1 //===-- llvm/CodeGen/TargetFrameLowering.h ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Interface to describe the layout of a stack frame on the target machine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_TARGETFRAMELOWERING_H
14 #define LLVM_CODEGEN_TARGETFRAMELOWERING_H
15 
16 #include "llvm/CodeGen/MachineBasicBlock.h"
17 #include "llvm/Support/TypeSize.h"
18 #include <vector>
19 
20 namespace llvm {
21   class BitVector;
22   class CalleeSavedInfo;
23   class MachineFunction;
24   class RegScavenger;
25 
26 namespace TargetStackID {
27   enum Value {
28     Default = 0,
29     SGPRSpill = 1,
30     SVEVector = 2,
31     NoAlloc = 255
32   };
33 }
34 
35 /// Information about stack frame layout on the target.  It holds the direction
36 /// of stack growth, the known stack alignment on entry to each function, and
37 /// the offset to the locals area.
38 ///
39 /// The offset to the local area is the offset from the stack pointer on
40 /// function entry to the first location where function data (local variables,
41 /// spill locations) can be stored.
42 class TargetFrameLowering {
43 public:
44   enum StackDirection {
45     StackGrowsUp,        // Adding to the stack increases the stack address
46     StackGrowsDown       // Adding to the stack decreases the stack address
47   };
48 
49   // Maps a callee saved register to a stack slot with a fixed offset.
50   struct SpillSlot {
51     unsigned Reg;
52     int Offset; // Offset relative to stack pointer on function entry.
53   };
54 
55   struct DwarfFrameBase {
56     // The frame base may be either a register (the default), the CFA,
57     // or a WebAssembly-specific location description.
58     enum FrameBaseKind { Register, CFA, WasmFrameBase } Kind;
59     struct WasmFrameBase {
60       unsigned Kind; // Wasm local, global, or value stack
61       unsigned Index;
62     };
63     union {
64       unsigned Reg;
65       struct WasmFrameBase WasmLoc;
66     } Location;
67   };
68 
69 private:
70   StackDirection StackDir;
71   Align StackAlignment;
72   Align TransientStackAlignment;
73   int LocalAreaOffset;
74   bool StackRealignable;
75 public:
76   TargetFrameLowering(StackDirection D, Align StackAl, int LAO,
77                       Align TransAl = Align(1), bool StackReal = true)
StackDir(D)78       : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl),
79         LocalAreaOffset(LAO), StackRealignable(StackReal) {}
80 
81   virtual ~TargetFrameLowering();
82 
83   // These methods return information that describes the abstract stack layout
84   // of the target machine.
85 
86   /// getStackGrowthDirection - Return the direction the stack grows
87   ///
getStackGrowthDirection()88   StackDirection getStackGrowthDirection() const { return StackDir; }
89 
90   /// getStackAlignment - This method returns the number of bytes to which the
91   /// stack pointer must be aligned on entry to a function.  Typically, this
92   /// is the largest alignment for any data object in the target.
93   ///
getStackAlignment()94   unsigned getStackAlignment() const { return StackAlignment.value(); }
95   /// getStackAlignment - This method returns the number of bytes to which the
96   /// stack pointer must be aligned on entry to a function.  Typically, this
97   /// is the largest alignment for any data object in the target.
98   ///
getStackAlign()99   Align getStackAlign() const { return StackAlignment; }
100 
101   /// alignSPAdjust - This method aligns the stack adjustment to the correct
102   /// alignment.
103   ///
alignSPAdjust(int SPAdj)104   int alignSPAdjust(int SPAdj) const {
105     if (SPAdj < 0) {
106       SPAdj = -alignTo(-SPAdj, StackAlignment);
107     } else {
108       SPAdj = alignTo(SPAdj, StackAlignment);
109     }
110     return SPAdj;
111   }
112 
113   /// getTransientStackAlignment - This method returns the number of bytes to
114   /// which the stack pointer must be aligned at all times, even between
115   /// calls.
116   ///
getTransientStackAlignment()117   LLVM_ATTRIBUTE_DEPRECATED(unsigned getTransientStackAlignment() const,
118                             "Use getTransientStackAlign instead") {
119     return TransientStackAlignment.value();
120   }
121   /// getTransientStackAlignment - This method returns the number of bytes to
122   /// which the stack pointer must be aligned at all times, even between
123   /// calls.
124   ///
getTransientStackAlign()125   Align getTransientStackAlign() const { return TransientStackAlignment; }
126 
127   /// isStackRealignable - This method returns whether the stack can be
128   /// realigned.
isStackRealignable()129   bool isStackRealignable() const {
130     return StackRealignable;
131   }
132 
133   /// Return the skew that has to be applied to stack alignment under
134   /// certain conditions (e.g. stack was adjusted before function \p MF
135   /// was called).
136   virtual unsigned getStackAlignmentSkew(const MachineFunction &MF) const;
137 
138   /// This method returns whether or not it is safe for an object with the
139   /// given stack id to be bundled into the local area.
isStackIdSafeForLocalArea(unsigned StackId)140   virtual bool isStackIdSafeForLocalArea(unsigned StackId) const {
141     return true;
142   }
143 
144   /// getOffsetOfLocalArea - This method returns the offset of the local area
145   /// from the stack pointer on entrance to a function.
146   ///
getOffsetOfLocalArea()147   int getOffsetOfLocalArea() const { return LocalAreaOffset; }
148 
149   /// isFPCloseToIncomingSP - Return true if the frame pointer is close to
150   /// the incoming stack pointer, false if it is close to the post-prologue
151   /// stack pointer.
isFPCloseToIncomingSP()152   virtual bool isFPCloseToIncomingSP() const { return true; }
153 
154   /// assignCalleeSavedSpillSlots - Allows target to override spill slot
155   /// assignment logic.  If implemented, assignCalleeSavedSpillSlots() should
156   /// assign frame slots to all CSI entries and return true.  If this method
157   /// returns false, spill slots will be assigned using generic implementation.
158   /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of
159   /// CSI.
160   virtual bool
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI)161   assignCalleeSavedSpillSlots(MachineFunction &MF,
162                               const TargetRegisterInfo *TRI,
163                               std::vector<CalleeSavedInfo> &CSI) const {
164     return false;
165   }
166 
167   /// getCalleeSavedSpillSlots - This method returns a pointer to an array of
168   /// pairs, that contains an entry for each callee saved register that must be
169   /// spilled to a particular stack location if it is spilled.
170   ///
171   /// Each entry in this array contains a <register,offset> pair, indicating the
172   /// fixed offset from the incoming stack pointer that each register should be
173   /// spilled at. If a register is not listed here, the code generator is
174   /// allowed to spill it anywhere it chooses.
175   ///
176   virtual const SpillSlot *
getCalleeSavedSpillSlots(unsigned & NumEntries)177   getCalleeSavedSpillSlots(unsigned &NumEntries) const {
178     NumEntries = 0;
179     return nullptr;
180   }
181 
182   /// targetHandlesStackFrameRounding - Returns true if the target is
183   /// responsible for rounding up the stack frame (probably at emitPrologue
184   /// time).
targetHandlesStackFrameRounding()185   virtual bool targetHandlesStackFrameRounding() const {
186     return false;
187   }
188 
189   /// Returns true if the target will correctly handle shrink wrapping.
enableShrinkWrapping(const MachineFunction & MF)190   virtual bool enableShrinkWrapping(const MachineFunction &MF) const {
191     return false;
192   }
193 
194   /// Returns true if the stack slot holes in the fixed and callee-save stack
195   /// area should be used when allocating other stack locations to reduce stack
196   /// size.
enableStackSlotScavenging(const MachineFunction & MF)197   virtual bool enableStackSlotScavenging(const MachineFunction &MF) const {
198     return false;
199   }
200 
201   /// Returns true if the target can safely skip saving callee-saved registers
202   /// for noreturn nounwind functions.
203   virtual bool enableCalleeSaveSkip(const MachineFunction &MF) const;
204 
205   /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
206   /// the function.
207   virtual void emitPrologue(MachineFunction &MF,
208                             MachineBasicBlock &MBB) const = 0;
209   virtual void emitEpilogue(MachineFunction &MF,
210                             MachineBasicBlock &MBB) const = 0;
211 
212   /// With basic block sections, emit callee saved frame moves for basic blocks
213   /// that are in a different section.
214   virtual void
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)215   emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
216                             MachineBasicBlock::iterator MBBI) const {}
217 
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool IsPrologue)218   virtual void emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
219                                          MachineBasicBlock::iterator MBBI,
220                                          const DebugLoc &DL,
221                                          bool IsPrologue) const {}
222 
223   /// Replace a StackProbe stub (if any) with the actual probe code inline
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologueMBB)224   virtual void inlineStackProbe(MachineFunction &MF,
225                                 MachineBasicBlock &PrologueMBB) const {}
226 
227   /// Adjust the prologue to have the function use segmented stacks. This works
228   /// by adding a check even before the "normal" function prologue.
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB)229   virtual void adjustForSegmentedStacks(MachineFunction &MF,
230                                         MachineBasicBlock &PrologueMBB) const {}
231 
232   /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
233   /// the assembly prologue to explicitly handle the stack.
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB)234   virtual void adjustForHiPEPrologue(MachineFunction &MF,
235                                      MachineBasicBlock &PrologueMBB) const {}
236 
237   /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
238   /// saved registers and returns true if it isn't possible / profitable to do
239   /// so by issuing a series of store instructions via
240   /// storeRegToStackSlot(). Returns false otherwise.
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)241   virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
242                                          MachineBasicBlock::iterator MI,
243                                          ArrayRef<CalleeSavedInfo> CSI,
244                                          const TargetRegisterInfo *TRI) const {
245     return false;
246   }
247 
248   /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
249   /// saved registers and returns true if it isn't possible / profitable to do
250   /// so by issuing a series of load instructions via loadRegToStackSlot().
251   /// If it returns true, and any of the registers in CSI is not restored,
252   /// it sets the corresponding Restored flag in CSI to false.
253   /// Returns false otherwise.
254   virtual bool
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)255   restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
256                               MachineBasicBlock::iterator MI,
257                               MutableArrayRef<CalleeSavedInfo> CSI,
258                               const TargetRegisterInfo *TRI) const {
259     return false;
260   }
261 
262   /// Return true if the target wants to keep the frame pointer regardless of
263   /// the function attribute "frame-pointer".
keepFramePointer(const MachineFunction & MF)264   virtual bool keepFramePointer(const MachineFunction &MF) const {
265     return false;
266   }
267 
268   /// hasFP - Return true if the specified function should have a dedicated
269   /// frame pointer register. For most targets this is true only if the function
270   /// has variable sized allocas or if frame pointer elimination is disabled.
271   virtual bool hasFP(const MachineFunction &MF) const = 0;
272 
273   /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
274   /// not required, we reserve argument space for call sites in the function
275   /// immediately on entry to the current function. This eliminates the need for
276   /// add/sub sp brackets around call sites. Returns true if the call frame is
277   /// included as part of the stack frame.
hasReservedCallFrame(const MachineFunction & MF)278   virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
279     return !hasFP(MF);
280   }
281 
282   /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
283   /// call frame pseudo ops before doing frame index elimination. This is
284   /// possible only when frame index references between the pseudos won't
285   /// need adjusting for the call frame adjustments. Normally, that's true
286   /// if the function has a reserved call frame or a frame pointer. Some
287   /// targets (Thumb2, for example) may have more complicated criteria,
288   /// however, and can override this behavior.
canSimplifyCallFramePseudos(const MachineFunction & MF)289   virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
290     return hasReservedCallFrame(MF) || hasFP(MF);
291   }
292 
293   // needsFrameIndexResolution - Do we need to perform FI resolution for
294   // this function. Normally, this is required only when the function
295   // has any stack objects. However, targets may want to override this.
296   virtual bool needsFrameIndexResolution(const MachineFunction &MF) const;
297 
298   /// getFrameIndexReference - This method should return the base register
299   /// and offset used to reference a frame index location. The offset is
300   /// returned directly, and the base register is returned via FrameReg.
301   virtual StackOffset getFrameIndexReference(const MachineFunction &MF, int FI,
302                                              Register &FrameReg) const;
303 
304   /// Same as \c getFrameIndexReference, except that the stack pointer (as
305   /// opposed to the frame pointer) will be the preferred value for \p
306   /// FrameReg. This is generally used for emitting statepoint or EH tables that
307   /// use offsets from RSP.  If \p IgnoreSPUpdates is true, the returned
308   /// offset is only guaranteed to be valid with respect to the value of SP at
309   /// the end of the prologue.
310   virtual StackOffset
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,Register & FrameReg,bool IgnoreSPUpdates)311   getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI,
312                                  Register &FrameReg,
313                                  bool IgnoreSPUpdates) const {
314     // Always safe to dispatch to getFrameIndexReference.
315     return getFrameIndexReference(MF, FI, FrameReg);
316   }
317 
318   /// getNonLocalFrameIndexReference - This method returns the offset used to
319   /// reference a frame index location. The offset can be from either FP/BP/SP
320   /// based on which base register is returned by llvm.localaddress.
getNonLocalFrameIndexReference(const MachineFunction & MF,int FI)321   virtual StackOffset getNonLocalFrameIndexReference(const MachineFunction &MF,
322                                                      int FI) const {
323     // By default, dispatch to getFrameIndexReference. Interested targets can
324     // override this.
325     Register FrameReg;
326     return getFrameIndexReference(MF, FI, FrameReg);
327   }
328 
329   /// Returns the callee-saved registers as computed by determineCalleeSaves
330   /// in the BitVector \p SavedRegs.
331   virtual void getCalleeSaves(const MachineFunction &MF,
332                                   BitVector &SavedRegs) const;
333 
334   /// This method determines which of the registers reported by
335   /// TargetRegisterInfo::getCalleeSavedRegs() should actually get saved.
336   /// The default implementation checks populates the \p SavedRegs bitset with
337   /// all registers which are modified in the function, targets may override
338   /// this function to save additional registers.
339   /// This method also sets up the register scavenger ensuring there is a free
340   /// register or a frameindex available.
341   /// This method should not be called by any passes outside of PEI, because
342   /// it may change state passed in by \p MF and \p RS. The preferred
343   /// interface outside PEI is getCalleeSaves.
344   virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs,
345                                     RegScavenger *RS = nullptr) const;
346 
347   /// processFunctionBeforeFrameFinalized - This method is called immediately
348   /// before the specified function's frame layout (MF.getFrameInfo()) is
349   /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
350   /// replaced with direct constants.  This method is optional.
351   ///
352   virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF,
353                                              RegScavenger *RS = nullptr) const {
354   }
355 
356   /// processFunctionBeforeFrameIndicesReplaced - This method is called
357   /// immediately before MO_FrameIndex operands are eliminated, but after the
358   /// frame is finalized. This method is optional.
359   virtual void
360   processFunctionBeforeFrameIndicesReplaced(MachineFunction &MF,
361                                             RegScavenger *RS = nullptr) const {}
362 
getWinEHParentFrameOffset(const MachineFunction & MF)363   virtual unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const {
364     report_fatal_error("WinEH not implemented for this target");
365   }
366 
367   /// This method is called during prolog/epilog code insertion to eliminate
368   /// call frame setup and destroy pseudo instructions (but only if the Target
369   /// is using them).  It is responsible for eliminating these instructions,
370   /// replacing them with concrete instructions.  This method need only be
371   /// implemented if using call frame setup/destroy pseudo instructions.
372   /// Returns an iterator pointing to the instruction after the replaced one.
373   virtual MachineBasicBlock::iterator
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MI)374   eliminateCallFramePseudoInstr(MachineFunction &MF,
375                                 MachineBasicBlock &MBB,
376                                 MachineBasicBlock::iterator MI) const {
377     llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
378                      "target!");
379   }
380 
381 
382   /// Order the symbols in the local stack frame.
383   /// The list of objects that we want to order is in \p objectsToAllocate as
384   /// indices into the MachineFrameInfo. The array can be reordered in any way
385   /// upon return. The contents of the array, however, may not be modified (i.e.
386   /// only their order may be changed).
387   /// By default, just maintain the original order.
388   virtual void
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & objectsToAllocate)389   orderFrameObjects(const MachineFunction &MF,
390                     SmallVectorImpl<int> &objectsToAllocate) const {
391   }
392 
393   /// Check whether or not the given \p MBB can be used as a prologue
394   /// for the target.
395   /// The prologue will be inserted first in this basic block.
396   /// This method is used by the shrink-wrapping pass to decide if
397   /// \p MBB will be correctly handled by the target.
398   /// As soon as the target enable shrink-wrapping without overriding
399   /// this method, we assume that each basic block is a valid
400   /// prologue.
canUseAsPrologue(const MachineBasicBlock & MBB)401   virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const {
402     return true;
403   }
404 
405   /// Check whether or not the given \p MBB can be used as a epilogue
406   /// for the target.
407   /// The epilogue will be inserted before the first terminator of that block.
408   /// This method is used by the shrink-wrapping pass to decide if
409   /// \p MBB will be correctly handled by the target.
410   /// As soon as the target enable shrink-wrapping without overriding
411   /// this method, we assume that each basic block is a valid
412   /// epilogue.
canUseAsEpilogue(const MachineBasicBlock & MBB)413   virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const {
414     return true;
415   }
416 
417   /// Returns the StackID that scalable vectors should be associated with.
getStackIDForScalableVectors()418   virtual TargetStackID::Value getStackIDForScalableVectors() const {
419     return TargetStackID::Default;
420   }
421 
isSupportedStackID(TargetStackID::Value ID)422   virtual bool isSupportedStackID(TargetStackID::Value ID) const {
423     switch (ID) {
424     default:
425       return false;
426     case TargetStackID::Default:
427     case TargetStackID::NoAlloc:
428       return true;
429     }
430   }
431 
432   /// Check if given function is safe for not having callee saved registers.
433   /// This is used when interprocedural register allocation is enabled.
434   static bool isSafeForNoCSROpt(const Function &F);
435 
436   /// Check if the no-CSR optimisation is profitable for the given function.
isProfitableForNoCSROpt(const Function & F)437   virtual bool isProfitableForNoCSROpt(const Function &F) const {
438     return true;
439   }
440 
441   /// Return initial CFA offset value i.e. the one valid at the beginning of the
442   /// function (before any stack operations).
443   virtual int getInitialCFAOffset(const MachineFunction &MF) const;
444 
445   /// Return initial CFA register value i.e. the one valid at the beginning of
446   /// the function (before any stack operations).
447   virtual Register getInitialCFARegister(const MachineFunction &MF) const;
448 
449   /// Return the frame base information to be encoded in the DWARF subprogram
450   /// debug info.
451   virtual DwarfFrameBase getDwarfFrameBase(const MachineFunction &MF) const;
452 };
453 
454 } // End llvm namespace
455 
456 #endif
457