1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
16 
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
23 
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
30 
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 //  Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41                              (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42                               0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
46 
47 // A macro to tell the compiler that this part of the code cannot be reached,
48 // if the compiler supports this feature. Since we're using this in
49 // code that is called when terminating the process, the expansion of the
50 // macro should not terminate the process to avoid infinite recursion.
51 #if defined(__clang__)
52 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
53 #elif defined(__GNUC__) && \
54     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(_MSC_VER)
57 # define BUILTIN_UNREACHABLE() __assume(0)
58 #else
59 # define BUILTIN_UNREACHABLE()
60 #endif
61 
62 namespace __sanitizer {
63 
64 #include "sanitizer_syscall_generic.inc"
65 
66 // --------------------- sanitizer_common.h
GetPageSize()67 uptr GetPageSize() {
68   SYSTEM_INFO si;
69   GetSystemInfo(&si);
70   return si.dwPageSize;
71 }
72 
GetMmapGranularity()73 uptr GetMmapGranularity() {
74   SYSTEM_INFO si;
75   GetSystemInfo(&si);
76   return si.dwAllocationGranularity;
77 }
78 
GetMaxUserVirtualAddress()79 uptr GetMaxUserVirtualAddress() {
80   SYSTEM_INFO si;
81   GetSystemInfo(&si);
82   return (uptr)si.lpMaximumApplicationAddress;
83 }
84 
GetMaxVirtualAddress()85 uptr GetMaxVirtualAddress() {
86   return GetMaxUserVirtualAddress();
87 }
88 
FileExists(const char * filename)89 bool FileExists(const char *filename) {
90   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
91 }
92 
internal_getpid()93 uptr internal_getpid() {
94   return GetProcessId(GetCurrentProcess());
95 }
96 
internal_dlinfo(void * handle,int request,void * p)97 int internal_dlinfo(void *handle, int request, void *p) {
98   UNIMPLEMENTED();
99 }
100 
101 // In contrast to POSIX, on Windows GetCurrentThreadId()
102 // returns a system-unique identifier.
GetTid()103 tid_t GetTid() {
104   return GetCurrentThreadId();
105 }
106 
GetThreadSelf()107 uptr GetThreadSelf() {
108   return GetTid();
109 }
110 
111 #if !SANITIZER_GO
GetThreadStackTopAndBottom(bool at_initialization,uptr * stack_top,uptr * stack_bottom)112 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
113                                 uptr *stack_bottom) {
114   CHECK(stack_top);
115   CHECK(stack_bottom);
116   MEMORY_BASIC_INFORMATION mbi;
117   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
118   // FIXME: is it possible for the stack to not be a single allocation?
119   // Are these values what ASan expects to get (reserved, not committed;
120   // including stack guard page) ?
121   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
122   *stack_bottom = (uptr)mbi.AllocationBase;
123 }
124 #endif  // #if !SANITIZER_GO
125 
MmapOrDie(uptr size,const char * mem_type,bool raw_report)126 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
127   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
128   if (rv == 0)
129     ReportMmapFailureAndDie(size, mem_type, "allocate",
130                             GetLastError(), raw_report);
131   return rv;
132 }
133 
UnmapOrDie(void * addr,uptr size)134 void UnmapOrDie(void *addr, uptr size) {
135   if (!size || !addr)
136     return;
137 
138   MEMORY_BASIC_INFORMATION mbi;
139   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
140 
141   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
142   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
143   // fails try MEM_DECOMMIT.
144   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
145     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
146       Report("ERROR: %s failed to "
147              "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
148              SanitizerToolName, size, size, addr, GetLastError());
149       CHECK("unable to unmap" && 0);
150     }
151   }
152 }
153 
ReturnNullptrOnOOMOrDie(uptr size,const char * mem_type,const char * mmap_type)154 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
155                                      const char *mmap_type) {
156   error_t last_error = GetLastError();
157   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
158     return nullptr;
159   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
160 }
161 
MmapOrDieOnFatalError(uptr size,const char * mem_type)162 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
163   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
164   if (rv == 0)
165     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
166   return rv;
167 }
168 
169 // We want to map a chunk of address space aligned to 'alignment'.
MmapAlignedOrDieOnFatalError(uptr size,uptr alignment,const char * mem_type)170 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
171                                    const char *mem_type) {
172   CHECK(IsPowerOfTwo(size));
173   CHECK(IsPowerOfTwo(alignment));
174 
175   // Windows will align our allocations to at least 64K.
176   alignment = Max(alignment, GetMmapGranularity());
177 
178   uptr mapped_addr =
179       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
180   if (!mapped_addr)
181     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
182 
183   // If we got it right on the first try, return. Otherwise, unmap it and go to
184   // the slow path.
185   if (IsAligned(mapped_addr, alignment))
186     return (void*)mapped_addr;
187   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
188     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
189 
190   // If we didn't get an aligned address, overallocate, find an aligned address,
191   // unmap, and try to allocate at that aligned address.
192   int retries = 0;
193   const int kMaxRetries = 10;
194   for (; retries < kMaxRetries &&
195          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
196        retries++) {
197     // Overallocate size + alignment bytes.
198     mapped_addr =
199         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
200     if (!mapped_addr)
201       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
202 
203     // Find the aligned address.
204     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
205 
206     // Free the overallocation.
207     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
208       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
209 
210     // Attempt to allocate exactly the number of bytes we need at the aligned
211     // address. This may fail for a number of reasons, in which case we continue
212     // the loop.
213     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
214                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
215   }
216 
217   // Fail if we can't make this work quickly.
218   if (retries == kMaxRetries && mapped_addr == 0)
219     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
220 
221   return (void *)mapped_addr;
222 }
223 
MmapFixedNoReserve(uptr fixed_addr,uptr size,const char * name)224 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
225   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
226   // but on Win64 it does.
227   (void)name;  // unsupported
228 #if !SANITIZER_GO && SANITIZER_WINDOWS64
229   // On asan/Windows64, use MEM_COMMIT would result in error
230   // 1455:ERROR_COMMITMENT_LIMIT.
231   // Asan uses exception handler to commit page on demand.
232   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
233 #else
234   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
235                          PAGE_READWRITE);
236 #endif
237   if (p == 0) {
238     Report("ERROR: %s failed to "
239            "allocate %p (%zd) bytes at %p (error code: %d)\n",
240            SanitizerToolName, size, size, fixed_addr, GetLastError());
241     return false;
242   }
243   return true;
244 }
245 
MmapFixedSuperNoReserve(uptr fixed_addr,uptr size,const char * name)246 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
247   // FIXME: Windows support large pages too. Might be worth checking
248   return MmapFixedNoReserve(fixed_addr, size, name);
249 }
250 
251 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
252 // 'MmapFixedNoAccess'.
MmapFixedOrDie(uptr fixed_addr,uptr size,const char * name)253 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
254   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
255       MEM_COMMIT, PAGE_READWRITE);
256   if (p == 0) {
257     char mem_type[30];
258     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
259                       fixed_addr);
260     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
261   }
262   return p;
263 }
264 
265 // Uses fixed_addr for now.
266 // Will use offset instead once we've implemented this function for real.
Map(uptr fixed_addr,uptr size,const char * name)267 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
268   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
269 }
270 
MapOrDie(uptr fixed_addr,uptr size,const char * name)271 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
272                                     const char *name) {
273   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
274 }
275 
Unmap(uptr addr,uptr size)276 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
277   // Only unmap if it covers the entire range.
278   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
279   // We unmap the whole range, just null out the base.
280   base_ = nullptr;
281   size_ = 0;
282   UnmapOrDie(reinterpret_cast<void*>(addr), size);
283 }
284 
MmapFixedOrDieOnFatalError(uptr fixed_addr,uptr size,const char * name)285 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
286   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
287       MEM_COMMIT, PAGE_READWRITE);
288   if (p == 0) {
289     char mem_type[30];
290     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
291                       fixed_addr);
292     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
293   }
294   return p;
295 }
296 
MmapNoReserveOrDie(uptr size,const char * mem_type)297 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
298   // FIXME: make this really NoReserve?
299   return MmapOrDie(size, mem_type);
300 }
301 
Init(uptr size,const char * name,uptr fixed_addr)302 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
303   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
304   size_ = size;
305   name_ = name;
306   (void)os_handle_;  // unsupported
307   return reinterpret_cast<uptr>(base_);
308 }
309 
310 
MmapFixedNoAccess(uptr fixed_addr,uptr size,const char * name)311 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
312   (void)name; // unsupported
313   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
314                            MEM_RESERVE, PAGE_NOACCESS);
315   if (res == 0)
316     Report("WARNING: %s failed to "
317            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
318            SanitizerToolName, size, size, fixed_addr, GetLastError());
319   return res;
320 }
321 
MmapNoAccess(uptr size)322 void *MmapNoAccess(uptr size) {
323   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
324   if (res == 0)
325     Report("WARNING: %s failed to "
326            "mprotect %p (%zd) bytes (error code: %d)\n",
327            SanitizerToolName, size, size, GetLastError());
328   return res;
329 }
330 
MprotectNoAccess(uptr addr,uptr size)331 bool MprotectNoAccess(uptr addr, uptr size) {
332   DWORD old_protection;
333   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
334 }
335 
ReleaseMemoryPagesToOS(uptr beg,uptr end)336 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
337   // This is almost useless on 32-bits.
338   // FIXME: add madvise-analog when we move to 64-bits.
339 }
340 
SetShadowRegionHugePageMode(uptr addr,uptr size)341 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
342   // FIXME: probably similar to ReleaseMemoryToOS.
343 }
344 
DontDumpShadowMemory(uptr addr,uptr length)345 bool DontDumpShadowMemory(uptr addr, uptr length) {
346   // This is almost useless on 32-bits.
347   // FIXME: add madvise-analog when we move to 64-bits.
348   return true;
349 }
350 
MapDynamicShadow(uptr shadow_size_bytes,uptr shadow_scale,uptr min_shadow_base_alignment,UNUSED uptr & high_mem_end)351 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
352                       uptr min_shadow_base_alignment,
353                       UNUSED uptr &high_mem_end) {
354   const uptr granularity = GetMmapGranularity();
355   const uptr alignment =
356       Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
357   const uptr left_padding =
358       Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
359   uptr space_size = shadow_size_bytes + left_padding;
360   uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
361                                                granularity, nullptr, nullptr);
362   CHECK_NE((uptr)0, shadow_start);
363   CHECK(IsAligned(shadow_start, alignment));
364   return shadow_start;
365 }
366 
FindAvailableMemoryRange(uptr size,uptr alignment,uptr left_padding,uptr * largest_gap_found,uptr * max_occupied_addr)367 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
368                               uptr *largest_gap_found,
369                               uptr *max_occupied_addr) {
370   uptr address = 0;
371   while (true) {
372     MEMORY_BASIC_INFORMATION info;
373     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
374       return 0;
375 
376     if (info.State == MEM_FREE) {
377       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
378                                       alignment);
379       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
380         return shadow_address;
381     }
382 
383     // Move to the next region.
384     address = (uptr)info.BaseAddress + info.RegionSize;
385   }
386   return 0;
387 }
388 
MemoryRangeIsAvailable(uptr range_start,uptr range_end)389 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
390   MEMORY_BASIC_INFORMATION mbi;
391   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
392   return mbi.Protect == PAGE_NOACCESS &&
393          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
394 }
395 
MapFileToMemory(const char * file_name,uptr * buff_size)396 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
397   UNIMPLEMENTED();
398 }
399 
MapWritableFileToMemory(void * addr,uptr size,fd_t fd,OFF_T offset)400 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
401   UNIMPLEMENTED();
402 }
403 
404 static const int kMaxEnvNameLength = 128;
405 static const DWORD kMaxEnvValueLength = 32767;
406 
407 namespace {
408 
409 struct EnvVariable {
410   char name[kMaxEnvNameLength];
411   char value[kMaxEnvValueLength];
412 };
413 
414 }  // namespace
415 
416 static const int kEnvVariables = 5;
417 static EnvVariable env_vars[kEnvVariables];
418 static int num_env_vars;
419 
GetEnv(const char * name)420 const char *GetEnv(const char *name) {
421   // Note: this implementation caches the values of the environment variables
422   // and limits their quantity.
423   for (int i = 0; i < num_env_vars; i++) {
424     if (0 == internal_strcmp(name, env_vars[i].name))
425       return env_vars[i].value;
426   }
427   CHECK_LT(num_env_vars, kEnvVariables);
428   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
429                                      kMaxEnvValueLength);
430   if (rv > 0 && rv < kMaxEnvValueLength) {
431     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
432     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
433     num_env_vars++;
434     return env_vars[num_env_vars - 1].value;
435   }
436   return 0;
437 }
438 
GetPwd()439 const char *GetPwd() {
440   UNIMPLEMENTED();
441 }
442 
GetUid()443 u32 GetUid() {
444   UNIMPLEMENTED();
445 }
446 
447 namespace {
448 struct ModuleInfo {
449   const char *filepath;
450   uptr base_address;
451   uptr end_address;
452 };
453 
454 #if !SANITIZER_GO
CompareModulesBase(const void * pl,const void * pr)455 int CompareModulesBase(const void *pl, const void *pr) {
456   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
457   if (l->base_address < r->base_address)
458     return -1;
459   return l->base_address > r->base_address;
460 }
461 #endif
462 }  // namespace
463 
464 #if !SANITIZER_GO
DumpProcessMap()465 void DumpProcessMap() {
466   Report("Dumping process modules:\n");
467   ListOfModules modules;
468   modules.init();
469   uptr num_modules = modules.size();
470 
471   InternalMmapVector<ModuleInfo> module_infos(num_modules);
472   for (size_t i = 0; i < num_modules; ++i) {
473     module_infos[i].filepath = modules[i].full_name();
474     module_infos[i].base_address = modules[i].ranges().front()->beg;
475     module_infos[i].end_address = modules[i].ranges().back()->end;
476   }
477   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
478         CompareModulesBase);
479 
480   for (size_t i = 0; i < num_modules; ++i) {
481     const ModuleInfo &mi = module_infos[i];
482     if (mi.end_address != 0) {
483       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
484              mi.filepath[0] ? mi.filepath : "[no name]");
485     } else if (mi.filepath[0]) {
486       Printf("\t??\?-??? %s\n", mi.filepath);
487     } else {
488       Printf("\t???\n");
489     }
490   }
491 }
492 #endif
493 
DisableCoreDumperIfNecessary()494 void DisableCoreDumperIfNecessary() {
495   // Do nothing.
496 }
497 
ReExec()498 void ReExec() {
499   UNIMPLEMENTED();
500 }
501 
PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments * args)502 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
503 
StackSizeIsUnlimited()504 bool StackSizeIsUnlimited() {
505   UNIMPLEMENTED();
506 }
507 
SetStackSizeLimitInBytes(uptr limit)508 void SetStackSizeLimitInBytes(uptr limit) {
509   UNIMPLEMENTED();
510 }
511 
AddressSpaceIsUnlimited()512 bool AddressSpaceIsUnlimited() {
513   UNIMPLEMENTED();
514 }
515 
SetAddressSpaceUnlimited()516 void SetAddressSpaceUnlimited() {
517   UNIMPLEMENTED();
518 }
519 
IsPathSeparator(const char c)520 bool IsPathSeparator(const char c) {
521   return c == '\\' || c == '/';
522 }
523 
IsAlpha(char c)524 static bool IsAlpha(char c) {
525   c = ToLower(c);
526   return c >= 'a' && c <= 'z';
527 }
528 
IsAbsolutePath(const char * path)529 bool IsAbsolutePath(const char *path) {
530   return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
531          IsPathSeparator(path[2]);
532 }
533 
SleepForSeconds(int seconds)534 void SleepForSeconds(int seconds) {
535   Sleep(seconds * 1000);
536 }
537 
SleepForMillis(int millis)538 void SleepForMillis(int millis) {
539   Sleep(millis);
540 }
541 
NanoTime()542 u64 NanoTime() {
543   static LARGE_INTEGER frequency = {};
544   LARGE_INTEGER counter;
545   if (UNLIKELY(frequency.QuadPart == 0)) {
546     QueryPerformanceFrequency(&frequency);
547     CHECK_NE(frequency.QuadPart, 0);
548   }
549   QueryPerformanceCounter(&counter);
550   counter.QuadPart *= 1000ULL * 1000000ULL;
551   counter.QuadPart /= frequency.QuadPart;
552   return counter.QuadPart;
553 }
554 
MonotonicNanoTime()555 u64 MonotonicNanoTime() { return NanoTime(); }
556 
Abort()557 void Abort() {
558   internal__exit(3);
559 }
560 
561 #if !SANITIZER_GO
562 // Read the file to extract the ImageBase field from the PE header. If ASLR is
563 // disabled and this virtual address is available, the loader will typically
564 // load the image at this address. Therefore, we call it the preferred base. Any
565 // addresses in the DWARF typically assume that the object has been loaded at
566 // this address.
GetPreferredBase(const char * modname)567 static uptr GetPreferredBase(const char *modname) {
568   fd_t fd = OpenFile(modname, RdOnly, nullptr);
569   if (fd == kInvalidFd)
570     return 0;
571   FileCloser closer(fd);
572 
573   // Read just the DOS header.
574   IMAGE_DOS_HEADER dos_header;
575   uptr bytes_read;
576   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
577       bytes_read != sizeof(dos_header))
578     return 0;
579 
580   // The file should start with the right signature.
581   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
582     return 0;
583 
584   // The layout at e_lfanew is:
585   // "PE\0\0"
586   // IMAGE_FILE_HEADER
587   // IMAGE_OPTIONAL_HEADER
588   // Seek to e_lfanew and read all that data.
589   char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
590   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
591       INVALID_SET_FILE_POINTER)
592     return 0;
593   if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
594       bytes_read != sizeof(buf))
595     return 0;
596 
597   // Check for "PE\0\0" before the PE header.
598   char *pe_sig = &buf[0];
599   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
600     return 0;
601 
602   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
603   IMAGE_OPTIONAL_HEADER *pe_header =
604       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
605 
606   // Check for more magic in the PE header.
607   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
608     return 0;
609 
610   // Finally, return the ImageBase.
611   return (uptr)pe_header->ImageBase;
612 }
613 
init()614 void ListOfModules::init() {
615   clearOrInit();
616   HANDLE cur_process = GetCurrentProcess();
617 
618   // Query the list of modules.  Start by assuming there are no more than 256
619   // modules and retry if that's not sufficient.
620   HMODULE *hmodules = 0;
621   uptr modules_buffer_size = sizeof(HMODULE) * 256;
622   DWORD bytes_required;
623   while (!hmodules) {
624     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
625     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
626                              &bytes_required));
627     if (bytes_required > modules_buffer_size) {
628       // Either there turned out to be more than 256 hmodules, or new hmodules
629       // could have loaded since the last try.  Retry.
630       UnmapOrDie(hmodules, modules_buffer_size);
631       hmodules = 0;
632       modules_buffer_size = bytes_required;
633     }
634   }
635 
636   // |num_modules| is the number of modules actually present,
637   size_t num_modules = bytes_required / sizeof(HMODULE);
638   for (size_t i = 0; i < num_modules; ++i) {
639     HMODULE handle = hmodules[i];
640     MODULEINFO mi;
641     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
642       continue;
643 
644     // Get the UTF-16 path and convert to UTF-8.
645     wchar_t modname_utf16[kMaxPathLength];
646     int modname_utf16_len =
647         GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
648     if (modname_utf16_len == 0)
649       modname_utf16[0] = '\0';
650     char module_name[kMaxPathLength];
651     int module_name_len =
652         ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
653                               &module_name[0], kMaxPathLength, NULL, NULL);
654     module_name[module_name_len] = '\0';
655 
656     uptr base_address = (uptr)mi.lpBaseOfDll;
657     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
658 
659     // Adjust the base address of the module so that we get a VA instead of an
660     // RVA when computing the module offset. This helps llvm-symbolizer find the
661     // right DWARF CU. In the common case that the image is loaded at it's
662     // preferred address, we will now print normal virtual addresses.
663     uptr preferred_base = GetPreferredBase(&module_name[0]);
664     uptr adjusted_base = base_address - preferred_base;
665 
666     LoadedModule cur_module;
667     cur_module.set(module_name, adjusted_base);
668     // We add the whole module as one single address range.
669     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
670                                /*writable*/ true);
671     modules_.push_back(cur_module);
672   }
673   UnmapOrDie(hmodules, modules_buffer_size);
674 }
675 
fallbackInit()676 void ListOfModules::fallbackInit() { clear(); }
677 
678 // We can't use atexit() directly at __asan_init time as the CRT is not fully
679 // initialized at this point.  Place the functions into a vector and use
680 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
681 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
682 
Atexit(void (* function)(void))683 int Atexit(void (*function)(void)) {
684   atexit_functions.push_back(function);
685   return 0;
686 }
687 
RunAtexit()688 static int RunAtexit() {
689   TraceLoggingUnregister(g_asan_provider);
690   int ret = 0;
691   for (uptr i = 0; i < atexit_functions.size(); ++i) {
692     ret |= atexit(atexit_functions[i]);
693   }
694   return ret;
695 }
696 
697 #pragma section(".CRT$XID", long, read)
698 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
699 #endif
700 
701 // ------------------ sanitizer_libc.h
OpenFile(const char * filename,FileAccessMode mode,error_t * last_error)702 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
703   // FIXME: Use the wide variants to handle Unicode filenames.
704   fd_t res;
705   if (mode == RdOnly) {
706     res = CreateFileA(filename, GENERIC_READ,
707                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
708                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
709   } else if (mode == WrOnly) {
710     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
711                       FILE_ATTRIBUTE_NORMAL, nullptr);
712   } else {
713     UNIMPLEMENTED();
714   }
715   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
716   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
717   if (res == kInvalidFd && last_error)
718     *last_error = GetLastError();
719   return res;
720 }
721 
CloseFile(fd_t fd)722 void CloseFile(fd_t fd) {
723   CloseHandle(fd);
724 }
725 
ReadFromFile(fd_t fd,void * buff,uptr buff_size,uptr * bytes_read,error_t * error_p)726 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
727                   error_t *error_p) {
728   CHECK(fd != kInvalidFd);
729 
730   // bytes_read can't be passed directly to ReadFile:
731   // uptr is unsigned long long on 64-bit Windows.
732   unsigned long num_read_long;
733 
734   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
735   if (!success && error_p)
736     *error_p = GetLastError();
737   if (bytes_read)
738     *bytes_read = num_read_long;
739   return success;
740 }
741 
SupportsColoredOutput(fd_t fd)742 bool SupportsColoredOutput(fd_t fd) {
743   // FIXME: support colored output.
744   return false;
745 }
746 
WriteToFile(fd_t fd,const void * buff,uptr buff_size,uptr * bytes_written,error_t * error_p)747 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
748                  error_t *error_p) {
749   CHECK(fd != kInvalidFd);
750 
751   // Handle null optional parameters.
752   error_t dummy_error;
753   error_p = error_p ? error_p : &dummy_error;
754   uptr dummy_bytes_written;
755   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
756 
757   // Initialize output parameters in case we fail.
758   *error_p = 0;
759   *bytes_written = 0;
760 
761   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
762   // closed, in which case this will fail.
763   if (fd == kStdoutFd || fd == kStderrFd) {
764     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
765     if (fd == 0) {
766       *error_p = ERROR_INVALID_HANDLE;
767       return false;
768     }
769   }
770 
771   DWORD bytes_written_32;
772   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
773     *error_p = GetLastError();
774     return false;
775   } else {
776     *bytes_written = bytes_written_32;
777     return true;
778   }
779 }
780 
internal_sched_yield()781 uptr internal_sched_yield() {
782   Sleep(0);
783   return 0;
784 }
785 
internal__exit(int exitcode)786 void internal__exit(int exitcode) {
787   TraceLoggingUnregister(g_asan_provider);
788   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
789   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
790   // so add our own breakpoint here.
791   if (::IsDebuggerPresent())
792     __debugbreak();
793   TerminateProcess(GetCurrentProcess(), exitcode);
794   BUILTIN_UNREACHABLE();
795 }
796 
internal_ftruncate(fd_t fd,uptr size)797 uptr internal_ftruncate(fd_t fd, uptr size) {
798   UNIMPLEMENTED();
799 }
800 
GetRSS()801 uptr GetRSS() {
802   PROCESS_MEMORY_COUNTERS counters;
803   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
804     return 0;
805   return counters.WorkingSetSize;
806 }
807 
internal_start_thread(void * (* func)(void * arg),void * arg)808 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
internal_join_thread(void * th)809 void internal_join_thread(void *th) { }
810 
811 // ---------------------- BlockingMutex ---------------- {{{1
812 
BlockingMutex()813 BlockingMutex::BlockingMutex() {
814   CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
815   internal_memset(this, 0, sizeof(*this));
816 }
817 
Lock()818 void BlockingMutex::Lock() {
819   AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
820   CHECK_EQ(owner_, 0);
821   owner_ = GetThreadSelf();
822 }
823 
Unlock()824 void BlockingMutex::Unlock() {
825   CheckLocked();
826   owner_ = 0;
827   ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
828 }
829 
CheckLocked()830 void BlockingMutex::CheckLocked() {
831   CHECK_EQ(owner_, GetThreadSelf());
832 }
833 
GetTlsSize()834 uptr GetTlsSize() {
835   return 0;
836 }
837 
InitTlsSize()838 void InitTlsSize() {
839 }
840 
GetThreadStackAndTls(bool main,uptr * stk_addr,uptr * stk_size,uptr * tls_addr,uptr * tls_size)841 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
842                           uptr *tls_addr, uptr *tls_size) {
843 #if SANITIZER_GO
844   *stk_addr = 0;
845   *stk_size = 0;
846   *tls_addr = 0;
847   *tls_size = 0;
848 #else
849   uptr stack_top, stack_bottom;
850   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
851   *stk_addr = stack_bottom;
852   *stk_size = stack_top - stack_bottom;
853   *tls_addr = 0;
854   *tls_size = 0;
855 #endif
856 }
857 
Write(const char * buffer,uptr length)858 void ReportFile::Write(const char *buffer, uptr length) {
859   SpinMutexLock l(mu);
860   ReopenIfNecessary();
861   if (!WriteToFile(fd, buffer, length)) {
862     // stderr may be closed, but we may be able to print to the debugger
863     // instead.  This is the case when launching a program from Visual Studio,
864     // and the following routine should write to its console.
865     OutputDebugStringA(buffer);
866   }
867 }
868 
SetAlternateSignalStack()869 void SetAlternateSignalStack() {
870   // FIXME: Decide what to do on Windows.
871 }
872 
UnsetAlternateSignalStack()873 void UnsetAlternateSignalStack() {
874   // FIXME: Decide what to do on Windows.
875 }
876 
InstallDeadlySignalHandlers(SignalHandlerType handler)877 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
878   (void)handler;
879   // FIXME: Decide what to do on Windows.
880 }
881 
GetHandleSignalMode(int signum)882 HandleSignalMode GetHandleSignalMode(int signum) {
883   // FIXME: Decide what to do on Windows.
884   return kHandleSignalNo;
885 }
886 
887 // Check based on flags if we should handle this exception.
IsHandledDeadlyException(DWORD exceptionCode)888 bool IsHandledDeadlyException(DWORD exceptionCode) {
889   switch (exceptionCode) {
890     case EXCEPTION_ACCESS_VIOLATION:
891     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
892     case EXCEPTION_STACK_OVERFLOW:
893     case EXCEPTION_DATATYPE_MISALIGNMENT:
894     case EXCEPTION_IN_PAGE_ERROR:
895       return common_flags()->handle_segv;
896     case EXCEPTION_ILLEGAL_INSTRUCTION:
897     case EXCEPTION_PRIV_INSTRUCTION:
898     case EXCEPTION_BREAKPOINT:
899       return common_flags()->handle_sigill;
900     case EXCEPTION_FLT_DENORMAL_OPERAND:
901     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
902     case EXCEPTION_FLT_INEXACT_RESULT:
903     case EXCEPTION_FLT_INVALID_OPERATION:
904     case EXCEPTION_FLT_OVERFLOW:
905     case EXCEPTION_FLT_STACK_CHECK:
906     case EXCEPTION_FLT_UNDERFLOW:
907     case EXCEPTION_INT_DIVIDE_BY_ZERO:
908     case EXCEPTION_INT_OVERFLOW:
909       return common_flags()->handle_sigfpe;
910   }
911   return false;
912 }
913 
IsAccessibleMemoryRange(uptr beg,uptr size)914 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
915   SYSTEM_INFO si;
916   GetNativeSystemInfo(&si);
917   uptr page_size = si.dwPageSize;
918   uptr page_mask = ~(page_size - 1);
919 
920   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
921        page <= end;) {
922     MEMORY_BASIC_INFORMATION info;
923     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
924       return false;
925 
926     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
927         info.Protect == PAGE_EXECUTE)
928       return false;
929 
930     if (info.RegionSize == 0)
931       return false;
932 
933     page += info.RegionSize;
934   }
935 
936   return true;
937 }
938 
IsStackOverflow() const939 bool SignalContext::IsStackOverflow() const {
940   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
941 }
942 
InitPcSpBp()943 void SignalContext::InitPcSpBp() {
944   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
945   CONTEXT *context_record = (CONTEXT *)context;
946 
947   pc = (uptr)exception_record->ExceptionAddress;
948 #ifdef _WIN64
949   bp = (uptr)context_record->Rbp;
950   sp = (uptr)context_record->Rsp;
951 #else
952   bp = (uptr)context_record->Ebp;
953   sp = (uptr)context_record->Esp;
954 #endif
955 }
956 
GetAddress() const957 uptr SignalContext::GetAddress() const {
958   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
959   if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
960     return exception_record->ExceptionInformation[1];
961   return (uptr)exception_record->ExceptionAddress;
962 }
963 
IsMemoryAccess() const964 bool SignalContext::IsMemoryAccess() const {
965   return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
966          EXCEPTION_ACCESS_VIOLATION;
967 }
968 
IsTrueFaultingAddress() const969 bool SignalContext::IsTrueFaultingAddress() const { return true; }
970 
GetWriteFlag() const971 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
972   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
973 
974   // The write flag is only available for access violation exceptions.
975   if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
976     return SignalContext::UNKNOWN;
977 
978   // The contents of this array are documented at
979   // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
980   // The first element indicates read as 0, write as 1, or execute as 8.  The
981   // second element is the faulting address.
982   switch (exception_record->ExceptionInformation[0]) {
983     case 0:
984       return SignalContext::READ;
985     case 1:
986       return SignalContext::WRITE;
987     case 8:
988       return SignalContext::UNKNOWN;
989   }
990   return SignalContext::UNKNOWN;
991 }
992 
DumpAllRegisters(void * context)993 void SignalContext::DumpAllRegisters(void *context) {
994   // FIXME: Implement this.
995 }
996 
GetType() const997 int SignalContext::GetType() const {
998   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
999 }
1000 
Describe() const1001 const char *SignalContext::Describe() const {
1002   unsigned code = GetType();
1003   // Get the string description of the exception if this is a known deadly
1004   // exception.
1005   switch (code) {
1006     case EXCEPTION_ACCESS_VIOLATION:
1007       return "access-violation";
1008     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1009       return "array-bounds-exceeded";
1010     case EXCEPTION_STACK_OVERFLOW:
1011       return "stack-overflow";
1012     case EXCEPTION_DATATYPE_MISALIGNMENT:
1013       return "datatype-misalignment";
1014     case EXCEPTION_IN_PAGE_ERROR:
1015       return "in-page-error";
1016     case EXCEPTION_ILLEGAL_INSTRUCTION:
1017       return "illegal-instruction";
1018     case EXCEPTION_PRIV_INSTRUCTION:
1019       return "priv-instruction";
1020     case EXCEPTION_BREAKPOINT:
1021       return "breakpoint";
1022     case EXCEPTION_FLT_DENORMAL_OPERAND:
1023       return "flt-denormal-operand";
1024     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1025       return "flt-divide-by-zero";
1026     case EXCEPTION_FLT_INEXACT_RESULT:
1027       return "flt-inexact-result";
1028     case EXCEPTION_FLT_INVALID_OPERATION:
1029       return "flt-invalid-operation";
1030     case EXCEPTION_FLT_OVERFLOW:
1031       return "flt-overflow";
1032     case EXCEPTION_FLT_STACK_CHECK:
1033       return "flt-stack-check";
1034     case EXCEPTION_FLT_UNDERFLOW:
1035       return "flt-underflow";
1036     case EXCEPTION_INT_DIVIDE_BY_ZERO:
1037       return "int-divide-by-zero";
1038     case EXCEPTION_INT_OVERFLOW:
1039       return "int-overflow";
1040   }
1041   return "unknown exception";
1042 }
1043 
ReadBinaryName(char * buf,uptr buf_len)1044 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1045   // FIXME: Actually implement this function.
1046   CHECK_GT(buf_len, 0);
1047   buf[0] = 0;
1048   return 0;
1049 }
1050 
ReadLongProcessName(char * buf,uptr buf_len)1051 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1052   return ReadBinaryName(buf, buf_len);
1053 }
1054 
CheckVMASize()1055 void CheckVMASize() {
1056   // Do nothing.
1057 }
1058 
InitializePlatformEarly()1059 void InitializePlatformEarly() {
1060   // Do nothing.
1061 }
1062 
MaybeReexec()1063 void MaybeReexec() {
1064   // No need to re-exec on Windows.
1065 }
1066 
CheckASLR()1067 void CheckASLR() {
1068   // Do nothing
1069 }
1070 
CheckMPROTECT()1071 void CheckMPROTECT() {
1072   // Do nothing
1073 }
1074 
GetArgv()1075 char **GetArgv() {
1076   // FIXME: Actually implement this function.
1077   return 0;
1078 }
1079 
GetEnviron()1080 char **GetEnviron() {
1081   // FIXME: Actually implement this function.
1082   return 0;
1083 }
1084 
StartSubprocess(const char * program,const char * const argv[],const char * const envp[],fd_t stdin_fd,fd_t stdout_fd,fd_t stderr_fd)1085 pid_t StartSubprocess(const char *program, const char *const argv[],
1086                       const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1087                       fd_t stderr_fd) {
1088   // FIXME: implement on this platform
1089   // Should be implemented based on
1090   // SymbolizerProcess::StarAtSymbolizerSubprocess
1091   // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1092   return -1;
1093 }
1094 
IsProcessRunning(pid_t pid)1095 bool IsProcessRunning(pid_t pid) {
1096   // FIXME: implement on this platform.
1097   return false;
1098 }
1099 
WaitForProcess(pid_t pid)1100 int WaitForProcess(pid_t pid) { return -1; }
1101 
1102 // FIXME implement on this platform.
GetMemoryProfile(fill_profile_f cb,uptr * stats,uptr stats_size)1103 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
1104 
CheckNoDeepBind(const char * filename,int flag)1105 void CheckNoDeepBind(const char *filename, int flag) {
1106   // Do nothing.
1107 }
1108 
1109 // FIXME: implement on this platform.
GetRandom(void * buffer,uptr length,bool blocking)1110 bool GetRandom(void *buffer, uptr length, bool blocking) {
1111   UNIMPLEMENTED();
1112 }
1113 
GetNumberOfCPUs()1114 u32 GetNumberOfCPUs() {
1115   SYSTEM_INFO sysinfo = {};
1116   GetNativeSystemInfo(&sysinfo);
1117   return sysinfo.dwNumberOfProcessors;
1118 }
1119 
1120 #if SANITIZER_WIN_TRACE
1121 // TODO(mcgov): Rename this project-wide to PlatformLogInit
AndroidLogInit(void)1122 void AndroidLogInit(void) {
1123   HRESULT hr = TraceLoggingRegister(g_asan_provider);
1124   if (!SUCCEEDED(hr))
1125     return;
1126 }
1127 
SetAbortMessage(const char *)1128 void SetAbortMessage(const char *) {}
1129 
LogFullErrorReport(const char * buffer)1130 void LogFullErrorReport(const char *buffer) {
1131   if (common_flags()->log_to_syslog) {
1132     InternalMmapVector<wchar_t> filename;
1133     DWORD filename_length = 0;
1134     do {
1135       filename.resize(filename.size() + 0x100);
1136       filename_length =
1137           GetModuleFileNameW(NULL, filename.begin(), filename.size());
1138     } while (filename_length >= filename.size());
1139     TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1140                       TraceLoggingValue(filename.begin(), "ExecutableName"),
1141                       TraceLoggingValue(buffer, "AsanReportContents"));
1142   }
1143 }
1144 #endif // SANITIZER_WIN_TRACE
1145 
InitializePlatformCommonFlags(CommonFlags * cf)1146 void InitializePlatformCommonFlags(CommonFlags *cf) {}
1147 
1148 }  // namespace __sanitizer
1149 
1150 #endif  // _WIN32
1151