
712 		return false;
713 
714 	if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
715 		return false;
716 
717 	return true;
718 }
719 
720 /* A move from const, which changes size but not type, can also be
721  * folded into dest instruction in some cases.
722  */
is_const_mov(struct ir3_instruction * instr)723 static inline bool is_const_mov(struct ir3_instruction *instr)
724 {
725 	if (instr->opc != OPC_MOV)
726 		return false;
727 
728 	if (!(instr->regs[1]->flags & IR3_REG_CONST))
729 		return false;
730 
731 	type_t src_type = instr->cat1.src_type;
732 	type_t dst_type = instr->cat1.dst_type;
733 
734 	return (type_float(src_type) && type_float(dst_type)) ||
735 		(type_uint(src_type) && type_uint(dst_type)) ||
736 		(type_sint(src_type) && type_sint(dst_type));
737 }
738 
is_alu(struct ir3_instruction * instr)739 static inline bool is_alu(struct ir3_instruction *instr)
740 {
741 	return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
742 }
743 
is_sfu(struct ir3_instruction * instr)744 static inline bool is_sfu(struct ir3_instruction *instr)
745 {
746 	return (opc_cat(instr->opc) == 4);
747 }
748 
is_tex(struct ir3_instruction * instr)749 static inline bool is_tex(struct ir3_instruction *instr)
750 {
751 	return (opc_cat(instr->opc) == 5);
752 }
753 
is_tex_or_prefetch(struct ir3_instruction * instr)754 static inline bool is_tex_or_prefetch(struct ir3_instruction *instr)
755 {
756 	return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH);
757 }
758 
is_mem(struct ir3_instruction * instr)759 static inline bool is_mem(struct ir3_instruction *instr)
760 {
761 	return (opc_cat(instr->opc) == 6);
762 }
763 
is_barrier(struct ir3_instruction * instr)764 static inline bool is_barrier(struct ir3_instruction *instr)
765 {
766 	return (opc_cat(instr->opc) == 7);
767 }
768 
769 static inline bool
is_half(struct ir3_instruction * instr)770 is_half(struct ir3_instruction *instr)
771 {
772 	return !!(instr->regs[0]->flags & IR3_REG_HALF);
773 }
774 
775 static inline bool
is_high(struct ir3_instruction * instr)776 is_high(struct ir3_instruction *instr)
777 {
778 	return !!(instr->regs[0]->flags & IR3_REG_HIGH);
779 }
780 
781 static inline bool
is_store(struct ir3_instruction * instr)782 is_store(struct ir3_instruction *instr)
783 {
784 	/* these instructions, the "destination" register is
785 	 * actually a source, the address to store to.
786 	 */
787 	switch (instr->opc) {
788 	case OPC_STG:
789 	case OPC_STGB:
790 	case OPC_STIB:
791 	case OPC_STP:
792 	case OPC_STL:
793 	case OPC_STLW:
794 	case OPC_L2G:
795 	case OPC_G2L:
796 		return true;
797 	default:
798 		return false;
799 	}
800 }
801 
is_load(struct ir3_instruction * instr)802 static inline bool is_load(struct ir3_instruction *instr)
803 {
804 	switch (instr->opc) {
805 	case OPC_LDG:
806 	case OPC_LDGB:
807 	case OPC_LDIB:
808 	case OPC_LDL:
809 	case OPC_LDP:
810 	case OPC_L2G:
811 	case OPC_LDLW:
812 	case OPC_LDC:
813 	case OPC_LDLV:
814 		/* probably some others too.. */
815 		return true;
816 	default:
817 		return false;
818 	}
819 }
820 
is_input(struct ir3_instruction * instr)821 static inline bool is_input(struct ir3_instruction *instr)
822 {
823 	/* in some cases, ldlv is used to fetch varying without
824 	 * interpolation.. fortunately inloc is the first src
825 	 * register in either case
826 	 */
827 	switch (instr->opc) {
828 	case OPC_LDLV:
829 	case OPC_BARY_F:
830 		return true;
831 	default:
832 		return false;
833 	}
834 }
835 
is_bool(struct ir3_instruction * instr)836 static inline bool is_bool(struct ir3_instruction *instr)
837 {
838 	switch (instr->opc) {
839 	case OPC_CMPS_F:
840 	case OPC_CMPS_S:
841 	case OPC_CMPS_U:
842 		return true;
843 	default:
844 		return false;
845 	}
846 }
847 
848 static inline opc_t
cat3_half_opc(opc_t opc)849 cat3_half_opc(opc_t opc)
850 {
851 	switch (opc) {
852 	case OPC_MAD_F32: return OPC_MAD_F16;
853 	case OPC_SEL_B32: return OPC_SEL_B16;
854 	case OPC_SEL_S32: return OPC_SEL_S16;
855 	case OPC_SEL_F32: return OPC_SEL_F16;
856 	case OPC_SAD_S32: return OPC_SAD_S16;
857 	default:          return opc;
858 	}
859 }
860 
861 static inline opc_t
cat3_full_opc(opc_t opc)862 cat3_full_opc(opc_t opc)
863 {
864 	switch (opc) {
865 	case OPC_MAD_F16: return OPC_MAD_F32;
866 	case OPC_SEL_B16: return OPC_SEL_B32;
867 	case OPC_SEL_S16: return OPC_SEL_S32;
868 	case OPC_SEL_F16: return OPC_SEL_F32;
869 	case OPC_SAD_S16: return OPC_SAD_S32;
870 	default:          return opc;
871 	}
872 }
873 
874 static inline opc_t
cat4_half_opc(opc_t opc)875 cat4_half_opc(opc_t opc)
876 {
877 	switch (opc) {
878 	case OPC_RSQ:  return OPC_HRSQ;
879 	case OPC_LOG2: return OPC_HLOG2;
880 	case OPC_EXP2: return OPC_HEXP2;
881 	default:       return opc;
882 	}
883 }
884 
885 static inline opc_t
cat4_full_opc(opc_t opc)886 cat4_full_opc(opc_t opc)
887 {
888 	switch (opc) {
889 	case OPC_HRSQ:  return OPC_RSQ;
890 	case OPC_HLOG2: return OPC_LOG2;
891 	case OPC_HEXP2: return OPC_EXP2;
892 	default:        return opc;
893 	}
894 }
895 
is_meta(struct ir3_instruction * instr)896 static inline bool is_meta(struct ir3_instruction *instr)
897 {
898 	return (opc_cat(instr->opc) == -1);
899 }
900 
dest_regs(struct ir3_instruction * instr)901 static inline unsigned dest_regs(struct ir3_instruction *instr)
902 {
903 	if ((instr->regs_count == 0) || is_store(instr) || is_flow(instr))
904 		return 0;
905 
906 	return util_last_bit(instr->regs[0]->wrmask);
907 }
908 
909 static inline bool
writes_gpr(struct ir3_instruction * instr)910 writes_gpr(struct ir3_instruction *instr)
911 {
912 	if (dest_regs(instr) == 0)
913 		return false;
914 	/* is dest a normal temp register: */
915 	struct ir3_register *reg = instr->regs[0];
916 	debug_assert(!(reg->flags & (IR3_REG_CONST | IR3_REG_IMMED)));
917 	if ((reg_num(reg) == REG_A0) ||
918 			(reg->num == regid(REG_P0, 0)))
919 		return false;
920 	return true;
921 }
922 
writes_addr0(struct ir3_instruction * instr)923 static inline bool writes_addr0(struct ir3_instruction *instr)
924 {
925 	if (instr->regs_count > 0) {
926 		struct ir3_register *dst = instr->regs[0];
927 		return dst->num == regid(REG_A0, 0);
928 	}
929 	return false;
930 }
931 
writes_addr1(struct ir3_instruction * instr)932 static inline bool writes_addr1(struct ir3_instruction *instr)
933 {
934 	if (instr->regs_count > 0) {
935 		struct ir3_register *dst = instr->regs[0];
936 		return dst->num == regid(REG_A0, 1);
937 	}
938 	return false;
939 }
940 
writes_pred(struct ir3_instruction * instr)941 static inline bool writes_pred(struct ir3_instruction *instr)
942 {
943 	if (instr->regs_count > 0) {
944 		struct ir3_register *dst = instr->regs[0];
945 		return reg_num(dst) == REG_P0;
946 	}
947 	return false;
948 }
949 
950 /* returns defining instruction for reg */
951 /* TODO better name */
ssa(struct ir3_register * reg)952 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
953 {
954 	if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
955 		return reg->instr;
956 	}
957 	return NULL;
958 }
959 
conflicts(struct ir3_instruction * a,struct ir3_instruction * b)960 static inline bool conflicts(struct ir3_instruction *a,
961 		struct ir3_instruction *b)
962 {
963 	return (a && b) && (a != b);
964 }
965 
reg_gpr(struct ir3_register * r)966 static inline bool reg_gpr(struct ir3_register *r)
967 {
968 	if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
969 		return false;
970 	if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
971 		return false;
972 	return true;
973 }
974 
half_type(type_t type)975 static inline type_t half_type(type_t type)
976 {
977 	switch (type) {
978 	case TYPE_F32: return TYPE_F16;
979 	case TYPE_U32: return TYPE_U16;
980 	case TYPE_S32: return TYPE_S16;
981 	case TYPE_F16:
982 	case TYPE_U16:
983 	case TYPE_S16:
984 		return type;
985 	default:
986 		assert(0);
987 		return ~0;
988 	}
989 }
990 
full_type(type_t type)991 static inline type_t full_type(type_t type)
992 {
993 	switch (type) {
994 	case TYPE_F16: return TYPE_F32;
995 	case TYPE_U16: return TYPE_U32;
996 	case TYPE_S16: return TYPE_S32;
997 	case TYPE_F32:
998 	case TYPE_U32:
999 	case TYPE_S32:
1000 		return type;
1001 	default:
1002 		assert(0);
1003 		return ~0;
1004 	}
1005 }
1006 
1007 /* some cat2 instructions (ie. those which are not float) can embed an
1008  * immediate:
1009  */
ir3_cat2_int(opc_t opc)1010 static inline bool ir3_cat2_int(opc_t opc)
1011 {
1012 	switch (opc) {
1013 	case OPC_ADD_U:
1014 	case OPC_ADD_S:
1015 	case OPC_SUB_U:
1016 	case OPC_SUB_S:
1017 	case OPC_CMPS_U:
1018 	case OPC_CMPS_S:
1019 	case OPC_MIN_U:
1020 	case OPC_MIN_S:
1021 	case OPC_MAX_U:
1022 	case OPC_MAX_S:
1023 	case OPC_CMPV_U:
1024 	case OPC_CMPV_S:
1025 	case OPC_MUL_U24:
1026 	case OPC_MUL_S24:
1027 	case OPC_MULL_U:
1028 	case OPC_CLZ_S:
1029 	case OPC_ABSNEG_S:
1030 	case OPC_AND_B:
1031 	case OPC_OR_B:
1032 	case OPC_NOT_B:
1033 	case OPC_XOR_B:
1034 	case OPC_BFREV_B:
1035 	case OPC_CLZ_B:
1036 	case OPC_SHL_B:
1037 	case OPC_SHR_B:
1038 	case OPC_ASHR_B:
1039 	case OPC_MGEN_B:
1040 	case OPC_GETBIT_B:
1041 	case OPC_CBITS_B:
1042 	case OPC_BARY_F:
1043 		return true;
1044 
1045 	default:
1046 		return false;
1047 	}
1048 }
1049 
1050 /* map cat2 instruction to valid abs/neg flags: */
ir3_cat2_absneg(opc_t opc)1051 static inline unsigned ir3_cat2_absneg(opc_t opc)
1052 {
1053 	switch (opc) {
1054 	case OPC_ADD_F:
1055 	case OPC_MIN_F:
1056 	case OPC_MAX_F:
1057 	case OPC_MUL_F:
1058 	case OPC_SIGN_F:
1059 	case OPC_CMPS_F:
1060 	case OPC_ABSNEG_F:
1061 	case OPC_CMPV_F:
1062 	case OPC_FLOOR_F:
1063 	case OPC_CEIL_F:
1064 	case OPC_RNDNE_F:
1065 	case OPC_RNDAZ_F:
1066 	case OPC_TRUNC_F:
1067 	case OPC_BARY_F:
1068 		return IR3_REG_FABS | IR3_REG_FNEG;
1069 
1070 	case OPC_ADD_U:
1071 	case OPC_ADD_S:
1072 	case OPC_SUB_U:
1073 	case OPC_SUB_S:
1074 	case OPC_CMPS_U:
1075 	case OPC_CMPS_S:
1076 	case OPC_MIN_U:
1077 	case OPC_MIN_S:
1078 	case OPC_MAX_U:
1079 	case OPC_MAX_S:
1080 	case OPC_CMPV_U:
1081 	case OPC_CMPV_S:
1082 	case OPC_MUL_U24:
1083 	case OPC_MUL_S24:
1084 	case OPC_MULL_U:
1085 	case OPC_CLZ_S:
1086 		return 0;
1087 
1088 	case OPC_ABSNEG_S:
1089 		return IR3_REG_SABS | IR3_REG_SNEG;
1090 
1091 	case OPC_AND_B:
1092 	case OPC_OR_B:
1093 	case OPC_NOT_B:
1094 	case OPC_XOR_B:
1095 	case OPC_BFREV_B:
1096 	case OPC_CLZ_B:
1097 	case OPC_SHL_B:
1098 	case OPC_SHR_B:
1099 	case OPC_ASHR_B:
1100 	case OPC_MGEN_B:
1101 	case OPC_GETBIT_B:
1102 	case OPC_CBITS_B:
1103 		return IR3_REG_BNOT;
1104 
1105 	default:
1106 		return 0;
1107 	}
1108 }
1109 
1110 /* map cat3 instructions to valid abs/neg flags: */
ir3_cat3_absneg(opc_t opc)1111 static inline unsigned ir3_cat3_absneg(opc_t opc)
1112 {
1113 	switch (opc) {
1114 	case OPC_MAD_F16:
1115 	case OPC_MAD_F32:
1116 	case OPC_SEL_F16:
1117 	case OPC_SEL_F32:
1118 		return IR3_REG_FNEG;
1119 
1120 	case OPC_MAD_U16:
1121 	case OPC_MADSH_U16:
1122 	case OPC_MAD_S16:
1123 	case OPC_MADSH_M16:
1124 	case OPC_MAD_U24:
1125 	case OPC_MAD_S24:
1126 	case OPC_SEL_S16:
1127 	case OPC_SEL_S32:
1128 	case OPC_SAD_S16:
1129 	case OPC_SAD_S32:
1130 		/* neg *may* work on 3rd src.. */
1131 
1132 	case OPC_SEL_B16:
1133 	case OPC_SEL_B32:
1134 
1135 	default:
1136 		return 0;
1137 	}
1138 }
1139 
1140 #define MASK(n) ((1 << (n)) - 1)
1141 
1142 /* iterator for an instructions's sources (reg), also returns src #: */
1143 #define foreach_src_n(__srcreg, __n, __instr) \
1144 	if ((__instr)->regs_count) \
1145 		for (struct ir3_register *__srcreg = (void *)~0; __srcreg; __srcreg = NULL) \
1146 			for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1147 				if ((__srcreg = (__instr)->regs[__n + 1]))
1148 
1149 /* iterator for an instructions's sources (reg): */
1150 #define foreach_src(__srcreg, __instr) \
1151 	foreach_src_n(__srcreg, __i, __instr)
1152 
__ssa_src_cnt(struct ir3_instruction * instr)1153 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1154 {
1155 	unsigned cnt = instr->regs_count + instr->deps_count;
1156 	if (instr->address)
1157 		cnt++;
1158 	return cnt;
1159 }
1160 
1161 static inline struct ir3_instruction **
__ssa_srcp_n(struct ir3_instruction * instr,unsigned n)1162 __ssa_srcp_n(struct ir3_instruction *instr, unsigned n)
1163 {
1164 	if (n == (instr->regs_count + instr->deps_count))
1165 		return &instr->address;
1166 	if (n >= instr->regs_count)
1167 		return &instr->deps[n - instr->regs_count];
1168 	if (ssa(instr->regs[n]))
1169 		return &instr->regs[n]->instr;
1170 	return NULL;
1171 }
1172 
__is_false_dep(struct ir3_instruction * instr,unsigned n)1173 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1174 {
1175 	if (n == (instr->regs_count + instr->deps_count))
1176 		return false;
1177 	if (n >= instr->regs_count)
1178 		return true;
1179 	return false;
1180 }
1181 
1182 #define foreach_ssa_srcp_n(__srcp, __n, __instr) \
1183 	for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \
1184 		for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1185 			if ((__srcp = __ssa_srcp_n(__instr, __n)))
1186 
1187 #define foreach_ssa_srcp(__srcp, __instr) \
1188 	foreach_ssa_srcp_n(__srcp, __i, __instr)
1189 
1190 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1191 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1192 	for (struct ir3_instruction *__srcinst = (void *)~0; __srcinst; __srcinst = NULL) \
1193 		foreach_ssa_srcp_n(__srcp, __n, __instr) \
1194 			if ((__srcinst = *__srcp))
1195 
1196 /* iterator for an instruction's SSA sources (instr): */
1197 #define foreach_ssa_src(__srcinst, __instr) \
1198 	foreach_ssa_src_n(__srcinst, __i, __instr)
1199 
1200 /* iterators for shader inputs: */
1201 #define foreach_input_n(__ininstr, __cnt, __ir) \
1202 	for (struct ir3_instruction *__ininstr = (void *)~0; __ininstr; __ininstr = NULL) \
1203 		for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
1204 			if ((__ininstr = (__ir)->inputs[__cnt]))
1205 #define foreach_input(__ininstr, __ir) \
1206 	foreach_input_n(__ininstr, __i, __ir)
1207 
1208 /* iterators for shader outputs: */
1209 #define foreach_output_n(__outinstr, __cnt, __ir) \
1210 	for (struct ir3_instruction *__outinstr = (void *)~0; __outinstr; __outinstr = NULL) \
1211 		for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
1212 			if ((__outinstr = (__ir)->outputs[__cnt]))
1213 #define foreach_output(__outinstr, __ir) \
1214 	foreach_output_n(__outinstr, __i, __ir)
1215 
1216 /* iterators for instructions: */
1217 #define foreach_instr(__instr, __list) \
1218 	list_for_each_entry(struct ir3_instruction, __instr, __list, node)
1219 #define foreach_instr_rev(__instr, __list) \
1220 	list_for_each_entry_rev(struct ir3_instruction, __instr, __list, node)
1221 #define foreach_instr_safe(__instr, __list) \
1222 	list_for_each_entry_safe(struct ir3_instruction, __instr, __list, node)
1223 
1224 /* iterators for blocks: */
1225 #define foreach_block(__block, __list) \
1226 	list_for_each_entry(struct ir3_block, __block, __list, node)
1227 #define foreach_block_safe(__block, __list) \
1228 	list_for_each_entry_safe(struct ir3_block, __block, __list, node)
1229 #define foreach_block_rev(__block, __list) \
1230 	list_for_each_entry_rev(struct ir3_block, __block, __list, node)
1231 
1232 /* iterators for arrays: */
1233 #define foreach_array(__array, __list) \
1234 	list_for_each_entry(struct ir3_array, __array, __list, node)
1235 #define foreach_array_safe(__array, __list) \
1236 	list_for_each_entry_safe(struct ir3_array, __array, __list, node)
1237 
1238 /* Check if condition is true for any src instruction.
1239  */
1240 static inline bool
check_src_cond(struct ir3_instruction * instr,bool (* cond)(struct ir3_instruction *))1241 check_src_cond(struct ir3_instruction *instr, bool (*cond)(struct ir3_instruction *))
1242 {
1243 	/* Note that this is also used post-RA so skip the ssa iterator: */
1244 	foreach_src (reg, instr) {
1245 		struct ir3_instruction *src = reg->instr;
1246 
1247 		if (!src)
1248 			continue;
1249 
1250 		/* meta:split/collect aren't real instructions, the thing that
1251 		 * we actually care about is *their* srcs
1252 		 */
1253 		if ((src->opc == OPC_META_SPLIT) || (src->opc == OPC_META_COLLECT)) {
1254 			if (check_src_cond(src, cond))
1255 				return true;
1256 		} else {
1257 			if (cond(src))
1258 				return true;
1259 		}
1260 	}
1261 
1262 	return false;
1263 }
1264 
1265 #define IR3_PASS(ir, pass, ...) ({ \
1266 		bool progress = pass(ir, ##__VA_ARGS__); \
1267 		if (progress) { \
1268 			ir3_debug_print(ir, "AFTER: " #pass); \
1269 			ir3_validate(ir); \
1270 		} \
1271 		progress; \
1272 	})
1273 
1274 /* validate: */
1275 void ir3_validate(struct ir3 *ir);
1276 
1277 /* dump: */
1278 void ir3_print(struct ir3 *ir);
1279 void ir3_print_instr(struct ir3_instruction *instr);
1280 
1281 /* delay calculation: */
1282 int ir3_delayslots(struct ir3_instruction *assigner,
1283 		struct ir3_instruction *consumer, unsigned n, bool soft);
1284 unsigned ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr,
1285 		bool soft, bool pred);
1286 void ir3_remove_nops(struct ir3 *ir);
1287 
1288 /* dead code elimination: */
1289 struct ir3_shader_variant;
1290 bool ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so);
1291 
1292 /* fp16 conversion folding */
1293 bool ir3_cf(struct ir3 *ir);
1294 
1295 /* copy-propagate: */
1296 bool ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1297 bool ir3_cp_postsched(struct ir3 *ir);
1298 
1299 /* group neighbors and insert mov's to resolve conflicts: */
1300 bool ir3_group(struct ir3 *ir);
1301 
1302 /* scheduling: */
1303 bool ir3_sched_add_deps(struct ir3 *ir);
1304 int ir3_sched(struct ir3 *ir);
1305 
1306 struct ir3_context;
1307 bool ir3_postsched(struct ir3 *ir, struct ir3_shader_variant *v);
1308 
1309 bool ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1310 
1311 /* register assignment: */
1312 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler, bool mergedregs);
1313 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1314 
1315 /* legalize: */
1316 bool ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary);
1317 
1318 static inline bool
ir3_has_latency_to_hide(struct ir3 * ir)1319 ir3_has_latency_to_hide(struct ir3 *ir)
1320 {
1321 	/* VS/GS/TCS/TESS  co-exist with frag shader invocations, but we don't
1322 	 * know the nature of the fragment shader.  Just assume it will have
1323 	 * latency to hide:
1324 	 */
1325 	if (ir->type != MESA_SHADER_FRAGMENT)
1326 		return true;
1327 
1328 	foreach_block (block, &ir->block_list) {
1329 		foreach_instr (instr, &block->instr_list) {
1330 			if (is_tex_or_prefetch(instr))
1331 				return true;
1332 
1333 			if (is_load(instr)) {
1334 				switch (instr->opc) {
1335 				case OPC_LDLV:
1336 				case OPC_LDL:
1337 				case OPC_LDLW:
1338 					break;
1339 				default:
1340 					return true;
1341 				}
1342 			}
1343 		}
1344 	}
1345 
1346 	return false;
1347 }
1348 
1349 /* ************************************************************************* */
1350 /* instruction helpers */
1351 
1352 /* creates SSA src of correct type (ie. half vs full precision) */
__ssa_src(struct ir3_instruction * instr,struct ir3_instruction * src,unsigned flags)1353 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1354 		struct ir3_instruction *src, unsigned flags)
1355 {
1356 	struct ir3_register *reg;
1357 	if (src->regs[0]->flags & IR3_REG_HALF)
1358 		flags |= IR3_REG_HALF;
1359 	reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1360 	reg->instr = src;
1361 	reg->wrmask = src->regs[0]->wrmask;
1362 	return reg;
1363 }
1364 
__ssa_dst(struct ir3_instruction * instr)1365 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1366 {
1367 	struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1368 	reg->flags |= IR3_REG_SSA;
1369 	return reg;
1370 }
1371 
1372 static inline struct ir3_instruction *
create_immed_typed(struct ir3_block * block,uint32_t val,type_t type)1373 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1374 {
1375 	struct ir3_instruction *mov;
1376 	unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1377 
1378 	mov = ir3_instr_create(block, OPC_MOV);
1379 	mov->cat1.src_type = type;
1380 	mov->cat1.dst_type = type;
1381 	__ssa_dst(mov)->flags |= flags;
1382 	ir3_reg_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val;
1383 
1384 	return mov;
1385 }
1386 
1387 static inline struct ir3_instruction *
create_immed(struct ir3_block * block,uint32_t val)1388 create_immed(struct ir3_block *block, uint32_t val)
1389 {
1390 	return create_immed_typed(block, val, TYPE_U32);
1391 }
1392 
1393 static inline struct ir3_instruction *
create_uniform_typed(struct ir3_block * block,unsigned n,type_t type)1394 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1395 {
1396 	struct ir3_instruction *mov;
1397 	unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1398 
1399 	mov = ir3_instr_create(block, OPC_MOV);
1400 	mov->cat1.src_type = type;
1401 	mov->cat1.dst_type = type;
1402 	__ssa_dst(mov)->flags |= flags;
1403 	ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1404 
1405 	return mov;
1406 }
1407 
1408 static inline struct ir3_instruction *
create_uniform(struct ir3_block * block,unsigned n)1409 create_uniform(struct ir3_block *block, unsigned n)
1410 {
1411 	return create_uniform_typed(block, n, TYPE_F32);
1412 }
1413 
1414 static inline struct ir3_instruction *
create_uniform_indirect(struct ir3_block * block,int n,type_t type,struct ir3_instruction * address)1415 create_uniform_indirect(struct ir3_block *block, int n, type_t type,
1416 		struct ir3_instruction *address)
1417 {
1418 	struct ir3_instruction *mov;
1419 
1420 	mov = ir3_instr_create(block, OPC_MOV);
1421 	mov->cat1.src_type = type;
1422 	mov->cat1.dst_type = type;
1423 	__ssa_dst(mov);
1424 	ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1425 
1426 	ir3_instr_set_address(mov, address);
1427 
1428 	return mov;
1429 }
1430 
1431 static inline struct ir3_instruction *
ir3_MOV(struct ir3_block * block,struct ir3_instruction * src,type_t type)1432 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1433 {
1434 	struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1435 	unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1436 
1437 	__ssa_dst(instr)->flags |= flags;
1438 	if (src->regs[0]->flags & IR3_REG_ARRAY) {
1439 		struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1440 		src_reg->array = src->regs[0]->array;
1441 	} else {
1442 		__ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1443 	}
1444 	debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1445 	instr->cat1.src_type = type;
1446 	instr->cat1.dst_type = type;
1447 	return instr;
1448 }
1449 
1450 static inline struct ir3_instruction *
ir3_COV(struct ir3_block * block,struct ir3_instruction * src,type_t src_type,type_t dst_type)1451 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1452 		type_t src_type, type_t dst_type)
1453 {
1454 	struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1455 	unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1456 	unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1457 
1458 	debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1459 
1460 	__ssa_dst(instr)->flags |= dst_flags;
1461 	__ssa_src(instr, src, 0);
1462 	instr->cat1.src_type = src_type;
1463 	instr->cat1.dst_type = dst_type;
1464 	debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1465 	return instr;
1466 }
1467 
1468 static inline struct ir3_instruction *
ir3_NOP(struct ir3_block * block)1469 ir3_NOP(struct ir3_block *block)
1470 {
1471 	return ir3_instr_create(block, OPC_NOP);
1472 }
1473 
1474 #define IR3_INSTR_0 0
1475 
1476 #define __INSTR0(flag, name, opc)                                        \
1477 static inline struct ir3_instruction *                                   \
1478 ir3_##name(struct ir3_block *block)                                      \
1479 {                                                                        \
1480 	struct ir3_instruction *instr =                                      \
1481 		ir3_instr_create(block, opc);                                    \
1482 	instr->flags |= flag;                                                \
1483 	return instr;                                                        \
1484 }
1485 #define INSTR0F(f, name)    __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1486 #define INSTR0(name)        __INSTR0(0, name, OPC_##name)
1487 
1488 #define __INSTR1(flag, name, opc)                                        \
1489 static inline struct ir3_instruction *                                   \
1490 ir3_##name(struct ir3_block *block,                                      \
1491 		struct ir3_instruction *a, unsigned aflags)                      \
1492 {                                                                        \
1493 	struct ir3_instruction *instr =                                      \
1494 		ir3_instr_create(block, opc);                                    \
1495 	__ssa_dst(instr);                                                    \
1496 	__ssa_src(instr, a, aflags);                                         \
1497 	instr->flags |= flag;                                                \
1498 	return instr;                                                        \
1499 }
1500 #define INSTR1F(f, name)    __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1501 #define INSTR1(name)        __INSTR1(0, name, OPC_##name)
1502 
1503 #define __INSTR2(flag, name, opc)                                        \
1504 static inline struct ir3_instruction *                                   \
1505 ir3_##name(struct ir3_block *block,                                      \
1506 		struct ir3_instruction *a, unsigned aflags,                      \
1507 		struct ir3_instruction *b, unsigned bflags)                      \
1508 {                                                                        \
1509 	struct ir3_instruction *instr =                                      \
1510 		ir3_instr_create(block, opc);                                    \
1511 	__ssa_dst(instr);                                                    \
1512 	__ssa_src(instr, a, aflags);                                         \
1513 	__ssa_src(instr, b, bflags);                                         \
1514 	instr->flags |= flag;                                                \
1515 	return instr;                                                        \
1516 }
1517 #define INSTR2F(f, name)    __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1518 #define INSTR2(name)        __INSTR2(0, name, OPC_##name)
1519 
1520 #define __INSTR3(flag, name, opc)                                        \
1521 static inline struct ir3_instruction *                                   \
1522 ir3_##name(struct ir3_block *block,                                      \
1523 		struct ir3_instruction *a, unsigned aflags,                      \
1524 		struct ir3_instruction *b, unsigned bflags,                      \
1525 		struct ir3_instruction *c, unsigned cflags)                      \
1526 {                                                                        \
1527 	struct ir3_instruction *instr =                                      \
1528 		ir3_instr_create2(block, opc, 4);                                \
1529 	__ssa_dst(instr);                                                    \
1530 	__ssa_src(instr, a, aflags);                                         \
1531 	__ssa_src(instr, b, bflags);                                         \
1532 	__ssa_src(instr, c, cflags);                                         \
1533 	instr->flags |= flag;                                                \
1534 	return instr;                                                        \
1535 }
1536 #define INSTR3F(f, name)    __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1537 #define INSTR3(name)        __INSTR3(0, name, OPC_##name)
1538 
1539 #define __INSTR4(flag, name, opc)                                        \
1540 static inline struct ir3_instruction *                                   \
1541 ir3_##name(struct ir3_block *block,                                      \
1542 		struct ir3_instruction *a, unsigned aflags,                      \
1543 		struct ir3_instruction *b, unsigned bflags,                      \
1544 		struct ir3_instruction *c, unsigned cflags,                      \
1545 		struct ir3_instruction *d, unsigned dflags)                      \
1546 {                                                                        \
1547 	struct ir3_instruction *instr =                                      \
1548 		ir3_instr_create2(block, opc, 5);                                \
1549 	__ssa_dst(instr);                                                    \
1550 	__ssa_src(instr, a, aflags);                                         \
1551 	__ssa_src(instr, b, bflags);                                         \
1552 	__ssa_src(instr, c, cflags);                                         \
1553 	__ssa_src(instr, d, dflags);                                         \
1554 	instr->flags |= flag;                                                \
1555 	return instr;                                                        \
1556 }
1557 #define INSTR4F(f, name)    __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1558 #define INSTR4(name)        __INSTR4(0, name, OPC_##name)
1559 
1560 /* cat0 instructions: */
1561 INSTR1(B)
INSTR0(JUMP)1562 INSTR0(JUMP)
1563 INSTR1(KILL)
1564 INSTR0(END)
1565 INSTR0(CHSH)
1566 INSTR0(CHMASK)
1567 INSTR1(PREDT)
1568 INSTR0(PREDF)
1569 INSTR0(PREDE)
1570 
1571 /* cat2 instructions, most 2 src but some 1 src: */
1572 INSTR2(ADD_F)
1573 INSTR2(MIN_F)
1574 INSTR2(MAX_F)
1575 INSTR2(MUL_F)
1576 INSTR1(SIGN_F)
1577 INSTR2(CMPS_F)
1578 INSTR1(ABSNEG_F)
1579 INSTR2(CMPV_F)
1580 INSTR1(FLOOR_F)
1581 INSTR1(CEIL_F)
1582 INSTR1(RNDNE_F)
1583 INSTR1(RNDAZ_F)
1584 INSTR1(TRUNC_F)
1585 INSTR2(ADD_U)
1586 INSTR2(ADD_S)
1587 INSTR2(SUB_U)
1588 INSTR2(SUB_S)
1589 INSTR2(CMPS_U)
1590 INSTR2(CMPS_S)
1591 INSTR2(MIN_U)
1592 INSTR2(MIN_S)
1593 INSTR2(MAX_U)
1594 INSTR2(MAX_S)
1595 INSTR1(ABSNEG_S)
1596 INSTR2(AND_B)
1597 INSTR2(OR_B)
1598 INSTR1(NOT_B)
1599 INSTR2(XOR_B)
1600 INSTR2(CMPV_U)
1601 INSTR2(CMPV_S)
1602 INSTR2(MUL_U24)
1603 INSTR2(MUL_S24)
1604 INSTR2(MULL_U)
1605 INSTR1(BFREV_B)
1606 INSTR1(CLZ_S)
1607 INSTR1(CLZ_B)
1608 INSTR2(SHL_B)
1609 INSTR2(SHR_B)
1610 INSTR2(ASHR_B)
1611 INSTR2(BARY_F)
1612 INSTR2(MGEN_B)
1613 INSTR2(GETBIT_B)
1614 INSTR1(SETRM)
1615 INSTR1(CBITS_B)
1616 INSTR2(SHB)
1617 INSTR2(MSAD)
1618 
1619 /* cat3 instructions: */
1620 INSTR3(MAD_U16)
1621 INSTR3(MADSH_U16)
1622 INSTR3(MAD_S16)
1623 INSTR3(MADSH_M16)
1624 INSTR3(MAD_U24)
1625 INSTR3(MAD_S24)
1626 INSTR3(MAD_F16)
1627 INSTR3(MAD_F32)
1628 /* NOTE: SEL_B32 checks for zero vs nonzero */
1629 INSTR3(SEL_B16)
1630 INSTR3(SEL_B32)
1631 INSTR3(SEL_S16)
1632 INSTR3(SEL_S32)
1633 INSTR3(SEL_F16)
1634 INSTR3(SEL_F32)
1635 INSTR3(SAD_S16)
1636 INSTR3(SAD_S32)
1637 
1638 /* cat4 instructions: */
1639 INSTR1(RCP)
1640 INSTR1(RSQ)
1641 INSTR1(HRSQ)
1642 INSTR1(LOG2)
1643 INSTR1(HLOG2)
1644 INSTR1(EXP2)
1645 INSTR1(HEXP2)
1646 INSTR1(SIN)
1647 INSTR1(COS)
1648 INSTR1(SQRT)
1649 
1650 /* cat5 instructions: */
1651 INSTR1(DSX)
1652 INSTR1(DSXPP_MACRO)
1653 INSTR1(DSY)
1654 INSTR1(DSYPP_MACRO)
1655 INSTR1F(3D, DSX)
1656 INSTR1F(3D, DSY)
1657 INSTR1(RGETPOS)
1658 
1659 static inline struct ir3_instruction *
1660 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1661 		unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1662 		struct ir3_instruction *src0, struct ir3_instruction *src1)
1663 {
1664 	struct ir3_instruction *sam;
1665 
1666 	sam = ir3_instr_create(block, opc);
1667 	sam->flags |= flags;
1668 	__ssa_dst(sam)->wrmask = wrmask;
1669 	if (flags & IR3_INSTR_S2EN) {
1670 		__ssa_src(sam, samp_tex, (flags & IR3_INSTR_B) ? 0 : IR3_REG_HALF);
1671 	}
1672 	if (src0) {
1673 		__ssa_src(sam, src0, 0);
1674 	}
1675 	if (src1) {
1676 		__ssa_src(sam, src1, 0);
1677 	}
1678 	sam->cat5.type  = type;
1679 
1680 	return sam;
1681 }
1682 
1683 /* cat6 instructions: */
1684 INSTR2(LDLV)
1685 INSTR3(LDG)
1686 INSTR3(LDL)
1687 INSTR3(LDLW)
1688 INSTR3(STG)
1689 INSTR3(STL)
1690 INSTR3(STLW)
1691 INSTR1(RESINFO)
1692 INSTR1(RESFMT)
1693 INSTR2(ATOMIC_ADD)
1694 INSTR2(ATOMIC_SUB)
1695 INSTR2(ATOMIC_XCHG)
1696 INSTR2(ATOMIC_INC)
1697 INSTR2(ATOMIC_DEC)
1698 INSTR2(ATOMIC_CMPXCHG)
1699 INSTR2(ATOMIC_MIN)
1700 INSTR2(ATOMIC_MAX)
1701 INSTR2(ATOMIC_AND)
1702 INSTR2(ATOMIC_OR)
1703 INSTR2(ATOMIC_XOR)
1704 INSTR2(LDC)
1705 #if GPU >= 600
1706 INSTR3(STIB);
1707 INSTR2(LDIB);
1708 INSTR3F(G, ATOMIC_ADD)
1709 INSTR3F(G, ATOMIC_SUB)
1710 INSTR3F(G, ATOMIC_XCHG)
1711 INSTR3F(G, ATOMIC_INC)
1712 INSTR3F(G, ATOMIC_DEC)
1713 INSTR3F(G, ATOMIC_CMPXCHG)
1714 INSTR3F(G, ATOMIC_MIN)
1715 INSTR3F(G, ATOMIC_MAX)
1716 INSTR3F(G, ATOMIC_AND)
1717 INSTR3F(G, ATOMIC_OR)
1718 INSTR3F(G, ATOMIC_XOR)
1719 #elif GPU >= 400
1720 INSTR3(LDGB)
1721 INSTR4(STGB)
1722 INSTR4(STIB)
1723 INSTR4F(G, ATOMIC_ADD)
1724 INSTR4F(G, ATOMIC_SUB)
1725 INSTR4F(G, ATOMIC_XCHG)
1726 INSTR4F(G, ATOMIC_INC)
1727 INSTR4F(G, ATOMIC_DEC)
1728 INSTR4F(G, ATOMIC_CMPXCHG)
1729 INSTR4F(G, ATOMIC_MIN)
1730 INSTR4F(G, ATOMIC_MAX)
1731 INSTR4F(G, ATOMIC_AND)
1732 INSTR4F(G, ATOMIC_OR)
1733 INSTR4F(G, ATOMIC_XOR)
1734 #endif
1735 
1736 INSTR4F(G, STG)
1737 
1738 /* cat7 instructions: */
1739 INSTR0(BAR)
1740 INSTR0(FENCE)
1741 
1742 /* meta instructions: */
1743 INSTR0(META_TEX_PREFETCH);
1744 
1745 /* ************************************************************************* */
1746 #include "regmask.h"
1747 
regmask_set(regmask_t * regmask,struct ir3_register * reg)1748 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1749 {
1750 	bool half = reg->flags & IR3_REG_HALF;
1751 	if (reg->flags & IR3_REG_RELATIV) {
1752 		for (unsigned i = 0; i < reg->size; i++)
1753 			__regmask_set(regmask, half, reg->array.offset + i);
1754 	} else {
1755 		for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1756 			if (mask & 1)
1757 				__regmask_set(regmask, half, n);
1758 	}
1759 }
1760 
regmask_get(regmask_t * regmask,struct ir3_register * reg)1761 static inline bool regmask_get(regmask_t *regmask,
1762 		struct ir3_register *reg)
1763 {
1764 	bool half = reg->flags & IR3_REG_HALF;
1765 	if (reg->flags & IR3_REG_RELATIV) {
1766 		for (unsigned i = 0; i < reg->size; i++)
1767 			if (__regmask_get(regmask, half, reg->array.offset + i))
1768 				return true;
1769 	} else {
1770 		for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1771 			if (mask & 1)
1772 				if (__regmask_get(regmask, half, n))
1773 					return true;
1774 	}
1775 	return false;
1776 }
1777 /* ************************************************************************* */
1778 
1779 #endif /* IR3_H_ */
1780